rt-thread/bsp/lpc408x/drivers/drv_lpccan.c
2017-10-16 14:10:18 +08:00

1091 lines
30 KiB
C

/*
* File : drv_lpccan.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2015, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2015-06-30 aubrcool@qq.com first version
*/
#include <rthw.h>
#include <rtdevice.h>
#include <board.h>
#include <drv_lpccan.h>
#ifdef RT_USING_CAN
#include "lpc_types.h"
#include "lpc_can.h"
#include "lpc_pinsel.h"
#include "lpc_exti.h"
#include "lpc_clkpwr.h"
struct lpccandata
{
en_CAN_unitId id;
};
static LPC_CAN_TypeDef* lcpcan_get_reg_base(rt_uint32_t id)
{
LPC_CAN_TypeDef* pCan;
switch (id)
{
case CAN_ID_1:
pCan = LPC_CAN1;
break;
case CAN_ID_2:
pCan = LPC_CAN2;
break;
default:
pCan = NULL;
}
return pCan;
}
static void lpccan_irqstate_init(rt_uint32_t id)
{
LPC_CAN_TypeDef* pCan = lcpcan_get_reg_base(id);
volatile rt_int32_t i;
pCan->MOD = 1; // Enter Reset Mode
pCan->IER = 0; // Disable All CAN Interrupts
pCan->GSR = 0;
/* Request command to release Rx, Tx buffer and clear data overrun */
//pCan->CMR = CAN_CMR_AT | CAN_CMR_RRB | CAN_CMR_CDO;
pCan->CMR = (1 << 1) | (1 << 2) | (1 << 3);
/* Read to clear interrupt pending in interrupt capture register */
i = pCan->ICR;
i = i;
pCan->MOD = 0;// Return Normal operating
}
static rt_err_t lpccan_baud_set(rt_uint32_t id, rt_uint32_t baud)
{
uint32_t result = 0;
uint8_t NT, TSEG1, TSEG2;
uint32_t CANPclk = 0;
uint32_t BRP;
LPC_CAN_TypeDef* pCan = lcpcan_get_reg_base(id);
CANPclk = CLKPWR_GetCLK(CLKPWR_CLKTYPE_PER);
result = CANPclk / baud;
/* Calculate suitable nominal time value
* NT (nominal time) = (TSEG1 + TSEG2 + 3)
* NT <= 24
* TSEG1 >= 2*TSEG2
*/
for(NT = 24; NT > 0; NT = NT-2)
{
if ((result % NT) == 0)
{
BRP = result / NT - 1;
NT--;
TSEG2 = (NT/3) - 1;
TSEG1 = NT -(NT/3) - 1;
break;
}
}
/* Enter reset mode */
pCan->MOD = 0x01;
/* Set bit timing
* Default: SAM = 0x00;
* SJW = 0x03;
*/
pCan->BTR = (TSEG2 << 20) | (TSEG1 << 16) | (3 << 14) | BRP;
/* Return to normal operating */
pCan->MOD = 0;
return RT_EOK;
}
static void lpccan_init_alut_ram(void)
{
//Reset CANAF value
LPC_CANAF->AFMR = 0x01;
//clear ALUT RAM
rt_memset((void *)LPC_CANAF_RAM->mask, 0, 2048);
LPC_CANAF->SFF_sa = 0;
LPC_CANAF->SFF_GRP_sa = 0;
LPC_CANAF->EFF_sa = 0;
LPC_CANAF->EFF_GRP_sa = 0;
LPC_CANAF->ENDofTable = 0;
LPC_CANAF->AFMR = 0x00;
// Set AF Mode
CAN_SetAFMode(CAN_NORMAL);
}
#ifdef RT_USING_LPCCAN1
static void lpccan1_turnon_clk(void)
{
CLKPWR_ConfigPPWR(CLKPWR_PCONP_PCAN1, ENABLE);
}
static void lpccan1_filter_init(struct rt_can_device *can)
{
}
static void lpccan1_hw_init(uint32_t baud, CAN_MODE_Type mode)
{
if(mode != CAN_SELFTEST_MODE)
{
#ifndef LPCCAN1_USEING_GPIO_SECOND
PINSEL_ConfigPin (0, 0, 1);
PINSEL_ConfigPin (0, 1, 1);
#else
PINSEL_ConfigPin (0, 21, 4);
PINSEL_ConfigPin (0, 22, 4);
#endif
}
lpccan1_turnon_clk();
lpccan_irqstate_init(CAN_1);
lpccan_init_alut_ram();
lpccan1_turnon_clk();
lpccan_baud_set(CAN_1, baud);
CAN_ModeConfig(CAN_1, mode, ENABLE);
