rt-thread/bsp/n32/libraries/n32_drivers/drv_spi.c

340 lines
11 KiB
C

/*****************************************************************************
* Copyright (c) 2019, Nations Technologies Inc.
*
* All rights reserved.
* ****************************************************************************
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
*
* Nations' name may not be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY NATIONS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* DISCLAIMED. IN NO EVENT SHALL NATIONS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ****************************************************************************/
/**
* @file drv_spi.c
* @author Nations
* @version v1.0.0
*
* @copyright Copyright (c) 2019, Nations Technologies Inc. All rights reserved.
*/
#include "drv_spi.h"
#if defined(RT_USING_SPI) && defined(RT_USING_PIN)
#include <rtdevice.h>
#if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || \
defined(BSP_USING_SPI3)
/* #define DEBUG */
#ifdef DEBUG
#define DEBUG_PRINTF(...) rt_kprintf(__VA_ARGS__)
#else
#define DEBUG_PRINTF(...)
#endif
/* private rt-thread spi ops function */
static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration)
{
SPI_InitType SPI_InitStructure;
RCC_ClocksType RCC_ClockFreq;
SPI_Module* spi_periph;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
RCC_GetClocksFreqValue(&RCC_ClockFreq);
spi_periph = (SPI_Module*)device->bus->parent.user_data;
if(spi_periph != SPI1 && spi_periph != SPI2 && spi_periph != SPI3)
{
return RT_EIO;
}
if(configuration->data_width <= 8)
{
SPI_InitStructure.DataLen = SPI_DATA_SIZE_8BITS;
}
else if(configuration->data_width <= 16)
{
SPI_InitStructure.DataLen = SPI_DATA_SIZE_16BITS;
}
else
{
return RT_EIO;
}
{
rt_uint32_t spi_apb_clock;
rt_uint32_t max_hz;
max_hz = configuration->max_hz;
DEBUG_PRINTF("sys freq: %d\n", RCC_ClockFreq.SysclkFreq);
DEBUG_PRINTF("CK_APB2 freq: %d\n", RCC_ClockFreq.Pclk2Freq);
DEBUG_PRINTF("max freq: %d\n", max_hz);
if (spi_periph == SPI1)
{
spi_apb_clock = RCC_ClockFreq.Pclk2Freq;
}
else
{
spi_apb_clock = RCC_ClockFreq.Pclk1Freq;
}
if(max_hz >= spi_apb_clock/2)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_2;
}
else if (max_hz >= spi_apb_clock/4)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_4;
}
else if (max_hz >= spi_apb_clock/8)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_8;
}
else if (max_hz >= spi_apb_clock/16)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_16;
}
else if (max_hz >= spi_apb_clock/32)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_32;
}
else if (max_hz >= spi_apb_clock/64)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_64;
}
else if (max_hz >= spi_apb_clock/128)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_128;
}
else
{
/* min prescaler 256 */
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_256;
}
} /* baudrate */
switch(configuration->mode & RT_SPI_MODE_3)
{
case RT_SPI_MODE_0:
SPI_InitStructure.CLKPOL = SPI_CLKPOL_LOW;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_FIRST_EDGE;
break;
case RT_SPI_MODE_1:
SPI_InitStructure.CLKPOL = SPI_CLKPOL_LOW;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_SECOND_EDGE;
break;
case RT_SPI_MODE_2:
SPI_InitStructure.CLKPOL = SPI_CLKPOL_HIGH;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_FIRST_EDGE;
break;
case RT_SPI_MODE_3:
SPI_InitStructure.CLKPOL = SPI_CLKPOL_HIGH;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_SECOND_EDGE;
break;
}
/* MSB or LSB */
if(configuration->mode & RT_SPI_MSB)
{
SPI_InitStructure.FirstBit = SPI_FB_MSB;
}
else
{
SPI_InitStructure.FirstBit = SPI_FB_LSB;
}
/*!< SPI configuration */
SPI_InitStructure.DataDirection = SPI_DIR_DOUBLELINE_FULLDUPLEX;
SPI_InitStructure.SpiMode = SPI_MODE_MASTER;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_SECOND_EDGE;
SPI_InitStructure.NSS = SPI_NSS_SOFT;
SPI_InitStructure.CRCPoly = 7;
SPI_Init(spi_periph, &SPI_InitStructure);
/*!< Enable the sFLASH_SPI */
SPI_Enable(spi_periph, ENABLE);
return RT_EOK;
}
