rt-thread/bsp/efm32/drv_ethernet.c
onelife.real ef6bbc34fa *** EFM32 branch ***
1. Add ENC28J60 Ethernet controller driver 
2. Add lwIP support (Please read "Readme.txt")
3. Add simple Http server demo application
4. Modify USART device write function to avoid sleep in ISR
5. Fix a bug in USART driver when using compiler optimization
6. Modify to make use the start-up code in libraries
7. Change the default build option for squeezing the executable file size
8. Modify source code alignment

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@1622 bbd45198-f89e-11dd-88c7-29a3b14d5316
2011-07-08 07:13:20 +00:00

1084 lines
28 KiB
C

/***************************************************************************//**
* @file drv_ethernet.c
* @brief Ethernet driver (SPI mode) of RT-Thread RTOS for using EFM32 USART
* module
* This driver is tested by using the Microchip ENC28J60 stand-alone Ethernet
* controller with SPI interface.
* COPYRIGHT (C) 2011, RT-Thread Development Team
* @author onelife
* @version 0.4 beta
*******************************************************************************
* @section License
* The license and distribution terms for this file may be found in the file
* LICENSE in this distribution or at http://www.rt-thread.org/license/LICENSE
*******************************************************************************
* @section Change Logs
* Date Author Notes
* 2011-06-22 onelife Initial creation for using EFM32 USART module
******************************************************************************/
/***************************************************************************//**
* @addtogroup efm32_eth
* @{
******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "board.h"
#include "drv_usart.h"
#include "hdl_interrupt.h"
#include "drv_ethernet.h"
#if defined(EFM32_USING_ETHERNET)
#include <netif/ethernetif.h>
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
#ifdef EFM32_ETHERNET_DEBUG
#define eth_debug(format,args...) rt_kprintf(format, ##args)
#else
#define eth_debug(format,args...)
#endif
/* Private constants ---------------------------------------------------------*/
static const rt_uint8_t eth_addr[ETH_ADDR_LEN] = ETH_ADDR_DEFAULT;
/* Private variables ---------------------------------------------------------*/
static struct eth_device eth_dev;
static struct rt_semaphore ethLock;
static rt_uint8_t ethBank;
static rt_uint16_t ethNxtPkt;
static rt_device_t spi = RT_NULL;
static rt_bool_t ethAutoCs = true;
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/***************************************************************************//**
* @brief
* Set/Clear chip select
*
* @details
*
* @note
*
* @param[in] enable
* Chip select pin setting
******************************************************************************/
static void efm_eth_cs(rt_uint8_t enable)
{
if (!ethAutoCs)
{
if (enable)
{
GPIO_PinOutClear(ETH_CS_PORT, ETH_CS_PIN);
}
else
{
GPIO_PinOutSet(ETH_CS_PORT, ETH_CS_PIN);
}
}
}
/***************************************************************************//**
* @brief
* Send command to Ethernet device
*
* @details
*
* @note
*
* @param[in] cmd
* Command index
*