if(mode == CAN_SELFTEST_MODE)
{
//CAN_ModeConfig(CAN_1, CAN_TEST_MODE, ENABLE);
CAN_SetAFMode(CAN_ACC_BP);
}
}
#endif /*RT_USING_LPCCAN1*/
#ifdef RT_USING_LPCCAN2
static void lpccan2_turnon_clk(void)
{
CLKPWR_ConfigPPWR(CLKPWR_PCONP_PCAN2, ENABLE);
}
static void lpccan2_filter_init(struct rt_can_device *can)
{
}
static void lpccan2_hw_init(uint32_t baud, CAN_MODE_Type mode)
{
if(mode != CAN_SELFTEST_MODE)
{
#ifndef LPCCAN2_USEING_GPIO_SECOND
PINSEL_ConfigPin (0, 4, 2);
PINSEL_ConfigPin (0, 5, 2);
#else
PINSEL_ConfigPin (2, 7, 1);
PINSEL_ConfigPin (2, 8, 1);
#endif
}
lpccan2_turnon_clk();
lpccan_irqstate_init(CAN_2);
#ifndef RT_USING_LPCCAN1
lpccan_init_alut_ram();
#endif /*RT_USING_LPCCAN1*/
lpccan_baud_set(CAN_2, baud);
CAN_ModeConfig(CAN_2, mode, ENABLE);
if(mode == CAN_SELFTEST_MODE)
{
CAN_SetAFMode(CAN_ACC_BP);
}
}
#endif /*RT_USING_LPCCAN2*/
static rt_err_t configure(struct rt_can_device *can, struct can_configure *cfg)
{
CAN_MODE_Type mode;
rt_uint32_t canid;
switch(cfg->mode)
{
case RT_CAN_MODE_NORMAL:
mode = CAN_OPERATING_MODE;
break;
case RT_CAN_MODE_LISEN:
mode = CAN_LISTENONLY_MODE;
break;
case RT_CAN_MODE_LOOPBACKANLISEN:
mode = CAN_SELFTEST_MODE;
break;
default:
return RT_EIO;
}
canid = ((struct lpccandata *) can->parent.user_data)->id;
#ifdef RT_USING_LPCCAN1
if(canid == CAN_1)
{
lpccan1_hw_init(cfg->baud_rate, mode);
lpccan1_filter_init(can);
}
#endif /*RT_USING_LPCCAN1*/
#ifdef RT_USING_LPCCAN2
#ifdef RT_USING_LPCCAN1
else
#endif /*RT_USING_LPCCAN1*/
{
lpccan2_hw_init(cfg->baud_rate, mode);
lpccan2_filter_init(can);
}
#endif /*RT_USING_LPCCAN2*/
return RT_EOK;
}
static CAN_ERROR findfilter(struct lpccandata* plpccan, struct rt_can_filter_item* pitem, rt_int32_t* pos)
{
extern uint16_t CANAF_FullCAN_cnt;
extern uint16_t CANAF_std_cnt;
extern uint16_t CANAF_gstd_cnt;
extern uint16_t CANAF_ext_cnt;
extern uint16_t CANAF_gext_cnt;
rt_uint32_t buf0 = 0, buf1 = 0;
rt_int16_t cnt1 = 0, cnt2 = 0, bound1 = 0;
CAN_ID_FORMAT_Type format;
*pos = -1;
if(pitem->ide)
{
format = EXT_ID_FORMAT;
}
else
{
format = STD_ID_FORMAT;
}
if(pitem->mode)
{
rt_uint32_t id = pitem->id;
if(format == STD_ID_FORMAT)
{
id &= 0x07FF;
id |= plpccan->id << 13;/* Add controller number */
if (CANAF_std_cnt == 0)
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
else if (CANAF_std_cnt == 1)
{
cnt2 = (CANAF_FullCAN_cnt + 1) >> 1;
if(id != LPC_CANAF_RAM->mask[cnt2] >> 16)
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
}
else
{
cnt1 = (CANAF_FullCAN_cnt+1)>>1;
bound1 = ((CANAF_FullCAN_cnt+1)>>1)+((CANAF_std_cnt+1)>>1);
while (cnt1 < bound1)
{
/* Loop through standard existing IDs */
if (((LPC_CANAF_RAM->mask[cnt1] >> 16) & 0xE7FF) == id)
{
*pos = cnt1 * 2;
return CAN_OK;
}
if ((LPC_CANAF_RAM->mask[cnt1] & 0x0000E7FF) == id)
{
*pos = cnt1 * 2 + 1;
return CAN_OK;
}
if (((LPC_CANAF_RAM->mask[cnt1] >> 16) & 0xE7FF) > id)
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
if ((LPC_CANAF_RAM->mask[cnt1] & 0x0000E7FF) > id)
