cmbjxxiao c8d92d7529
fix bugs of hc32 driver adc and can (#6077)
* fix bugs of hc32 driver adc and can
2022-06-15 10:37:27 +08:00

272 lines
7.8 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
* Copyright (c) 2022, Xiaohua Semiconductor Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-04-28 CDT first version
* 2022-06-08 xiaoxiaolisunny add hc32f460 series
* 2022-06-14 CDT fix a bug of internal trigger
*/
#include <board.h>
#include <drivers/adc.h>
#include <drv_adc.h>
#include <drv_config.h>
#define DBG_TAG "drv.adc"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#ifdef RT_USING_ADC
typedef struct
{
struct rt_adc_device rt_adc;
CM_ADC_TypeDef *instance;
struct adc_dev_init_params init;
} adc_device;
#if !defined(BSP_USING_ADC1) && !defined(BSP_USING_ADC2) && !defined(BSP_USING_ADC3)
#error "Please define at least one BSP_USING_ADCx"
#endif
static adc_device g_adc_dev_array[] =
{
#ifdef BSP_USING_ADC1
{
{0},
CM_ADC1,
ADC1_INIT_PARAMS,
},
#endif
#ifdef BSP_USING_ADC2
{
{0},
CM_ADC2,
ADC2_INIT_PARAMS,
},
#endif
#ifdef BSP_USING_ADC3
{
{0},
CM_ADC3,
ADC3_INIT_PARAMS,
},
#endif
};
static void _adc_internal_trigger0_set(adc_device *p_adc_dev)
{
uint32_t u32TriggerSel;
rt_bool_t is_internal_trig0_enabled = (p_adc_dev->init.hard_trig_src == ADC_HARDTRIG_EVT0 || p_adc_dev->init.hard_trig_src == ADC_HARDTRIG_EVT0_EVT1);
if (is_internal_trig0_enabled == RT_FALSE)
{
return;
}
#if defined(HC32F4A0)
switch ((rt_uint32_t)p_adc_dev->instance)
{
case (rt_uint32_t)CM_ADC1:
u32TriggerSel = AOS_ADC1_0;
break;
case (rt_uint32_t)CM_ADC2:
u32TriggerSel = AOS_ADC2_0;
break;
case (rt_uint32_t)CM_ADC3:
u32TriggerSel = AOS_ADC3_0;
break;
default:
break;
}
AOS_CommonTriggerCmd(u32TriggerSel, AOS_COMM_TRIG1, (en_functional_state_t)p_adc_dev->init.internal_trig0_comtrg0_enable);
AOS_CommonTriggerCmd(u32TriggerSel, AOS_COMM_TRIG2, (en_functional_state_t)p_adc_dev->init.internal_trig0_comtrg1_enable);
#endif
#if defined(HC32F460)
switch ((rt_uint32_t)p_adc_dev->instance)
{
case (rt_uint32_t)CM_ADC1:
u32TriggerSel = AOS_ADC1_0;
break;
case (rt_uint32_t)CM_ADC2:
u32TriggerSel = AOS_ADC2_0;
break;
default:
break;
}
AOS_CommonTriggerCmd(u32TriggerSel, AOS_COMM_TRIG1, (en_functional_state_t)p_adc_dev->init.internal_trig0_comtrg0_enable);
AOS_CommonTriggerCmd(u32TriggerSel, AOS_COMM_TRIG2, (en_functional_state_t)p_adc_dev->init.internal_trig0_comtrg1_enable);
#endif
AOS_SetTriggerEventSrc(u32TriggerSel, p_adc_dev->init.internal_trig0_sel);
}
static void _adc_internal_trigger1_set(adc_device *p_adc_dev)
{
uint32_t u32TriggerSel;
rt_bool_t is_internal_trig1_enabled = (p_adc_dev->init.hard_trig_src == ADC_HARDTRIG_EVT1 || p_adc_dev->init.hard_trig_src == ADC_HARDTRIG_EVT0_EVT1);
if (is_internal_trig1_enabled == RT_FALSE)
{
return;
}
#if defined(HC32F4A0)
switch ((rt_uint32_t)p_adc_dev->instance)
{
case (rt_uint32_t)CM_ADC1:
u32TriggerSel = AOS_ADC1_1;
break;
case (rt_uint32_t)CM_ADC2:
u32TriggerSel = AOS_ADC2_1;
break;
case (rt_uint32_t)CM_ADC3:
u32TriggerSel = AOS_ADC3_1;
break;
default:
break;
}
AOS_CommonTriggerCmd(u32TriggerSel, AOS_COMM_TRIG1, (en_functional_state_t)p_adc_dev->init.internal_trig1_comtrg0_enable);
AOS_CommonTriggerCmd(u32TriggerSel, AOS_COMM_TRIG2, (en_functional_state_t)p_adc_dev->init.internal_trig1_comtrg1_enable);
#endif
#if defined(HC32F460)
switch ((rt_uint32_t)p_adc_dev->instance)
{
case (rt_uint32_t)CM_ADC1:
u32TriggerSel = AOS_ADC1_1;
break;
case (rt_uint32_t)CM_ADC2:
u32TriggerSel = AOS_ADC2_1;
break;