* @param[in] addr
* Register address
*
* @param[in/out] data
* Pointer to the buffer of register value
*
* @return
* Error code
******************************************************************************/
static rt_err_t efm_eth_cmd(
rt_uint8_t cmd,
rt_uint8_t addr,
rt_uint8_t *data)
{
RT_ASSERT(spi != RT_NULL);
rt_uint8_t buf_ins[6], buf_res[2];
rt_uint8_t len_ins, len_res;
len_ins = 0;
do
{
/* Build instruction buffer */
/* Check if need to read back */
if (cmd == ENC28J60_READ_CTRL_REG)
{
buf_ins[len_ins++] = 1; /* Instruction length */
}
/* Byte 0: Check if no address section */
if (cmd == ENC28J60_READ_BUF_MEM || cmd == ENC28J60_WRITE_BUF_MEM || \
cmd == ENC28J60_SOFT_RESET)
{
buf_ins[len_ins++] = cmd;
}
else
{
buf_ins[len_ins++] = cmd | (addr & ADDR_MASK);
}
/* Byte 1: Check if data section is present */
if (cmd == ENC28J60_WRITE_CTRL_REG || cmd == ENC28J60_BIT_FIELD_SET || \
cmd == ENC28J60_BIT_FIELD_CLR || cmd == ENC28J60_WRITE_BUF_MEM)
{
buf_ins[len_ins++] = *data;
}
/* Check if reading */
if (cmd == ENC28J60_READ_CTRL_REG)
{
*(rt_uint8_t **)(&buf_ins[len_ins]) = buf_res; /* Pointer to RX buffer */
len_ins += 4;
/* Check if MAC or MII register */
if (addr & SPRD_MASK)
{
len_res = 2;
}
else
{
len_res = 1;
}
/* Send command and get response */
efm_eth_cs(1);
if (spi->read(spi, ETH_SPI_RX_SKIP, buf_ins, len_res) == 0)
{
break;
}
*data = buf_res[len_res - 1];
// eth_debug("ETH: read RX %x %x (%d)\n", buf_res[0], buf_res[1], len_res);
// eth_debug("ETH: ** read RX %x %x (%d)\n",
// buf_res[0], buf_res[1], buf_res[2], buf_res[3], buf_res[4],
// buf_res[5], buf_res[6], buf_res[7], buf_res[8], buf_res[9],
// len_res);
}
else
{
// eth_debug("ETH: ** write TX %x %x %x %x %x %x (%d) \n", buf_ins[0],
// buf_ins[1], buf_ins[2], buf_ins[3], buf_ins[4], buf_ins[5],
// len_ins);
/* Send command and get response */
efm_eth_cs(1);
if (spi->write(spi, EFM32_NO_DATA, buf_ins, len_ins) == 0)
{
break;
}
}
if (!(cmd == ENC28J60_READ_BUF_MEM || cmd == ENC28J60_WRITE_BUF_MEM))
{
efm_eth_cs(0);
}
return RT_EOK;
} while(0);
eth_debug("ETH: Send command failed!\n");
efm_eth_cs(0);
return -RT_ERROR;
}
/***************************************************************************//**
* @brief
* Wrapper function of send command to Ethernet device
*
* @details
*
* @note
*
* @param[in] cmd
* Command index
*
* @param[in] addr
* Register address
*
* @param[in/out] data
* Pointer to the buffer of register value
*
* @return
* Error code
******************************************************************************/
static rt_err_t efm_eth_sendCmd(
rt_uint8_t cmd,
rt_uint8_t addr,
rt_uint8_t *data)
{
rt_err_t ret;
eth_debug("ETH: Send command %x (%x %x)\n", cmd, addr, *data);
do
{
/* Change bank */
if(((addr & BANK_MASK) != ethBank) && ((addr < EIE) || (addr > ECON1)))
{
rt_uint8_t temp;
if ((ret = efm_eth_cmd(ENC28J60_READ_CTRL_REG, ECON1, &temp)) != RT_EOK)
{
break;
}
temp &= 0xFC;
ethBank = (addr & BANK_MASK);
temp |= ethBank >> BANK_SHIFT;
if ((ret = efm_eth_cmd(ENC28J60_WRITE_CTRL_REG, ECON1, &temp)) != RT_EOK)
{
break;
}
}
/* Send command */
ret = efm_eth_cmd(cmd, addr, data);
} while(0);
return ret;
}
