wuyangyong dc1079981b update STM32F10x_StdPeriph_Lib_V3.5.0
git-svn-id: https://rt-thread.googlecode.com/svn/trunk@1511 bbd45198-f89e-11dd-88c7-29a3b14d5316
2011-06-15 02:16:25 +00:00

1416 lines
44 KiB
C

/**
******************************************************************************
* @file stm32f10x_can.c
* @author MCD Application Team
* @version V3.5.0
* @date 11-March-2011
* @brief This file provides all the CAN firmware functions.
******************************************************************************
* @attention
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h2>
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_can.h"
#include "stm32f10x_rcc.h"
/** @addtogroup STM32F10x_StdPeriph_Driver
* @{
*/
/** @defgroup CAN
* @brief CAN driver modules
* @{
*/
/** @defgroup CAN_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup CAN_Private_Defines
* @{
*/
/* CAN Master Control Register bits */
#define MCR_DBF ((uint32_t)0x00010000) /* software master reset */
/* CAN Mailbox Transmit Request */
#define TMIDxR_TXRQ ((uint32_t)0x00000001) /* Transmit mailbox request */
/* CAN Filter Master Register bits */
#define FMR_FINIT ((uint32_t)0x00000001) /* Filter init mode */
/* Time out for INAK bit */
#define INAK_TIMEOUT ((uint32_t)0x0000FFFF)
/* Time out for SLAK bit */
#define SLAK_TIMEOUT ((uint32_t)0x0000FFFF)
/* Flags in TSR register */
#define CAN_FLAGS_TSR ((uint32_t)0x08000000)
/* Flags in RF1R register */
#define CAN_FLAGS_RF1R ((uint32_t)0x04000000)
/* Flags in RF0R register */
#define CAN_FLAGS_RF0R ((uint32_t)0x02000000)
/* Flags in MSR register */
#define CAN_FLAGS_MSR ((uint32_t)0x01000000)
/* Flags in ESR register */
#define CAN_FLAGS_ESR ((uint32_t)0x00F00000)
/* Mailboxes definition */
#define CAN_TXMAILBOX_0 ((uint8_t)0x00)
#define CAN_TXMAILBOX_1 ((uint8_t)0x01)
#define CAN_TXMAILBOX_2 ((uint8_t)0x02)
#define CAN_MODE_MASK ((uint32_t) 0x00000003)
/**
* @}
*/
/** @defgroup CAN_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup CAN_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup CAN_Private_FunctionPrototypes
* @{
*/
static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit);
/**
* @}
*/
/** @defgroup CAN_Private_Functions
* @{
*/
/**
* @brief Deinitializes the CAN peripheral registers to their default reset values.
* @param CANx: where x can be 1 or 2 to select the CAN peripheral.
* @retval None.
*/
void CAN_DeInit(CAN_TypeDef* CANx)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
if (CANx == CAN1)
{
/* Enable CAN1 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, ENABLE);
/* Release CAN1 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, DISABLE);
}
else
{
/* Enable CAN2 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, ENABLE);
/* Release CAN2 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, DISABLE);
}
}
/**
* @brief Initializes the CAN peripheral according to the specified
* parameters in the CAN_InitStruct.
* @param CANx: where x can be 1 or 2 to to select the CAN
* peripheral.
* @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure that
* contains the configuration information for the
* CAN peripheral.
* @retval Constant indicates initialization succeed which will be
* CAN_InitStatus_Failed or CAN_InitStatus_Success.
*/
uint8_t CAN_Init(CAN_TypeDef* CANx, CAN_InitTypeDef* CAN_InitStruct)
{
uint8_t InitStatus = CAN_InitStatus_Failed;
uint32_t wait_ack = 0x00000000;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TTCM));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_ABOM));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_AWUM));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_NART));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_RFLM));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TXFP));
assert_param(IS_CAN_MODE(CAN_InitStruct->CAN_Mode));
assert_param(IS_CAN_SJW(CAN_InitStruct->CAN_SJW));
assert_param(IS_CAN_BS1(CAN_InitStruct->CAN_BS1));
assert_param(IS_CAN_BS2(CAN_InitStruct->CAN_BS2));
assert_param(IS_CAN_PRESCALER(CAN_InitStruct->CAN_Prescaler));
/* Exit from sleep mode */
CANx->MCR &= (~(uint32_t)CAN_MCR_SLEEP);
/* Request initialisation */
CANx->MCR |= CAN_MCR_INRQ ;
/* Wait the acknowledge */
while (((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
{
wait_ack++;
}
/* Check acknowledge */
if ((CANx->MSR & CAN_MSR_INAK) != CAN_MSR_INAK)
{
InitStatus = CAN_InitStatus_Failed;
}
else
{
/* Set the time triggered communication mode */
if (CAN_InitStruct->CAN_TTCM == ENABLE)
{