static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message)
{
struct n32_spi_cs *cs_pin = device->parent.user_data;
SPI_Module* spi_periph = (SPI_Module*)device->bus->parent.user_data;
struct rt_spi_configuration * config = &device->config;
RT_ASSERT(device != NULL);
RT_ASSERT(message != NULL);
/* take CS */
if(message->cs_take)
{
rt_pin_write(cs_pin->GPIO_Pin, PIN_LOW);
DEBUG_PRINTF("spi take cs\n");
}
{
if(config->data_width <= 8)
{
const rt_uint8_t * send_ptr = message->send_buf;
rt_uint8_t * recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
DEBUG_PRINTF("spi poll transfer start: %d\n", size);
while(size--)
{
rt_uint8_t data = 0xA5;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/*!< Loop while DAT register in not emplty */
while (SPI_I2S_GetStatus(spi_periph, SPI_I2S_TE_FLAG) == RESET);
// Send the byte
SPI_I2S_TransmitData(spi_periph, data);
//Wait until a data is received
while(SPI_I2S_GetStatus(spi_periph, SPI_I2S_RNE_FLAG) == RESET);
// Get the received data
data = SPI_I2S_ReceiveData(spi_periph);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
DEBUG_PRINTF("spi poll transfer finsh\n");
}
else if(config->data_width <= 16)
{
const rt_uint16_t * send_ptr = message->send_buf;
rt_uint16_t * recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
while(size--)
{
rt_uint16_t data = 0xFF;
if(send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/*!< Loop while DAT register in not emplty */
while (SPI_I2S_GetStatus(spi_periph, SPI_I2S_TE_FLAG) == RESET);
// Send the byte
SPI_I2S_TransmitData(spi_periph, data);
//Wait until a data is received
while(RESET == SPI_I2S_GetStatus(spi_periph, SPI_I2S_RNE_FLAG));
// Get the received data
data = SPI_I2S_ReceiveData(spi_periph);
if(recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
}
}
/* release CS */
if(message->cs_release)
{
rt_pin_write(cs_pin->GPIO_Pin, PIN_HIGH);
DEBUG_PRINTF("spi release cs\n");
}
return message->length;
}
static struct rt_spi_ops spi_ops =
{
configure,
xfer
};
int rt_hw_spi_init(void)
{
int result = 0;
#ifdef BSP_USING_SPI1
static struct rt_spi_bus spi_bus1;
spi_bus1.parent.user_data = (void *)SPI1;
result = rt_spi_bus_register(&spi_bus1, "spi1", &spi_ops);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_SPI1, ENABLE);
/* SPI1_SCK(PA5), SPI1_MISO(PA6) and SPI1_MOSI(PA7) GPIO pin configuration */
GPIOInit(SPI1_SCK_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI1_SCK_PIN);
GPIOInit(SPI1_MOSI_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI1_MOSI_PIN);
GPIOInit(SPI1_MISO_GPIO_PORT, GPIO_Mode_IN_FLOATING, GPIO_Speed_50MHz, SPI1_MISO_PIN);
#endif
#ifdef BSP_USING_SPI2
static struct rt_spi_bus spi_bus2;
spi_bus2.parent.user_data = (void *)SPI2;
result = rt_spi_bus_register(&spi_bus2, "spi2", &spi_ops);
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_SPI2, ENABLE);
/* SPI2_SCK(PB13), SPI2_MISO(PB14) and SPI2_MOSI(PB15) GPIO pin configuration */
GPIOInit(SPI2_SCK_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI2_SCK_PIN);
GPIOInit(SPI2_MOSI_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI2_MOSI_PIN);
GPIOInit(SPI2_MISO_GPIO_PORT, GPIO_Mode_IN_FLOATING, GPIO_Speed_50MHz, SPI2_MISO_PIN);
#endif
#ifdef BSP_USING_SPI3
static struct rt_spi_bus spi_bus3;
spi_bus3.parent.user_data = (void *)SPI3;
result = rt_spi_bus_register(&spi_bus3, "spi3", &spi_ops);
/* Enable AFIO clock */
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_AFIO, ENABLE);
GPIO_ConfigPinRemap(GPIO_RMP_SW_JTAG_SW_ENABLE, ENABLE);
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_SPI3, ENABLE);
/* SPI3_SCK(PB3), SPI3_MISO(PB4) and SPI3_MOSI(PB5) GPIO pin configuration */
GPIOInit(SPI3_SCK_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI3_SCK_PIN);
GPIOInit(SPI3_MOSI_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI3_MOSI_PIN);
GPIOInit(SPI3_MISO_GPIO_PORT, GPIO_Mode_IN_FLOATING, GPIO_Speed_50MHz, SPI3_MISO_PIN);
#endif
return result;
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /* defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) */
#endif