/***************************************************************************//**
* @brief
* Read register of Ethernet device
*
* @details
*
* @note
*
* @param[in] addr
* Register address
*
* @return
* Register value
******************************************************************************/
static rt_uint8_t efm_eth_readReg(rt_uint8_t addr)
{
rt_uint8_t data;
efm_eth_sendCmd(ENC28J60_READ_CTRL_REG, addr, &data);
return data;
}
/***************************************************************************//**
* @brief
* Write register of Ethernet device
*
* @details
*
* @note
*
* @param[in] addr
* Register address
*
* @param[in] data
* Register value
******************************************************************************/
static void efm_eth_writeReg(rt_uint8_t addr, rt_uint8_t data)
{
efm_eth_sendCmd(ENC28J60_WRITE_CTRL_REG, addr, &data);
}
/***************************************************************************//**
* @brief
* Read PHY register of Ethernet device
*
* @details
*
* @note
*
* @param[in] addr
* Register address
*
* @return
* Register value
******************************************************************************/
static rt_uint16_t efm_eth_readPhy(rt_uint8_t addr)
{
rt_uint16_t ret;
eth_debug("ETH: *** read PHY %x\n", addr);
/* Set PHY register address */
efm_eth_writeReg(MIREGADR, addr);
/* Start read operation */
efm_eth_writeReg(MICMD, MICMD_MIIRD);
/* Waiting for at least 10.24 uS */
while(efm_eth_readReg(MISTAT) & MISTAT_BUSY);
/* Stop read operation */
efm_eth_writeReg(MICMD, 0x00);
/* Get the result */
ret = (rt_uint16_t)efm_eth_readReg(MIRDL);
ret |= (rt_uint16_t)efm_eth_readReg(MIRDH) << 8;
return ret;
}
/***************************************************************************//**
* @brief
* Write PHY register of Ethernet device
*
* @details
*
* @note
*
* @param[in] addr
* Register address
*
* @param[in] data
* Register value
******************************************************************************/
static void efm_eth_writePhy(rt_uint8_t addr, rt_uint16_t data)
{
eth_debug("ETH: *** write PHY %x (%x)\n", addr, data);
/* Set PHY register address */
efm_eth_writeReg(MIREGADR, addr);
/* Set data */
efm_eth_writeReg(MIWRL, data);
efm_eth_writeReg(MIWRH, data >> 8);
/* Waiting for at least 10.24 uS */
while(efm_eth_readReg(MISTAT) & MISTAT_BUSY);
}
/***************************************************************************//**
* @brief
* Interrupt handler of Ethernet device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
******************************************************************************/
void efm_eth_isr(rt_device_t dev)
{
rt_uint8_t reg_eir, data;
volatile rt_uint8_t cnt;
/* Disable RX interrutp */
data = EIE_PKTIE;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_CLR, EIE, &data);
/* Get interrupt flag */
efm_eth_sendCmd(ENC28J60_READ_CTRL_REG, EIR, &reg_eir);
data = 0;
/* DMA completed */
if (reg_eir & EIR_DMAIF)
{
data |= (rt_uint8_t)EIR_DMAIF;
}
/* Link Changed */
if (reg_eir & EIR_LINKIF)
{
/* Read PHIR to clear the flag */
efm_eth_readPhy(PHIR);
}
/* TX done */
if (reg_eir & EIR_TXIF)
{
data |= (rt_uint8_t)EIR_TXIF;
}
/* TX error */
if (reg_eir & EIR_TXERIF)
{
data |= (rt_uint8_t)EIR_TXERIF;