CANx->MCR |= CAN_MCR_TTCM;
}
else
{
CANx->MCR &= ~(uint32_t)CAN_MCR_TTCM;
}
/* Set the automatic bus-off management */
if (CAN_InitStruct->CAN_ABOM == ENABLE)
{
CANx->MCR |= CAN_MCR_ABOM;
}
else
{
CANx->MCR &= ~(uint32_t)CAN_MCR_ABOM;
}
/* Set the automatic wake-up mode */
if (CAN_InitStruct->CAN_AWUM == ENABLE)
{
CANx->MCR |= CAN_MCR_AWUM;
}
else
{
CANx->MCR &= ~(uint32_t)CAN_MCR_AWUM;
}
/* Set the no automatic retransmission */
if (CAN_InitStruct->CAN_NART == ENABLE)
{
CANx->MCR |= CAN_MCR_NART;
}
else
{
CANx->MCR &= ~(uint32_t)CAN_MCR_NART;
}
/* Set the receive FIFO locked mode */
if (CAN_InitStruct->CAN_RFLM == ENABLE)
{
CANx->MCR |= CAN_MCR_RFLM;
}
else
{
CANx->MCR &= ~(uint32_t)CAN_MCR_RFLM;
}
/* Set the transmit FIFO priority */
if (CAN_InitStruct->CAN_TXFP == ENABLE)
{
CANx->MCR |= CAN_MCR_TXFP;
}
else
{
CANx->MCR &= ~(uint32_t)CAN_MCR_TXFP;
}
/* Set the bit timing register */
CANx->BTR = (uint32_t)((uint32_t)CAN_InitStruct->CAN_Mode << 30) | \
((uint32_t)CAN_InitStruct->CAN_SJW << 24) | \
((uint32_t)CAN_InitStruct->CAN_BS1 << 16) | \
((uint32_t)CAN_InitStruct->CAN_BS2 << 20) | \
((uint32_t)CAN_InitStruct->CAN_Prescaler - 1);
/* Request leave initialisation */
CANx->MCR &= ~(uint32_t)CAN_MCR_INRQ;
/* Wait the acknowledge */
wait_ack = 0;
while (((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) && (wait_ack != INAK_TIMEOUT))
{
wait_ack++;
}
/* ...and check acknowledged */
if ((CANx->MSR & CAN_MSR_INAK) == CAN_MSR_INAK)
{
InitStatus = CAN_InitStatus_Failed;
}
else
{
InitStatus = CAN_InitStatus_Success ;
}
}
/* At this step, return the status of initialization */
return InitStatus;
}
/**
* @brief Initializes the CAN peripheral according to the specified
* parameters in the CAN_FilterInitStruct.
* @param CAN_FilterInitStruct: pointer to a CAN_FilterInitTypeDef
* structure that contains the configuration
* information.
* @retval None.
*/
void CAN_FilterInit(CAN_FilterInitTypeDef* CAN_FilterInitStruct)
{
uint32_t filter_number_bit_pos = 0;
/* Check the parameters */
assert_param(IS_CAN_FILTER_NUMBER(CAN_FilterInitStruct->CAN_FilterNumber));
assert_param(IS_CAN_FILTER_MODE(CAN_FilterInitStruct->CAN_FilterMode));
assert_param(IS_CAN_FILTER_SCALE(CAN_FilterInitStruct->CAN_FilterScale));
assert_param(IS_CAN_FILTER_FIFO(CAN_FilterInitStruct->CAN_FilterFIFOAssignment));
assert_param(IS_FUNCTIONAL_STATE(CAN_FilterInitStruct->CAN_FilterActivation));
filter_number_bit_pos = ((uint32_t)1) << CAN_FilterInitStruct->CAN_FilterNumber;
/* Initialisation mode for the filter */
CAN1->FMR |= FMR_FINIT;
/* Filter Deactivation */
CAN1->FA1R &= ~(uint32_t)filter_number_bit_pos;
/* Filter Scale */
if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_16bit)
{
/* 16-bit scale for the filter */
CAN1->FS1R &= ~(uint32_t)filter_number_bit_pos;
/* First 16-bit identifier and First 16-bit mask */
/* Or First 16-bit identifier and Second 16-bit identifier */
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
/* Second 16-bit identifier and Second 16-bit mask */
/* Or Third 16-bit identifier and Fourth 16-bit identifier */
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh);
}
if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_32bit)
{
/* 32-bit scale for the filter */
CAN1->FS1R |= filter_number_bit_pos;
/* 32-bit identifier or First 32-bit identifier */
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
/* 32-bit mask or Second 32-bit identifier */
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow);
}
/* Filter Mode */
if (CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdMask)
{
/*Id/Mask mode for the filter*/
CAN1->FM1R &= ~(uint32_t)filter_number_bit_pos;
}
else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
{
/*Identifier list mode for the filter*/
CAN1->FM1R |= (uint32_t)filter_number_bit_pos;
}
/* Filter FIFO assignment */
if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO0)
{
/* FIFO 0 assignation for the filter */
CAN1->FFA1R &= ~(uint32_t)filter_number_bit_pos;
}
if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_Filter_FIFO1)
{
/* FIFO 1 assignation for the filter */
CAN1->FFA1R |= (uint32_t)filter_number_bit_pos;
}
/* Filter activation */
if (CAN_FilterInitStruct->CAN_FilterActivation == ENABLE)
{
CAN1->FA1R |= filter_number_bit_pos;
}
/* Leave the initialisation mode for the filter */
CAN1->FMR &= ~FMR_FINIT;
}
/**
* @brief Fills each CAN_InitStruct member with its default value.
* @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure which
* will be initialized.
* @retval None.
