rt-thread/bsp/stm32/stm32g474-st-nucleo
Meco Man 592284c66c format link scripts 2023-01-08 22:52:13 -05:00
..
applications [bsp][applications][sconscript] 整理统一sconscript格式 (#6481) 2022-10-03 10:43:08 -04:00
board format link scripts 2023-01-08 22:52:13 -05:00
figures add stm32g474-st-nucleo bsp (#5362) 2021-12-13 09:42:33 +08:00
.config update the project for RT-Thread_V4.1.1 2022-08-16 19:38:48 +08:00
.gitignore add stm32g474-st-nucleo bsp (#5362) 2021-12-13 09:42:33 +08:00
Kconfig format Kconfig and sconscript 2023-01-08 22:52:13 -05:00
README.md add stm32g474-st-nucleo bsp (#5362) 2021-12-13 09:42:33 +08:00
README_zh.md add stm32g474-st-nucleo bsp (#5362) 2021-12-13 09:42:33 +08:00
SConscript add stm32g474-st-nucleo bsp (#5362) 2021-12-13 09:42:33 +08:00
SConstruct [Scons][iar][iccarm] IAR统一使用iccarm作为判断条件而不是是用IDE的名字来进行判断 2022-06-09 07:01:59 +08:00
project.ewd add stm32g474-st-nucleo bsp (#5362) 2021-12-13 09:42:33 +08:00
project.ewp update the project for RT-Thread_V4.1.1 2022-08-16 19:38:48 +08:00
project.eww add stm32g474-st-nucleo bsp (#5362) 2021-12-13 09:42:33 +08:00
project.uvoptx 分离内存分配接口与内存分配算法 (#5175) 2021-12-16 16:23:58 +08:00
project.uvprojx update the project for RT-Thread_V4.1.1 2022-08-16 19:38:48 +08:00
rtconfig.h update the project for RT-Thread_V4.1.1 2022-08-16 19:38:48 +08:00
rtconfig.py [scons][iar] 将IAR的PLATFORM字段由iar调整为iccarm 2022-06-09 07:01:59 +08:00
template.ewp add stm32g474-st-nucleo bsp (#5362) 2021-12-13 09:42:33 +08:00
template.eww add stm32g474-st-nucleo bsp (#5362) 2021-12-13 09:42:33 +08:00
template.uvoptx add stm32g474-st-nucleo bsp (#5362) 2021-12-13 09:42:33 +08:00
template.uvprojx add stm32g474-st-nucleo bsp (#5362) 2021-12-13 09:42:33 +08:00

README.md

STM32G431-Nucleo BSP Introduction

中文

MCU: STM32G474RB @170MHz, 512KB FLASH, 128KB RAM

The STM32G474xB/xC/xE devices are based on the high-performance Arm® Cortex®-M4 32-bit RISC core. They operate at a frequency of up to 170 MHz. The Cortex-M4 core features a single-precision floating-point unit (FPU), which supports all the Arm single-precision data-processing instructions and all the data types. It also implements a full set of DSP (digital signal processing) instructions and a memory protection unit (MPU) which enhances the applications security. These devices embed high-speed memories (up to 512 Kbytes of Flash memory, and 128 Kbytes of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), a Quad-SPI Flash memory interface, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix. The devices also embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, securable memory area and proprietary code readout protection. The devices embed peripherals allowing mathematical/arithmetic function acceleration (CORDIC for trigonometric functions and FMAC unit for filter functions). They offer five fast 12-bit ADCs (4 Msps), seven comparators, six operational amplifiers, seven DAC channels (3 external and 4 internal), an internal voltage reference buffer, a low-power RTC, two general-purpose 32-bit timers, three 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and one 16-bit low-power timer, and high resolution timer with 184 ps resolution. They also feature standard and advanced communication interfaces such as: - Four I2Cs - Four SPIs multiplexed with two half duplex I2Ss - Three USARTs, two UARTs and one low-power UART. - Three FDCANs - One SAI - USB device - UCPD The devices operate in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. Some independent power supplies are supported including an analog independent supply input for ADC, DAC, OPAMPs and comparators. A VBAT input allows backup of the RTC and the registers. The STM32G474xB/xC/xE family offers 9 packages from 48-pin to 128-pin.

