rt-thread/bsp/stm32/libraries/HAL_Drivers/drivers/drv_sdram.c

265 lines
8.1 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-12-04 zylx first version
*/
#include <board.h>
#ifdef BSP_USING_SDRAM
#include <sdram_port.h>
#define DRV_DEBUG
#define LOG_TAG "drv.sdram"
#include <drv_log.h>
static SDRAM_HandleTypeDef hsdram1;
static FMC_SDRAM_CommandTypeDef command;
#ifdef RT_USING_MEMHEAP_AS_HEAP
static struct rt_memheap system_heap;
#endif
/**
* @brief
* @param hsdram: SDRAM handle
* @param Command: Pointer to SDRAM command structure
* @retval None
*/
static void SDRAM_Initialization_Sequence(SDRAM_HandleTypeDef *hsdram, FMC_SDRAM_CommandTypeDef *Command)
{
__IO uint32_t tmpmrd = 0;
uint32_t target_bank = 0;
#if SDRAM_TARGET_BANK == 1
target_bank = FMC_SDRAM_CMD_TARGET_BANK1;
#else
target_bank = FMC_SDRAM_CMD_TARGET_BANK2;
#endif
/* Configure a clock configuration enable command */
Command->CommandMode = FMC_SDRAM_CMD_CLK_ENABLE;
Command->CommandTarget = target_bank;
Command->AutoRefreshNumber = 1;
Command->ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Insert 100 ms delay */
/* interrupt is not enable, just to delay some time. */
for (tmpmrd = 0; tmpmrd < 0xffff; tmpmrd ++)
;
/* Configure a PALL (precharge all) command */
Command->CommandMode = FMC_SDRAM_CMD_PALL;
Command->CommandTarget = target_bank;
Command->AutoRefreshNumber = 1;
Command->ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Configure a Auto-Refresh command */
Command->CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE;
Command->CommandTarget = target_bank;
Command->AutoRefreshNumber = 8;
Command->ModeRegisterDefinition = 0;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Program the external memory mode register */
#if SDRAM_DATA_WIDTH == 8
tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 |
#elif SDRAM_DATA_WIDTH == 16
tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_2 |
#else
tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_4 |
#endif
SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL |
#if SDRAM_CAS_LATENCY == 3
SDRAM_MODEREG_CAS_LATENCY_3 |
#else
SDRAM_MODEREG_CAS_LATENCY_2 |
#endif
SDRAM_MODEREG_OPERATING_MODE_STANDARD |
SDRAM_MODEREG_WRITEBURST_MODE_SINGLE;
Command->CommandMode = FMC_SDRAM_CMD_LOAD_MODE;
Command->CommandTarget = target_bank;
Command->AutoRefreshNumber = 1;
Command->ModeRegisterDefinition = tmpmrd;
/* Send the command */
HAL_SDRAM_SendCommand(hsdram, Command, 0x1000);
/* Set the device refresh counter */
HAL_SDRAM_ProgramRefreshRate(hsdram, SDRAM_REFRESH_COUNT);
}
static int SDRAM_Init(void)
{
int result = RT_EOK;
FMC_SDRAM_TimingTypeDef SDRAM_Timing;
/* SDRAM device configuration */
hsdram1.Instance = FMC_SDRAM_DEVICE;
SDRAM_Timing.LoadToActiveDelay = LOADTOACTIVEDELAY;
SDRAM_Timing.ExitSelfRefreshDelay = EXITSELFREFRESHDELAY;
SDRAM_Timing.SelfRefreshTime = SELFREFRESHTIME;
SDRAM_Timing.RowCycleDelay = ROWCYCLEDELAY;
SDRAM_Timing.WriteRecoveryTime = WRITERECOVERYTIME;
SDRAM_Timing.RPDelay = RPDELAY;
SDRAM_Timing.RCDDelay = RCDDELAY;
#if SDRAM_TARGET_BANK == 1
hsdram1.Init.SDBank = FMC_SDRAM_BANK1;
#else
hsdram1.Init.SDBank = FMC_SDRAM_BANK2;
#endif
#if SDRAM_COLUMN_BITS == 8
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;
#elif SDRAM_COLUMN_BITS == 9
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_9;
#elif SDRAM_COLUMN_BITS == 10
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_10;
#else
hsdram1.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_11;
#endif
#if SDRAM_ROW_BITS == 11
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_11;