*/
void CAN_StructInit(CAN_InitTypeDef* CAN_InitStruct)
{
/* Reset CAN init structure parameters values */
/* Initialize the time triggered communication mode */
CAN_InitStruct->CAN_TTCM = DISABLE;
/* Initialize the automatic bus-off management */
CAN_InitStruct->CAN_ABOM = DISABLE;
/* Initialize the automatic wake-up mode */
CAN_InitStruct->CAN_AWUM = DISABLE;
/* Initialize the no automatic retransmission */
CAN_InitStruct->CAN_NART = DISABLE;
/* Initialize the receive FIFO locked mode */
CAN_InitStruct->CAN_RFLM = DISABLE;
/* Initialize the transmit FIFO priority */
CAN_InitStruct->CAN_TXFP = DISABLE;
/* Initialize the CAN_Mode member */
CAN_InitStruct->CAN_Mode = CAN_Mode_Normal;
/* Initialize the CAN_SJW member */
CAN_InitStruct->CAN_SJW = CAN_SJW_1tq;
/* Initialize the CAN_BS1 member */
CAN_InitStruct->CAN_BS1 = CAN_BS1_4tq;
/* Initialize the CAN_BS2 member */
CAN_InitStruct->CAN_BS2 = CAN_BS2_3tq;
/* Initialize the CAN_Prescaler member */
CAN_InitStruct->CAN_Prescaler = 1;
}
/**
* @brief Select the start bank filter for slave CAN.
* @note This function applies only to STM32 Connectivity line devices.
* @param CAN_BankNumber: Select the start slave bank filter from 1..27.
* @retval None.
*/
void CAN_SlaveStartBank(uint8_t CAN_BankNumber)
{
/* Check the parameters */
assert_param(IS_CAN_BANKNUMBER(CAN_BankNumber));
/* Enter Initialisation mode for the filter */
CAN1->FMR |= FMR_FINIT;
/* Select the start slave bank */
CAN1->FMR &= (uint32_t)0xFFFFC0F1 ;
CAN1->FMR |= (uint32_t)(CAN_BankNumber)<<8;
/* Leave Initialisation mode for the filter */
CAN1->FMR &= ~FMR_FINIT;
}
/**
* @brief Enables or disables the DBG Freeze for CAN.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param NewState: new state of the CAN peripheral. This parameter can
* be: ENABLE or DISABLE.
* @retval None.
*/
void CAN_DBGFreeze(CAN_TypeDef* CANx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable Debug Freeze */
CANx->MCR |= MCR_DBF;
}
else
{
/* Disable Debug Freeze */
CANx->MCR &= ~MCR_DBF;
}
}
/**
* @brief Enables or disabes the CAN Time TriggerOperation communication mode.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param NewState : Mode new state , can be one of @ref FunctionalState.
* @note when enabled, Time stamp (TIME[15:0]) value is sent in the last
* two data bytes of the 8-byte message: TIME[7:0] in data byte 6
* and TIME[15:8] in data byte 7
* @note DLC must be programmed as 8 in order Time Stamp (2 bytes) to be
* sent over the CAN bus.
* @retval None
*/
void CAN_TTComModeCmd(CAN_TypeDef* CANx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the TTCM mode */
CANx->MCR |= CAN_MCR_TTCM;
/* Set TGT bits */
CANx->sTxMailBox[0].TDTR |= ((uint32_t)CAN_TDT0R_TGT);
CANx->sTxMailBox[1].TDTR |= ((uint32_t)CAN_TDT1R_TGT);
CANx->sTxMailBox[2].TDTR |= ((uint32_t)CAN_TDT2R_TGT);
}
else
{
/* Disable the TTCM mode */
CANx->MCR &= (uint32_t)(~(uint32_t)CAN_MCR_TTCM);
/* Reset TGT bits */
CANx->sTxMailBox[0].TDTR &= ((uint32_t)~CAN_TDT0R_TGT);
CANx->sTxMailBox[1].TDTR &= ((uint32_t)~CAN_TDT1R_TGT);
CANx->sTxMailBox[2].TDTR &= ((uint32_t)~CAN_TDT2R_TGT);
}
}
/**
* @brief Initiates the transmission of a message.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param TxMessage: pointer to a structure which contains CAN Id, CAN
* DLC and CAN data.
* @retval The number of the mailbox that is used for transmission
* or CAN_TxStatus_NoMailBox if there is no empty mailbox.