default:
break;
}
AOS_CommonTriggerCmd(u32TriggerSel, AOS_COMM_TRIG1, (en_functional_state_t)p_adc_dev->init.internal_trig1_comtrg0_enable);
AOS_CommonTriggerCmd(u32TriggerSel, AOS_COMM_TRIG2, (en_functional_state_t)p_adc_dev->init.internal_trig1_comtrg1_enable);
#endif
AOS_SetTriggerEventSrc(u32TriggerSel, p_adc_dev->init.internal_trig1_sel);
}
static rt_err_t _adc_enable(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled)
{
adc_device *p_adc_dev = rt_container_of(device, adc_device, rt_adc);
ADC_ChCmd(p_adc_dev->instance, ADC_SEQ_A, channel, (en_functional_state_t)enabled);
return 0;
}
static rt_err_t _adc_convert(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value)
{
rt_err_t rt_ret = RT_ERROR;
if (!value)
{
return -RT_EINVAL;
}
adc_device *p_adc_dev = rt_container_of(device, adc_device, rt_adc);
if (p_adc_dev->init.hard_trig_enable == RT_FALSE && p_adc_dev->instance->STR == 0)
{
ADC_Start(p_adc_dev->instance);
}
uint32_t start_time = rt_tick_get();
do
{
if (ADC_GetStatus(p_adc_dev->instance, ADC_FLAG_EOCA) == SET)
{
ADC_ClearStatus(p_adc_dev->instance, ADC_FLAG_EOCA);
rt_ret = LL_OK;
break;
}
}
while ((rt_tick_get() - start_time) < p_adc_dev->init.eoc_poll_time_max);
if (rt_ret == LL_OK)
{
/* Get any ADC value of sequence A channel that needed. */
*value = ADC_GetValue(p_adc_dev->instance, channel);
}
return rt_ret;
}
static struct rt_adc_ops g_adc_ops =
{
_adc_enable,
_adc_convert,
};
static void _adc_clock_enable(void)
{
#if defined(HC32F4A0)
#if defined(BSP_USING_ADC1)
FCG_Fcg3PeriphClockCmd(FCG3_PERIPH_ADC1, ENABLE);
#endif
#if defined(BSP_USING_ADC2)
FCG_Fcg3PeriphClockCmd(FCG3_PERIPH_ADC2, ENABLE);
#endif
#if defined(BSP_USING_ADC3)
FCG_Fcg3PeriphClockCmd(FCG3_PERIPH_ADC3, ENABLE);
#endif
#endif
#if defined(HC32F460)
#if defined(BSP_USING_ADC1)
FCG_Fcg3PeriphClockCmd(FCG3_PERIPH_ADC1, ENABLE);
#endif
#if defined(BSP_USING_ADC2)
FCG_Fcg3PeriphClockCmd(FCG3_PERIPH_ADC2, ENABLE);
#endif
#endif
}
extern rt_err_t rt_hw_board_adc_init(CM_ADC_TypeDef *ADCx);
static int rt_hw_adc_init(void)
{
int ret, i = 0;
stc_adc_init_t stcAdcInit = {0};
int32_t ll_ret = 0;
_adc_clock_enable();
uint32_t dev_cnt = sizeof(g_adc_dev_array) / sizeof(g_adc_dev_array[0]);
for (; i < dev_cnt; i++)
{
ADC_DeInit(g_adc_dev_array[i].instance);
/* Initializes ADC. */
stcAdcInit.u16Resolution = g_adc_dev_array[i].init.resolution;
stcAdcInit.u16DataAlign = g_adc_dev_array[i].init.data_align;
stcAdcInit.u16ScanMode = (g_adc_dev_array[i].init.continue_conv_mode_enable) ? ADC_MD_SEQA_CONT : ADC_MD_SEQA_SINGLESHOT;
ll_ret = ADC_Init((void *)g_adc_dev_array[i].instance, &stcAdcInit);
if (ll_ret != LL_OK)
{
ret = -RT_ERROR;
break;
}
ADC_TriggerCmd(g_adc_dev_array[i].instance, ADC_SEQ_A, (en_functional_state_t)g_adc_dev_array[i].init.hard_trig_enable);
ADC_TriggerConfig(g_adc_dev_array[i].instance, ADC_SEQ_A, g_adc_dev_array[i].init.hard_trig_src);
if (g_adc_dev_array[i].init.hard_trig_enable && g_adc_dev_array[i].init.hard_trig_src != ADC_HARDTRIG_ADTRG_PIN)
{
_adc_internal_trigger0_set(&g_adc_dev_array[i]);
_adc_internal_trigger1_set(&g_adc_dev_array[i]);
}
rt_hw_board_adc_init((void *)g_adc_dev_array[i].instance);
ret = rt_hw_adc_register(&g_adc_dev_array[i].rt_adc, \
(const char *)g_adc_dev_array[i].init.name, \
&g_adc_ops, (void *)g_adc_dev_array[i].instance);
if (ret != RT_EOK)
{
/* TODO err handler */
// LOG_E("failed register %s, err=%d", g_adc_dev_array[i].name, ret);
}
}
return ret;
}
INIT_DEVICE_EXPORT(rt_hw_adc_init);
#endif