}
/* RX error */
if (reg_eir & EIR_RXERIF)
{
data |= (rt_uint8_t)EIR_RXERIF;
}
/* Clear flags */
efm_eth_sendCmd(ENC28J60_BIT_FIELD_CLR, EIR, &data);
/* Get packet counter (Errata 6) */
efm_eth_sendCmd(ENC28J60_READ_CTRL_REG, EPKTCNT, (rt_uint8_t *)&cnt);
if (cnt)
{
/* Inform Ethernet thread */
eth_device_ready(&eth_dev);
}
}
/***************************************************************************//**
* @brief
* Initialize Ethernet device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @return
* Error code
******************************************************************************/
static rt_err_t efm_eth_init(rt_device_t dev)
{
rt_uint16_t reg_phy;
rt_uint8_t data;
/* Reset chip select */
efm_eth_cs(0);
/* Software reset */
efm_eth_sendCmd(ENC28J60_SOFT_RESET, EFM32_NO_DATA, EFM32_NO_POINTER);
/* Waiting for at least 1 ms (Errata 2) */
rt_thread_delay(ETH_PERIOD_WAIT_INIT);
ethNxtPkt = RXSTART_INIT;
ethBank = 0;
/* Init RX buffer */
efm_eth_writeReg(ERXSTL, RXSTART_INIT & 0xFF);
efm_eth_writeReg(ERXSTH, RXSTART_INIT >> 8);
efm_eth_writeReg(ERXNDL, RXSTOP_INIT & 0xFF);
efm_eth_writeReg(ERXNDH, RXSTOP_INIT >> 8);
efm_eth_writeReg(ERXRDPTL, RXSTOP_INIT & 0xFF);
efm_eth_writeReg(ERXRDPTH, RXSTOP_INIT >> 8);
/* Init TX buffer */
efm_eth_writeReg(ETXSTL, TXSTART_INIT & 0xFF);
efm_eth_writeReg(ETXSTH, TXSTART_INIT >> 8);
efm_eth_writeReg(ETXNDL, TXSTOP_INIT & 0xFF);
efm_eth_writeReg(ETXNDH, TXSTOP_INIT >> 8);
efm_eth_writeReg(EWRPTL, TXSTART_INIT & 0xFF);
efm_eth_writeReg(EWRPTH, TXSTART_INIT >> 8);
/* Init RX filters */
/* For broadcast packets we allow only ARP packtets
All other packets should be unicast only for our mac (MAADR)
The pattern to match on is therefore
Type ETH.DST
ARP BROADCAST
06 08 -- -- -- -- -- -- ff ff ff ff ff ff
These poitions are: 11 0000 0011 1111 in binary and 30 3f in hex
Checksum for theses bytes is: f7 f9 */
efm_eth_writeReg(EPMM0, 0x3f);
efm_eth_writeReg(EPMM1, 0x30);
efm_eth_writeReg(EPMCSL, 0xf9);
efm_eth_writeReg(EPMCSH, 0xf7);
efm_eth_writeReg(ERXFCON,
ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_PMEN);
//efm_eth_writeReg(ERXFCON, ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN);
/* Waiting For OST: The OST does not expire until 7500 OSC1 clock cycles (300 uS)
pass after Power-on Reset or wake-up from Power-Down mode occurs */
/* Init MAC */
/* Enable RX, IEEE defined flow control */
efm_eth_writeReg(MACON1, MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS);
/* Enable padding to 60 bytes, CRC and frame length status reporting */
#if defined(ETH_HALF_DUPLEX)
efm_eth_writeReg(MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN);
efm_eth_writeReg(MACON4, MACON4_DEFER);
#else
efm_eth_writeReg(MACON3, \
MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN | MACON3_FULDPX);
#endif
/* Set the maximum packet length */
efm_eth_writeReg(MAMXFLL, MAX_FRAMELEN & 0xFF);
efm_eth_writeReg(MAMXFLH, MAX_FRAMELEN >> 8);
/* Set inter-packet gap (back-to-back). Full-Duplex: 0x15, Half-Duplex: 0x12 */
#if defined(ETH_HALF_DUPLEX)
efm_eth_writeReg(MABBIPG, 0x12);
#else
efm_eth_writeReg(MABBIPG, 0x15);
#endif
/* Set inter-packet gap (non-back-to-back).