*/
uint8_t CAN_Transmit(CAN_TypeDef* CANx, CanTxMsg* TxMessage)
{
uint8_t transmit_mailbox = 0;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_IDTYPE(TxMessage->IDE));
assert_param(IS_CAN_RTR(TxMessage->RTR));
assert_param(IS_CAN_DLC(TxMessage->DLC));
/* Select one empty transmit mailbox */
if ((CANx->TSR&CAN_TSR_TME0) == CAN_TSR_TME0)
{
transmit_mailbox = 0;
}
else if ((CANx->TSR&CAN_TSR_TME1) == CAN_TSR_TME1)
{
transmit_mailbox = 1;
}
else if ((CANx->TSR&CAN_TSR_TME2) == CAN_TSR_TME2)
{
transmit_mailbox = 2;
}
else
{
transmit_mailbox = CAN_TxStatus_NoMailBox;
}
if (transmit_mailbox != CAN_TxStatus_NoMailBox)
{
/* Set up the Id */
CANx->sTxMailBox[transmit_mailbox].TIR &= TMIDxR_TXRQ;
if (TxMessage->IDE == CAN_Id_Standard)
{
assert_param(IS_CAN_STDID(TxMessage->StdId));
CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->StdId << 21) | \
TxMessage->RTR);
}
else
{
assert_param(IS_CAN_EXTID(TxMessage->ExtId));
CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->ExtId << 3) | \
TxMessage->IDE | \
TxMessage->RTR);
}
/* Set up the DLC */
TxMessage->DLC &= (uint8_t)0x0000000F;
CANx->sTxMailBox[transmit_mailbox].TDTR &= (uint32_t)0xFFFFFFF0;
CANx->sTxMailBox[transmit_mailbox].TDTR |= TxMessage->DLC;
/* Set up the data field */
CANx->sTxMailBox[transmit_mailbox].TDLR = (((uint32_t)TxMessage->Data[3] << 24) |
((uint32_t)TxMessage->Data[2] << 16) |
((uint32_t)TxMessage->Data[1] << 8) |
((uint32_t)TxMessage->Data[0]));
CANx->sTxMailBox[transmit_mailbox].TDHR = (((uint32_t)TxMessage->Data[7] << 24) |
((uint32_t)TxMessage->Data[6] << 16) |
((uint32_t)TxMessage->Data[5] << 8) |
((uint32_t)TxMessage->Data[4]));
/* Request transmission */
CANx->sTxMailBox[transmit_mailbox].TIR |= TMIDxR_TXRQ;
}
return transmit_mailbox;
}
/**
* @brief Checks the transmission of a message.
* @param CANx: where x can be 1 or 2 to to select the
* CAN peripheral.
* @param TransmitMailbox: the number of the mailbox that is used for
* transmission.
* @retval CAN_TxStatus_Ok if the CAN driver transmits the message, CAN_TxStatus_Failed
* in an other case.
*/
uint8_t CAN_TransmitStatus(CAN_TypeDef* CANx, uint8_t TransmitMailbox)
{
uint32_t state = 0;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_TRANSMITMAILBOX(TransmitMailbox));
switch (TransmitMailbox)
{
case (CAN_TXMAILBOX_0):
state = CANx->TSR & (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0);
break;
case (CAN_TXMAILBOX_1):
state = CANx->TSR & (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1);
break;
case (CAN_TXMAILBOX_2):
state = CANx->TSR & (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2);
break;
default:
state = CAN_TxStatus_Failed;
break;
}
switch (state)
{
/* transmit pending */
case (0x0): state = CAN_TxStatus_Pending;
break;
/* transmit failed */
case (CAN_TSR_RQCP0 | CAN_TSR_TME0): state = CAN_TxStatus_Failed;
break;
case (CAN_TSR_RQCP1 | CAN_TSR_TME1): state = CAN_TxStatus_Failed;
break;
case (CAN_TSR_RQCP2 | CAN_TSR_TME2): state = CAN_TxStatus_Failed;
break;
/* transmit succeeded */
case (CAN_TSR_RQCP0 | CAN_TSR_TXOK0 | CAN_TSR_TME0):state = CAN_TxStatus_Ok;
break;
case (CAN_TSR_RQCP1 | CAN_TSR_TXOK1 | CAN_TSR_TME1):state = CAN_TxStatus_Ok;
break;
case (CAN_TSR_RQCP2 | CAN_TSR_TXOK2 | CAN_TSR_TME2):state = CAN_TxStatus_Ok;
break;
default: state = CAN_TxStatus_Failed;
break;
}
return (uint8_t) state;
}
/**
* @brief Cancels a transmit request.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param Mailbox: Mailbox number.
* @retval None.
*/
void CAN_CancelTransmit(CAN_TypeDef* CANx, uint8_t Mailbox)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_TRANSMITMAILBOX(Mailbox));
/* abort transmission */
switch (Mailbox)
{
case (CAN_TXMAILBOX_0): CANx->TSR |= CAN_TSR_ABRQ0;
break;
case (CAN_TXMAILBOX_1): CANx->TSR |= CAN_TSR_ABRQ1;
break;
case (CAN_TXMAILBOX_2): CANx->TSR |= CAN_TSR_ABRQ2;
break;
default:
break;
}
}
/**
* @brief Receives a message.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
* @param RxMessage: pointer to a structure receive message which contains
* CAN Id, CAN DLC, CAN datas and FMI number.
* @retval None.