KEY FEATURES

  • Core: Arm® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator) allowing 0-wait-state execution from Flash memory, frequency up to 170 MHz with 213 DMIPS, MPU, DSP instructions
  • Operating conditions:
    • VDD, VDDA voltage range: 1.71 V to 3.6 V
  • Mathematical hardware accelerators
    • CORDIC for trigonometric functions acceleration
    • FMAC: filter mathematical accelerator
  • Memories
    • 512 Kbytes of Flash memory with ECC support, two banks read-while-write, proprietary code readout protection (PCROP), securable memory area, 1 Kbyte OTP
    • 96 Kbytes of SRAM, with hardware parity check implemented on the first 32 Kbytes
    • Routine booster: 32 Kbytes of SRAM on instruction and data bus, with hardware parity check (CCM SRAM)
    • External memory interface for static memories FSMC supporting SRAM, PSRAM, NOR and NAND memories
    • Quad-SPI memory interface
  • Reset and supply management
    • Power-on/power-down reset (POR/PDR/BOR)
    • Programmable voltage detector (PVD)
    • Low-power modes: sleep, stop, standby and shutdown
    • VBAT supply for RTC and backup registers
  • Clock management
    • 4 to 48 MHz crystal oscillator
    • 32 kHz oscillator with calibration
    • Internal 16 MHz RC with PLL option (± 1%)
    • Internal 32 kHz RC oscillator (± 5%)
  • Up to 107 fast I/Os
    • All mappable on external interrupt vectors
    • Several I/Os with 5 V tolerant capability
  • Interconnect matrix
  • 16-channel DMA controller
  • 5 x 12-bit ADCs 0.25 µs, up to 42 channels. Resolution up to 16-bit with hardware oversampling, 0 to 3.6 V conversion range
  • 7 x 12-bit DAC channels
    • 3 x buffered external channels 1 MSPS
    • 4 x unbuffered internal channels 15 MSPS
  • 7 x ultra-fast rail-to-rail analog comparators
  • 6 x operational amplifiers that can be used in PGA mode, all terminals accessible
  • Internal voltage reference buffer (VREFBUF) supporting three output voltages (2.048 V, 2.5 V, 2.9 V)
  • 17 timers:
    • HRTIM (Hi-Resolution and complex waveform builder): 6 x16-bit counters, 184 ps resolution, 12 PWM
    • 2 x 32-bit timer and 2 x 16-bit timers with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
    • 3 x 16-bit 8-channel advanced motor control timers, with up to 8 x PWM channels, dead time generation and emergency stop
    • 1 x 16-bit timer with 2 x IC/OCs, one OCN/PWM, dead time generation and emergency stop
    • 2 x 16-bit timers with IC/OC/OCN/PWM, dead time generation and emergency stop
    • 2 x watchdog timers (independent, window)
    • 1 x SysTick timer: 24-bit downcounter
    • 2 x 16-bit basic timers
    • 1 x low-power timer
  • Calendar RTC with alarm, periodic wakeup from stop/standby
  • Communication interfaces
    • 3 x FDCAN controller supporting flexible data rate
    • 4 x I2C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from stop
    • 5 x USART/UARTs (ISO 7816 interface, LIN, IrDA, modem control)
    • 1 x LPUART
    • 4 x SPIs, 4 to 16 programmable bit frames, 2 x with multiplexed half duplex I2S interface
    • 1 x SAI (serial audio interface)
    • USB 2.0 full-speed interface with LPM and BCD support
    • IRTIM (infrared interface)
    • USB Type-C™ /USB power delivery controller (UCPD)
  • True random number generator (RNG)
  • CRC calculation unit, 96-bit unique ID
  • Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell™

Read more

Documents Description
STM32_Nucleo-64_BSP_Introduction How to run RT-Thread on STM32 Nucleo-64 boards (Must-Read)
STM32G474RE ST Official Website STM32G474RB datasheet and other resources

Maintained By

mazhiyuan, mazhiyuan@rt-thread.com