Full-Duplex: 0x0012, Half-Duplex: 0x0C12 */
efm_eth_writeReg(MAIPGL, 0x12);
#if defined(ETH_HALF_DUPLEX)
efm_eth_writeReg(MAIPGH, 0x0C);
/* Set retransmission and collision window */
efm_eth_writeReg(MACLCON1, 0x0F);
efm_eth_writeReg(MACLCON2, 0x37);
#endif
/* Set MAC address
NOTE: MAC address in ENC28J60 is byte-backward */
efm_eth_writeReg(MAADR1, eth_addr[0]);
efm_eth_writeReg(MAADR2, eth_addr[1]);
efm_eth_writeReg(MAADR3, eth_addr[2]);
efm_eth_writeReg(MAADR4, eth_addr[3]);
efm_eth_writeReg(MAADR5, eth_addr[4]);
efm_eth_writeReg(MAADR6, eth_addr[5]);
/* Init PHY */
#if defined(ETH_HALF_DUPLEX)
reg_phy = efm_eth_readPhy(PHCON2);
efm_eth_writePhy(PHCON2, reg_phy | PHCON2_HDLDIS);
#else
reg_phy = efm_eth_readPhy(PHCON1);
efm_eth_writePhy(PHCON1, reg_phy | PHCON1_PDPXMD);
#endif
/* LEDA: Display link status;
LEDB: Display transmit and receive activity */
reg_phy = efm_eth_readPhy(PHLCON);
efm_eth_writePhy(PHLCON, (reg_phy & 0xF00F) | 0x0470);
/* Disable clock output */
efm_eth_writeReg(ECOCON, 0x00);
/* Clear interrutp flags */
data = EIR_DMAIF | EIR_TXIF | EIR_TXERIF | EIR_RXERIF;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_CLR, EIR, &data);
/* Enable interrutps */
data = EIE_INTIE | EIE_PKTIE | EIE_TXIE;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_SET, EIE, &data);
/* Enable RX */
data = ECON1_RXEN;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_SET, ECON1, &data);
eth_debug("ETH: Init OK\n");
return RT_EOK;
}
/***************************************************************************//**
* @brief
* Open Ethernet device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] oflag
* Device open flag
*
* @return
* Error code
******************************************************************************/
static rt_err_t efm_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
eth_debug("ETH: Open, flag %x\n", eth_dev.parent.flag);
return RT_EOK;
}
/***************************************************************************//**
* @brief
* Close Ethernet device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @return
* Error code
******************************************************************************/
static rt_err_t efm_eth_close(rt_device_t dev)
{
eth_debug("ETH: Close, flag %x\n", eth_dev.parent.flag);
return RT_EOK;
}
/***************************************************************************//**
* @brief
* Read from Ethernet device (Dummy function)
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] pos
* Offset
*
* @param[in] buffer
* Poniter to the buffer
*
* @param[in] size
* Buffer size in byte
*
* @return
* Number of read bytes
******************************************************************************/
static rt_size_t efm_eth_read(
rt_device_t dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
/***************************************************************************//**
* @brief
* Write to Ethernet device (Dummy function)
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] pos
* Offset
*
* @param[in] buffer
* Poniter to the buffer
*
* @param[in] size
* Buffer size in byte
*
* @return
* Number of written bytes
******************************************************************************/
static rt_size_t efm_eth_write (