*/
void CAN_Receive(CAN_TypeDef* CANx, uint8_t FIFONumber, CanRxMsg* RxMessage)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_FIFO(FIFONumber));
/* Get the Id */
RxMessage->IDE = (uint8_t)0x04 & CANx->sFIFOMailBox[FIFONumber].RIR;
if (RxMessage->IDE == CAN_Id_Standard)
{
RxMessage->StdId = (uint32_t)0x000007FF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 21);
}
else
{
RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 3);
}
RxMessage->RTR = (uint8_t)0x02 & CANx->sFIFOMailBox[FIFONumber].RIR;
/* Get the DLC */
RxMessage->DLC = (uint8_t)0x0F & CANx->sFIFOMailBox[FIFONumber].RDTR;
/* Get the FMI */
RxMessage->FMI = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDTR >> 8);
/* Get the data field */
RxMessage->Data[0] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDLR;
RxMessage->Data[1] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 8);
RxMessage->Data[2] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 16);
RxMessage->Data[3] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 24);
RxMessage->Data[4] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDHR;
RxMessage->Data[5] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 8);
RxMessage->Data[6] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 16);
RxMessage->Data[7] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 24);
/* Release the FIFO */
/* Release FIFO0 */
if (FIFONumber == CAN_FIFO0)
{
CANx->RF0R |= CAN_RF0R_RFOM0;
}
/* Release FIFO1 */
else /* FIFONumber == CAN_FIFO1 */
{
CANx->RF1R |= CAN_RF1R_RFOM1;
}
}
/**
* @brief Releases the specified FIFO.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param FIFONumber: FIFO to release, CAN_FIFO0 or CAN_FIFO1.
* @retval None.
*/
void CAN_FIFORelease(CAN_TypeDef* CANx, uint8_t FIFONumber)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_FIFO(FIFONumber));
/* Release FIFO0 */
if (FIFONumber == CAN_FIFO0)
{
CANx->RF0R |= CAN_RF0R_RFOM0;
}
/* Release FIFO1 */
else /* FIFONumber == CAN_FIFO1 */
{
CANx->RF1R |= CAN_RF1R_RFOM1;
}
}
/**
* @brief Returns the number of pending messages.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
* @retval NbMessage : which is the number of pending message.
*/
uint8_t CAN_MessagePending(CAN_TypeDef* CANx, uint8_t FIFONumber)
{
uint8_t message_pending=0;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_FIFO(FIFONumber));
if (FIFONumber == CAN_FIFO0)
{
message_pending = (uint8_t)(CANx->RF0R&(uint32_t)0x03);
}
else if (FIFONumber == CAN_FIFO1)
{
message_pending = (uint8_t)(CANx->RF1R&(uint32_t)0x03);
}
else
{
message_pending = 0;
}
return message_pending;
}
/**
* @brief Select the CAN Operation mode.
* @param CAN_OperatingMode : CAN Operating Mode. This parameter can be one
* of @ref CAN_OperatingMode_TypeDef enumeration.
* @retval status of the requested mode which can be
* - CAN_ModeStatus_Failed CAN failed entering the specific mode
* - CAN_ModeStatus_Success CAN Succeed entering the specific mode
*/
uint8_t CAN_OperatingModeRequest(CAN_TypeDef* CANx, uint8_t CAN_OperatingMode)
{
uint8_t status = CAN_ModeStatus_Failed;
/* Timeout for INAK or also for SLAK bits*/
uint32_t timeout = INAK_TIMEOUT;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_OPERATING_MODE(CAN_OperatingMode));
if (CAN_OperatingMode == CAN_OperatingMode_Initialization)
{
/* Request initialisation */
CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_SLEEP)) | CAN_MCR_INRQ);
/* Wait the acknowledge */
while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK) && (timeout != 0))
{
timeout--;
}
if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_INAK)
{
status = CAN_ModeStatus_Failed;
}
else
{
status = CAN_ModeStatus_Success;
}
}
else if (CAN_OperatingMode == CAN_OperatingMode_Normal)
{
/* Request leave initialisation and sleep mode and enter Normal mode */
CANx->MCR &= (uint32_t)(~(CAN_MCR_SLEEP|CAN_MCR_INRQ));
/* Wait the acknowledge */
while (((CANx->MSR & CAN_MODE_MASK) != 0) && (timeout!=0))
{
timeout--;
}
if ((CANx->MSR & CAN_MODE_MASK) != 0)
{
status = CAN_ModeStatus_Failed;
}
else
{
status = CAN_ModeStatus_Success;
}
}
else if (CAN_OperatingMode == CAN_OperatingMode_Sleep)
{
/* Request Sleep mode */
CANx->MCR = (uint32_t)((CANx->MCR & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
/* Wait the acknowledge */
while (((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK) && (timeout!=0))
{
timeout--;
}
if ((CANx->MSR & CAN_MODE_MASK) != CAN_MSR_SLAK)
{
status = CAN_ModeStatus_Failed;
}
else
{
status = CAN_ModeStatus_Success;
}
}
else
{
status = CAN_ModeStatus_Failed;
}
return (uint8_t) status;
}
/**
* @brief Enters the low power mode.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @retval status: CAN_Sleep_Ok if sleep entered, CAN_Sleep_Failed in an
* other case.
*/
uint8_t CAN_Sleep(CAN_TypeDef* CANx)
{
uint8_t sleepstatus = CAN_Sleep_Failed;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
/* Request Sleep mode */
CANx->MCR = (((CANx->MCR) & (uint32_t)(~(uint32_t)CAN_MCR_INRQ)) | CAN_MCR_SLEEP);
/* Sleep mode status */
if ((CANx->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) == CAN_MSR_SLAK)
{
/* Sleep mode not entered */
sleepstatus = CAN_Sleep_Ok;
}
/* return sleep mode status */
return (uint8_t)sleepstatus;
}
/**
* @brief Wakes the CAN up.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @retval status: CAN_WakeUp_Ok if sleep mode left, CAN_WakeUp_Failed in an
* other case.