#elif SDRAM_ROW_BITS == 12
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
#else
hsdram1.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_13;
#endif
#if SDRAM_DATA_WIDTH == 8
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_8;
#elif SDRAM_DATA_WIDTH == 16
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_16;
#else
hsdram1.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_32;
#endif
hsdram1.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
#if SDRAM_CAS_LATENCY == 1
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_1;
#elif SDRAM_CAS_LATENCY == 2
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_2;
#else
hsdram1.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;
#endif
hsdram1.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
#if SDCLOCK_PERIOD == 2
hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
#else
hsdram1.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_3;
#endif
hsdram1.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
#if SDRAM_RPIPE_DELAY == 0
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
#elif SDRAM_RPIPE_DELAY == 1
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_1;
#else
hsdram1.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_2;
#endif
/* Initialize the SDRAM controller */
if (HAL_SDRAM_Init(&hsdram1, &SDRAM_Timing) != HAL_OK)
{
LOG_E("SDRAM init failed!");
result = -RT_ERROR;
}
else
{
/* Program the SDRAM external device */
SDRAM_Initialization_Sequence(&hsdram1, &command);
LOG_D("sdram init success, mapped at 0x%X, size is %d bytes, data width is %d", SDRAM_BANK_ADDR, SDRAM_SIZE, SDRAM_DATA_WIDTH);
#ifdef RT_USING_MEMHEAP_AS_HEAP
/* If RT_USING_MEMHEAP_AS_HEAP is enabled, SDRAM is initialized to the heap */
rt_memheap_init(&system_heap, "sdram", (void *)SDRAM_BANK_ADDR, SDRAM_SIZE);
#endif
}
return result;
}
INIT_BOARD_EXPORT(SDRAM_Init);
#ifdef DRV_DEBUG
#ifdef FINSH_USING_MSH
int sdram_test(void)
{
int i = 0;
uint32_t start_time = 0, time_cast = 0;
#if SDRAM_DATA_WIDTH == 8
char data_width = 1;
uint8_t data = 0;
#elif SDRAM_DATA_WIDTH == 16
char data_width = 2;
uint16_t data = 0;
#else
char data_width = 4;
uint32_t data = 0;
#endif
/* write data */
LOG_D("Writing the %ld bytes data, waiting....", SDRAM_SIZE);
start_time = rt_tick_get();
for (i = 0; i < SDRAM_SIZE / data_width; i++)
{
#if SDRAM_DATA_WIDTH == 8
*(__IO uint8_t *)(SDRAM_BANK_ADDR + i * data_width) = (uint8_t)(i % 100);
#elif SDRAM_DATA_WIDTH == 16
*(__IO uint16_t *)(SDRAM_BANK_ADDR + i * data_width) = (uint16_t)(i % 1000);
#else
*(__IO uint32_t *)(SDRAM_BANK_ADDR + i * data_width) = (uint32_t)(i % 1000);
#endif
}
time_cast = rt_tick_get() - start_time;
LOG_D("Write data success, total time: %d.%03dS.", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
/* read data */
LOG_D("start Reading and verifying data, waiting....");
for (i = 0; i < SDRAM_SIZE / data_width; i++)
{
#if SDRAM_DATA_WIDTH == 8
data = *(__IO uint8_t *)(SDRAM_BANK_ADDR + i * data_width);
if (data != i % 100)
{
LOG_E("SDRAM test failed!");
break;
}
#elif SDRAM_DATA_WIDTH == 16
data = *(__IO uint16_t *)(SDRAM_BANK_ADDR + i * data_width);
if (data != i % 1000)
{
LOG_E("SDRAM test failed!");
break;
}
#else
data = *(__IO uint32_t *)(SDRAM_BANK_ADDR + i * data_width);
if (data != i % 1000)
{
LOG_E("SDRAM test failed!");
break;
}
#endif
}
if (i >= SDRAM_SIZE / data_width)
{
LOG_D("SDRAM test success!");
}
return RT_EOK;
}
MSH_CMD_EXPORT(sdram_test, sdram test)
#endif /* FINSH_USING_MSH */
#endif /* DRV_DEBUG */
#endif /* BSP_USING_SDRAM */