rt_device_t dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
/***************************************************************************//**
* @brief
* Configure Ethernet device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] cmd
* Ethernet control command
*
* @param[in] args
* Arguments
*
* @return
* Error code
******************************************************************************/
static rt_err_t efm_eth_control (
rt_device_t dev,
rt_uint8_t cmd,
void *args)
{
rt_err_t ret;
ret = -RT_ERROR;
switch(cmd)
{
case NIOCTL_GADDR:
/* Get MAC address */
if(args)
{
rt_memcpy(args, eth_addr, sizeof(eth_addr));
ret = RT_EOK;
}
break;
default :
break;
}
return RT_EOK;
}
/***************************************************************************//**
* @brief
* Packet receiving function
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @return
* Pointer to packet buffer
******************************************************************************/
struct pbuf *efm_eth_rx(rt_device_t dev)
{
rt_uint8_t buf_ins[5], buf_read[6];
rt_uint8_t data, reg_eie;
rt_uint16_t len_rx, sta_rx;
struct pbuf* p;
p = RT_NULL;
/* Lock device */
rt_sem_take(&ethLock, RT_WAITING_FOREVER);
/* Disable interrupts */
data = EIE_INTIE;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_CLR, EIE, &data);
reg_eie = 0;
if (efm_eth_readReg(EPKTCNT))
{
/* Set read pointer to the start of RX packet */
efm_eth_writeReg(ERDPTL, ethNxtPkt & 0xFF);
efm_eth_writeReg(ERDPTH, ethNxtPkt >> 8);
/* Send read buffer command */
efm_eth_sendCmd(ENC28J60_READ_BUF_MEM, EFM32_NO_DATA, EFM32_NO_POINTER);
/* Build instruction buffer */
buf_ins[0] = 0x00;
*(rt_uint8_t **)(&buf_ins[1]) = buf_read;
/* Read packet header */
if (spi->read(spi, EFM32_NO_DATA, buf_ins, sizeof(buf_read)) == 0)
{
eth_debug("ETH: RX header failed!\n");
}
ethNxtPkt = buf_read[0] | (buf_read[1] << 8);
len_rx = buf_read[2] | (buf_read[3] << 8);
sta_rx = buf_read[4] | (buf_read[5] << 8);
eth_debug("ETH: RX header ethNxtPkt %x, len_rx %x, sta_rx %x\n",
ethNxtPkt, len_rx, sta_rx);
/* Check if OK */
if (sta_rx & 0x80)
{
/* Allocate pbuf */
p = pbuf_alloc(PBUF_LINK, len_rx - 4, PBUF_RAM);
if (p != RT_NULL)
{
struct pbuf* q;
for (q = p; q != RT_NULL; q= q->next)
{
/* Build instruction buffer */
buf_ins[0] = 0x00;
*(rt_uint8_t **)(&buf_ins[1]) = q->payload;
/* Read packet header */
if (spi->read(spi, EFM32_NO_DATA, buf_ins, q->len) == 0)
{
eth_debug("ETH: RX payload failed!\n");
}
#ifdef EFM32_ETHERNET_DEBUG
{
rt_uint8_t *temp = (rt_uint8_t *)q->payload;
rt_uint32_t i;
eth_debug("ETH: ***** read RX (q->len %x) *****\n", q->len);
for (i = 0; i < q->len; i += 8)
{
eth_debug("%02x %02x %02x %02x %02x %02x %02x %02x (%d %d)\n",
temp[i], temp[i + 1], temp[i + 2], temp[i + 3],
temp[i + 4], temp[i + 5], temp[i + 6], temp[i + 7],
i, q->len);
}
}
#endif
}
}
else
{
eth_debug("ETH: No memory for pbuf!!!\n");
}
}
else
{
eth_debug("ETH: Invalid CRC or symbol error occurred!\n");
}
efm_eth_cs(0);
/* Free buffer */
efm_eth_writeReg(ERXRDPTL, ethNxtPkt & 0xFF);
efm_eth_writeReg(ERXRDPTH, ethNxtPkt >> 8);
/* Decrease counter */
data = ECON2_PKTDEC;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_SET, ECON2, &data);
}
else
{
/* Enable RX */