*/
uint8_t CAN_WakeUp(CAN_TypeDef* CANx)
{
uint32_t wait_slak = SLAK_TIMEOUT;
uint8_t wakeupstatus = CAN_WakeUp_Failed;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
/* Wake up request */
CANx->MCR &= ~(uint32_t)CAN_MCR_SLEEP;
/* Sleep mode status */
while(((CANx->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)&&(wait_slak!=0x00))
{
wait_slak--;
}
if((CANx->MSR & CAN_MSR_SLAK) != CAN_MSR_SLAK)
{
/* wake up done : Sleep mode exited */
wakeupstatus = CAN_WakeUp_Ok;
}
/* return wakeup status */
return (uint8_t)wakeupstatus;
}
/**
* @brief Returns the CANx's last error code (LEC).
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @retval CAN_ErrorCode: specifies the Error code :
* - CAN_ERRORCODE_NoErr No Error
* - CAN_ERRORCODE_StuffErr Stuff Error
* - CAN_ERRORCODE_FormErr Form Error
* - CAN_ERRORCODE_ACKErr Acknowledgment Error
* - CAN_ERRORCODE_BitRecessiveErr Bit Recessive Error
* - CAN_ERRORCODE_BitDominantErr Bit Dominant Error
* - CAN_ERRORCODE_CRCErr CRC Error
* - CAN_ERRORCODE_SoftwareSetErr Software Set Error
*/
uint8_t CAN_GetLastErrorCode(CAN_TypeDef* CANx)
{
uint8_t errorcode=0;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
/* Get the error code*/
errorcode = (((uint8_t)CANx->ESR) & (uint8_t)CAN_ESR_LEC);
/* Return the error code*/
return errorcode;
}
/**
* @brief Returns the CANx Receive Error Counter (REC).
* @note In case of an error during reception, this counter is incremented
* by 1 or by 8 depending on the error condition as defined by the CAN
* standard. After every successful reception, the counter is
* decremented by 1 or reset to 120 if its value was higher than 128.
* When the counter value exceeds 127, the CAN controller enters the
* error passive state.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @retval CAN Receive Error Counter.
*/
uint8_t CAN_GetReceiveErrorCounter(CAN_TypeDef* CANx)
{
uint8_t counter=0;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
/* Get the Receive Error Counter*/
counter = (uint8_t)((CANx->ESR & CAN_ESR_REC)>> 24);
/* Return the Receive Error Counter*/
return counter;
}
/**
* @brief Returns the LSB of the 9-bit CANx Transmit Error Counter(TEC).
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @retval LSB of the 9-bit CAN Transmit Error Counter.
*/
uint8_t CAN_GetLSBTransmitErrorCounter(CAN_TypeDef* CANx)
{
uint8_t counter=0;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
/* Get the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
counter = (uint8_t)((CANx->ESR & CAN_ESR_TEC)>> 16);
/* Return the LSB of the 9-bit CANx Transmit Error Counter(TEC) */
return counter;
}
/**
* @brief Enables or disables the specified CANx interrupts.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param CAN_IT: specifies the CAN interrupt sources to be enabled or disabled.
* This parameter can be:
* - CAN_IT_TME,
* - CAN_IT_FMP0,
* - CAN_IT_FF0,
* - CAN_IT_FOV0,
* - CAN_IT_FMP1,
* - CAN_IT_FF1,
* - CAN_IT_FOV1,
* - CAN_IT_EWG,
* - CAN_IT_EPV,
* - CAN_IT_LEC,
* - CAN_IT_ERR,
* - CAN_IT_WKU or
* - CAN_IT_SLK.
* @param NewState: new state of the CAN interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None.
*/
void CAN_ITConfig(CAN_TypeDef* CANx, uint32_t CAN_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_IT(CAN_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected CANx interrupt */
CANx->IER |= CAN_IT;
}
else
{
/* Disable the selected CANx interrupt */
CANx->IER &= ~CAN_IT;
}
}
/**
* @brief Checks whether the specified CAN flag is set or not.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param CAN_FLAG: specifies the flag to check.
* This parameter can be one of the following flags:
* - CAN_FLAG_EWG
* - CAN_FLAG_EPV
* - CAN_FLAG_BOF
* - CAN_FLAG_RQCP0
* - CAN_FLAG_RQCP1
* - CAN_FLAG_RQCP2
* - CAN_FLAG_FMP1
* - CAN_FLAG_FF1
* - CAN_FLAG_FOV1
* - CAN_FLAG_FMP0
* - CAN_FLAG_FF0
* - CAN_FLAG_FOV0
* - CAN_FLAG_WKU
* - CAN_FLAG_SLAK
* - CAN_FLAG_LEC
* @retval The new state of CAN_FLAG (SET or RESET).
*/
FlagStatus CAN_GetFlagStatus(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_GET_FLAG(CAN_FLAG));
if((CAN_FLAG & CAN_FLAGS_ESR) != (uint32_t)RESET)
{
/* Check the status of the specified CAN flag */
if ((CANx->ESR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
{
/* CAN_FLAG is set */
bitstatus = SET;
}
else
{
/* CAN_FLAG is reset */
bitstatus = RESET;
}
}
else if((CAN_FLAG & CAN_FLAGS_MSR) != (uint32_t)RESET)
{
/* Check the status of the specified CAN flag */
if ((CANx->MSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
{
/* CAN_FLAG is set */
bitstatus = SET;
}
else
{
/* CAN_FLAG is reset */
bitstatus = RESET;
}
}
else if((CAN_FLAG & CAN_FLAGS_TSR) != (uint32_t)RESET)
{
/* Check the status of the specified CAN flag */
if ((CANx->TSR & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
{
/* CAN_FLAG is set */
bitstatus = SET;
}
else
{
/* CAN_FLAG is reset */
bitstatus = RESET;
}
}
else if((CAN_FLAG & CAN_FLAGS_RF0R) != (uint32_t)RESET)
{
/* Check the status of the specified CAN flag */
if ((CANx->RF0R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
{
/* CAN_FLAG is set */
bitstatus = SET;
}
else
{
/* CAN_FLAG is reset */
bitstatus = RESET;
}
}
else /* If(CAN_FLAG & CAN_FLAGS_RF1R != (uint32_t)RESET) */
{
/* Check the status of the specified CAN flag */
if ((uint32_t)(CANx->RF1R & (CAN_FLAG & 0x000FFFFF)) != (uint32_t)RESET)
{
/* CAN_FLAG is set */
bitstatus = SET;
}
else
{
/* CAN_FLAG is reset */
bitstatus = RESET;
}
}
/* Return the CAN_FLAG status */
return bitstatus;
}
/**
* @brief Clears the CAN's pending flags.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param CAN_FLAG: specifies the flag to clear.
* This parameter can be one of the following flags:
* - CAN_FLAG_RQCP0
* - CAN_FLAG_RQCP1
* - CAN_FLAG_RQCP2
* - CAN_FLAG_FF1
* - CAN_FLAG_FOV1
* - CAN_FLAG_FF0
* - CAN_FLAG_FOV0
* - CAN_FLAG_WKU
* - CAN_FLAG_SLAK
* - CAN_FLAG_LEC
* @retval None.
*/
void CAN_ClearFlag(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
{
uint32_t flagtmp=0;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_CLEAR_FLAG(CAN_FLAG));
if (CAN_FLAG == CAN_FLAG_LEC) /* ESR register */
{
/* Clear the selected CAN flags */
CANx->ESR = (uint32_t)RESET;
}
else /* MSR or TSR or RF0R or RF1R */
{
flagtmp = CAN_FLAG & 0x000FFFFF;
if ((CAN_FLAG & CAN_FLAGS_RF0R)!=(uint32_t)RESET)
{
/* Receive Flags */
CANx->RF0R = (uint32_t)(flagtmp);
}
else if ((CAN_FLAG & CAN_FLAGS_RF1R)!=(uint32_t)RESET)
{
/* Receive Flags */
CANx->RF1R = (uint32_t)(flagtmp);
}
else if ((CAN_FLAG & CAN_FLAGS_TSR)!=(uint32_t)RESET)
{
/* Transmit Flags */
CANx->TSR = (uint32_t)(flagtmp);
}
else /* If((CAN_FLAG & CAN_FLAGS_MSR)!=(uint32_t)RESET) */
{
/* Operating mode Flags */
CANx->MSR = (uint32_t)(flagtmp);
}
}
}
/**
* @brief Checks whether the specified CANx interrupt has occurred or not.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param CAN_IT: specifies the CAN interrupt source to check.
* This parameter can be one of the following flags:
* - CAN_IT_TME
* - CAN_IT_FMP0
* - CAN_IT_FF0
* - CAN_IT_FOV0
* - CAN_IT_FMP1
* - CAN_IT_FF1
* - CAN_IT_FOV1
* - CAN_IT_WKU
* - CAN_IT_SLK
* - CAN_IT_EWG
* - CAN_IT_EPV
* - CAN_IT_BOF
* - CAN_IT_LEC
* - CAN_IT_ERR
* @retval The current state of CAN_IT (SET or RESET).