data = ECON1_RXEN;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_SET, ECON1, &data);
reg_eie |= EIE_PKTIE;
eth_debug("ETH: Enable RX interrupt\n");
}
eth_debug("ETH: RX counter %x\n", efm_eth_readReg(EPKTCNT));
/* Enable interrupts */
reg_eie |= EIE_INTIE;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_SET, EIE, &reg_eie);
/* Unlock device */
rt_sem_release(&ethLock);
return p;
}
/***************************************************************************//**
* @brief
* Packet transmission function
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] p
* Pointer to packet buffer
*
* @return
* Error code
******************************************************************************/
rt_err_t efm_eth_tx(rt_device_t dev, struct pbuf* p)
{
rt_uint8_t data;
struct pbuf* q;
/* Lock device */
rt_sem_take(&ethLock, RT_WAITING_FOREVER);
/* Disable interrupts */
data = EIE_INTIE;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_CLR, EIE, &data);
/* Set write pointer to the start of TX buffer */
efm_eth_writeReg(EWRPTL, TXSTART_INIT & 0xFF);
efm_eth_writeReg(EWRPTH, TXSTART_INIT >> 8);
/* Set buffer end pointer according to the packet size */
efm_eth_writeReg(ETXNDL, (TXSTART_INIT + p->tot_len + 1) & 0xFF);
efm_eth_writeReg(ETXNDH, (TXSTART_INIT + p->tot_len + 1) >> 8);
/* Send write buffer command */
data = 0x00; /* Control byte */
efm_eth_sendCmd(ENC28J60_WRITE_BUF_MEM, EFM32_NO_DATA, &data);
/* Send data */
for (q = p; q != NULL; q = q->next)
{
if (spi->write(spi, EFM32_NO_DATA, q->payload, q->len) == 0)
{
eth_debug("ETH: TX failed!\n");
return -RT_ERROR;
}
#ifdef EFM32_ETHERNET_DEBUG
{
rt_uint8_t *temp = (rt_uint8_t *)q->payload;
rt_uint32_t i;
eth_debug("ETH: ***** write TX (len %d) *****\n", p->len);
for (i = 0; i < q->len; i += 8)
{
eth_debug("%02x %02x %02x %02x %02x %02x %02x %02x (%d %d)\n",
temp[i], temp[i + 1], temp[i + 2], temp[i + 3],
temp[i + 4], temp[i + 5], temp[i + 6], temp[i + 7],
i, q->len);
}
}
#endif
}
efm_eth_cs(0);
/* Start TX */
data = ECON1_TXRTS;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_SET, ECON1, &data);
/* Errata 12 */
if (efm_eth_readReg(EIR) & EIR_TXERIF)
{
efm_eth_sendCmd(ENC28J60_BIT_FIELD_CLR, ECON1, &data);
data = EIR_TXERIF;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_CLR, EIR, &data);
data = ECON1_TXRTS;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_SET, ECON1, &data);
}
/* Enable interrupts */
data = EIE_INTIE;
efm_eth_sendCmd(ENC28J60_BIT_FIELD_SET, EIE, &data);
/* Unlock device */
rt_sem_release(&ethLock);
return RT_EOK;
}
/***************************************************************************//**
* @brief
* Initialize all Ethernet related hardware and register the device to kernel
*
* @details
*
* @note
*
* @return
* Error code
******************************************************************************/
rt_err_t efm_hw_eth_init(void)
{
struct efm32_usart_device_t *usart;
efm32_irq_hook_init_t hook;
do
{
/* Find SPI device */
spi = rt_device_find(ETH_USING_DEVICE_NAME);
if (spi == RT_NULL)
{
eth_debug("ETH: Can't find device %s!\n",
ETH_USING_DEVICE_NAME);
break;
}
eth_debug("ETH: Find device %s\n", ETH_USING_DEVICE_NAME);
/* Config chip slect pin */
usart = (struct efm32_usart_device_t *)(spi->user_data);