*/
ITStatus CAN_GetITStatus(CAN_TypeDef* CANx, uint32_t CAN_IT)
{
ITStatus itstatus = RESET;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_IT(CAN_IT));
/* check the enable interrupt bit */
if((CANx->IER & CAN_IT) != RESET)
{
/* in case the Interrupt is enabled, .... */
switch (CAN_IT)
{
case CAN_IT_TME:
/* Check CAN_TSR_RQCPx bits */
itstatus = CheckITStatus(CANx->TSR, CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2);
break;
case CAN_IT_FMP0:
/* Check CAN_RF0R_FMP0 bit */
itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FMP0);
break;
case CAN_IT_FF0:
/* Check CAN_RF0R_FULL0 bit */
itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FULL0);
break;
case CAN_IT_FOV0:
/* Check CAN_RF0R_FOVR0 bit */
itstatus = CheckITStatus(CANx->RF0R, CAN_RF0R_FOVR0);
break;
case CAN_IT_FMP1:
/* Check CAN_RF1R_FMP1 bit */
itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FMP1);
break;
case CAN_IT_FF1:
/* Check CAN_RF1R_FULL1 bit */
itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FULL1);
break;
case CAN_IT_FOV1:
/* Check CAN_RF1R_FOVR1 bit */
itstatus = CheckITStatus(CANx->RF1R, CAN_RF1R_FOVR1);
break;
case CAN_IT_WKU:
/* Check CAN_MSR_WKUI bit */
itstatus = CheckITStatus(CANx->MSR, CAN_MSR_WKUI);
break;
case CAN_IT_SLK:
/* Check CAN_MSR_SLAKI bit */
itstatus = CheckITStatus(CANx->MSR, CAN_MSR_SLAKI);
break;
case CAN_IT_EWG:
/* Check CAN_ESR_EWGF bit */
itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EWGF);
break;
case CAN_IT_EPV:
/* Check CAN_ESR_EPVF bit */
itstatus = CheckITStatus(CANx->ESR, CAN_ESR_EPVF);
break;
case CAN_IT_BOF:
/* Check CAN_ESR_BOFF bit */
itstatus = CheckITStatus(CANx->ESR, CAN_ESR_BOFF);
break;
case CAN_IT_LEC:
/* Check CAN_ESR_LEC bit */
itstatus = CheckITStatus(CANx->ESR, CAN_ESR_LEC);
break;
case CAN_IT_ERR:
/* Check CAN_MSR_ERRI bit */
itstatus = CheckITStatus(CANx->MSR, CAN_MSR_ERRI);
break;
default :
/* in case of error, return RESET */
itstatus = RESET;
break;
}
}
else
{
/* in case the Interrupt is not enabled, return RESET */
itstatus = RESET;
}
/* Return the CAN_IT status */
return itstatus;
}
/**
* @brief Clears the CANx's interrupt pending bits.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param CAN_IT: specifies the interrupt pending bit to clear.
* - CAN_IT_TME
* - CAN_IT_FF0
* - CAN_IT_FOV0
* - CAN_IT_FF1
* - CAN_IT_FOV1
* - CAN_IT_WKU
* - CAN_IT_SLK
* - CAN_IT_EWG
* - CAN_IT_EPV
* - CAN_IT_BOF
* - CAN_IT_LEC
* - CAN_IT_ERR
* @retval None.
*/
void CAN_ClearITPendingBit(CAN_TypeDef* CANx, uint32_t CAN_IT)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_CLEAR_IT(CAN_IT));
switch (CAN_IT)
{
case CAN_IT_TME:
/* Clear CAN_TSR_RQCPx (rc_w1)*/
CANx->TSR = CAN_TSR_RQCP0|CAN_TSR_RQCP1|CAN_TSR_RQCP2;
break;
case CAN_IT_FF0:
/* Clear CAN_RF0R_FULL0 (rc_w1)*/
CANx->RF0R = CAN_RF0R_FULL0;
break;
case CAN_IT_FOV0:
/* Clear CAN_RF0R_FOVR0 (rc_w1)*/
CANx->RF0R = CAN_RF0R_FOVR0;
break;
case CAN_IT_FF1:
/* Clear CAN_RF1R_FULL1 (rc_w1)*/
CANx->RF1R = CAN_RF1R_FULL1;
break;
case CAN_IT_FOV1:
/* Clear CAN_RF1R_FOVR1 (rc_w1)*/
CANx->RF1R = CAN_RF1R_FOVR1;
break;
case CAN_IT_WKU:
/* Clear CAN_MSR_WKUI (rc_w1)*/
CANx->MSR = CAN_MSR_WKUI;
break;
case CAN_IT_SLK:
/* Clear CAN_MSR_SLAKI (rc_w1)*/
CANx->MSR = CAN_MSR_SLAKI;
break;
case CAN_IT_EWG:
/* Clear CAN_MSR_ERRI (rc_w1) */
CANx->MSR = CAN_MSR_ERRI;
/* Note : the corresponding Flag is cleared by hardware depending
of the CAN Bus status*/
break;
case CAN_IT_EPV:
/* Clear CAN_MSR_ERRI (rc_w1) */
CANx->MSR = CAN_MSR_ERRI;
/* Note : the corresponding Flag is cleared by hardware depending
of the CAN Bus status*/
break;
case CAN_IT_BOF:
/* Clear CAN_MSR_ERRI (rc_w1) */
CANx->MSR = CAN_MSR_ERRI;
/* Note : the corresponding Flag is cleared by hardware depending
of the CAN Bus status*/
break;
case CAN_IT_LEC:
/* Clear LEC bits */
CANx->ESR = RESET;
/* Clear CAN_MSR_ERRI (rc_w1) */
CANx->MSR = CAN_MSR_ERRI;
break;
case CAN_IT_ERR:
/*Clear LEC bits */
CANx->ESR = RESET;
/* Clear CAN_MSR_ERRI (rc_w1) */
CANx->MSR = CAN_MSR_ERRI;
/* Note : BOFF, EPVF and EWGF Flags are cleared by hardware depending
of the CAN Bus status*/
break;
default :
break;
}
}
/**
* @brief Checks whether the CAN interrupt has occurred or not.
* @param CAN_Reg: specifies the CAN interrupt register to check.
* @param It_Bit: specifies the interrupt source bit to check.
* @retval The new state of the CAN Interrupt (SET or RESET).
*/
static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit)
{
ITStatus pendingbitstatus = RESET;
if ((CAN_Reg & It_Bit) != (uint32_t)RESET)
{
/* CAN_IT is set */
pendingbitstatus = SET;
}
else
{
/* CAN_IT is reset */
pendingbitstatus = RESET;
}
return pendingbitstatus;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/