if (!(usart->state & USART_STATE_AUTOCS))
{
GPIO_PinModeSet(ETH_CS_PORT, ETH_CS_PIN, gpioModePushPull, 1);
ethAutoCs = false;
}
/* Config reset pin */
GPIO_PinModeSet(ETH_RESET_PORT, ETH_RESET_PIN, gpioModePushPull, 0);
/* Config interrupt pin */
GPIO_PinModeSet(ETH_INT_PORT, ETH_INT_PIN, gpioModeInput, 1);
/* Config interrupt */
hook.type = efm32_irq_type_gpio;
hook.unit = ETH_INT_PIN;
hook.cbFunc = efm_eth_isr;
hook.userPtr = RT_NULL;
efm32_irq_hook_register(&hook);
/* Clear pending interrupt */
BITBAND_Peripheral(&(GPIO->IFC), ETH_INT_PIN, 0x1UL);
/* Set falling edge interrupt and clear/enable it */
GPIO_IntConfig(
ETH_INT_PORT,
ETH_INT_PIN,
false,
true,
true);
if ((rt_uint8_t)ETH_INT_PIN % 2)
{
NVIC_ClearPendingIRQ(GPIO_ODD_IRQn);
NVIC_SetPriority(GPIO_ODD_IRQn, EFM32_IRQ_PRI_DEFAULT);
NVIC_EnableIRQ(GPIO_ODD_IRQn);
}
else
{
NVIC_ClearPendingIRQ(GPIO_EVEN_IRQn);
NVIC_SetPriority(GPIO_EVEN_IRQn, EFM32_IRQ_PRI_DEFAULT);
NVIC_EnableIRQ(GPIO_EVEN_IRQn);
}
/* Set SPI speed */
USART_BaudrateSyncSet(usart->usart_device, 0, ETH_CLK_MAX);
/* Initialize semaphore */
rt_sem_init(&ethLock, "lck_eth", 1, RT_IPC_FLAG_FIFO);
/* Register Ethernet device */
eth_dev.parent.init = efm_eth_init;
eth_dev.parent.open = efm_eth_open;
eth_dev.parent.close = efm_eth_close;
eth_dev.parent.read = efm_eth_read;
eth_dev.parent.write = efm_eth_write;
eth_dev.parent.control = efm_eth_control;
eth_dev.eth_rx = efm_eth_rx;
eth_dev.eth_tx = efm_eth_tx;
eth_device_init(&eth_dev, ETH_DEVICE_NAME);
/* Start device */
GPIO_PinOutSet(ETH_RESET_PORT, ETH_RESET_PIN);
eth_debug("ETH: HW init OK\n");
return RT_EOK;
} while (0);
/* Release buffer */
rt_kprintf("ETH: HW init failed!\n");
return -RT_ERROR;
}
/***************************************************************************//**
* Export to FINSH
******************************************************************************/
#ifdef RT_USING_FINSH
#include <finsh.h>
void list_eth(void)
{
rt_uint16_t reg_phy;
rt_uint8_t data;
rt_kprintf(" ENC28J60 on %s\n", ETH_USING_DEVICE_NAME);
rt_kprintf(" ------------------------------\n");
rt_kprintf(" MAC address is %02x %02x %02x %02x %02x %02x\n",
eth_addr[0], eth_addr[1], eth_addr[2], eth_addr[3], eth_addr[4],
eth_addr[5], eth_addr[6]);
reg_phy = efm_eth_readPhy(PHSTAT2);
if (reg_phy & PHSTAT2_PLRITY)
{
rt_kprintf(" Cable polarity is reversed\n");
}
else
{
rt_kprintf(" Cable polarity is correct\n");
}
if (reg_phy & PHSTAT2_DPXSTAT)
{
rt_kprintf(" Full-duplex mode\n");
}
else
{
rt_kprintf(" Half-duplex mode\n");
}
if (reg_phy & PHSTAT2_LSTAT)
{
rt_kprintf(" Link is up\n");
}
else
{
rt_kprintf(" Link is down\n");
}
if (reg_phy & PHSTAT2_COLSTAT)
{
rt_kprintf(" Collision is occuring\n");
}
else
{
rt_kprintf(" No collision\n");
}
if (reg_phy & PHSTAT2_RXSTAT)
{
rt_kprintf(" RX is busy\n");
}
else
{
rt_kprintf(" RX is idle\n");
}
if (reg_phy & PHSTAT2_TXSTAT)
{
rt_kprintf(" TX is busy\n");
}
else
{
rt_kprintf(" TX is idle\n");
}
}
FINSH_FUNCTION_EXPORT(list_eth, list the Ethernet device status.)
#endif
#endif /* defined(EFM32_USING_ETHERNET) */
/******************************************************************//**
* @}
******************************************************************************/