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
cnt1++;
}
return CAN_ENTRY_NOT_EXIT_ERROR;
}
}
/*********** Add Explicit Extended Identifier Frame Format entry *********/
else
{
/* Add controller number */
id |= plpccan->id << 29;
cnt1 = ((CANAF_FullCAN_cnt+1) >> 1) + (((CANAF_std_cnt + 1) >> 1) + CANAF_gstd_cnt);
cnt2 = 0;
while (cnt2 < CANAF_ext_cnt)
{
/* Loop through extended existing masks*/
if (LPC_CANAF_RAM->mask[cnt1] == id)
{
*pos = cnt2;
return CAN_OK;
}
if (LPC_CANAF_RAM->mask[cnt1] > id)
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
cnt1++;
cnt2++;
}
}
}
else
{
rt_uint32_t lowerID = pitem->id;
rt_uint32_t upperID = pitem->mask;
rt_uint32_t LID,UID;
if(lowerID > upperID)
return CAN_CONFLICT_ID_ERROR;
if(format == STD_ID_FORMAT)
{
lowerID &=0x7FF; //mask ID
upperID &=0x7FF;
cnt1 = ((CANAF_FullCAN_cnt+1)>>1) + ((CANAF_std_cnt + 1) >> 1);
if(CANAF_gstd_cnt == 0)
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
else
{
bound1 = ((CANAF_FullCAN_cnt+1)>>1) + ((CANAF_std_cnt + 1) >> 1) + CANAF_gstd_cnt;
while(cnt1 < bound1)
{
//compare controller first
while((LPC_CANAF_RAM->mask[cnt1] >> 29) < (plpccan->id))//increase until meet greater or equal controller
cnt1++;
buf0 = LPC_CANAF_RAM->mask[cnt1];
if((LPC_CANAF_RAM->mask[cnt1] >> 29) > (plpccan->id)) //meet greater controller
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
else //meet equal controller
{
LID = (buf0 >> 16)&0x7FF;
UID = buf0 & 0x7FF;
if (upperID == LID && lowerID == UID)
{
*pos = cnt1;
return CAN_OK;
}
if (upperID < LID)
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
else if (lowerID >= UID)
{
cnt1 ++;
}
else
return CAN_CONFLICT_ID_ERROR;
}
}
if(cnt1 >= bound1)
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
}
}
/*********Add Group of Extended Identifier Frame Format************/
else
{
lowerID &= 0x1FFFFFFF; //mask ID
upperID &= 0x1FFFFFFF;
cnt1 = ((CANAF_FullCAN_cnt+1)>>1) + ((CANAF_std_cnt + 1) >> 1) + CANAF_gstd_cnt + CANAF_ext_cnt;
//if this is the first Group standard ID entry
if(CANAF_gext_cnt == 0)
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
else
{
bound1 = ((CANAF_FullCAN_cnt+1)>>1) + ((CANAF_std_cnt + 1) >> 1) + CANAF_gstd_cnt \
+ CANAF_ext_cnt + (CANAF_gext_cnt<<1);
while(cnt1 < bound1)
{
while((LPC_CANAF_RAM->mask[cnt1] >>29)< plpccan->id ) //increase until meet greater or equal controller
cnt1++;
buf0 = LPC_CANAF_RAM->mask[cnt1];
buf1 = LPC_CANAF_RAM->mask[cnt1+1];
if((LPC_CANAF_RAM->mask[cnt1] >> 29) > plpccan->id ) //meet greater controller
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
else //meet equal controller
{
LID = buf0 & 0x1FFFFFFF; //mask ID
UID = buf1 & 0x1FFFFFFF;
if (upperID == LID && lowerID == UID)
{
*pos = cnt1;
return CAN_OK;
}
if (upperID < LID)
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
else if (lowerID >= UID)
{
//load next entry to compare
cnt1 +=2;
}
else
return CAN_CONFLICT_ID_ERROR;
}
}
if(cnt1 >= bound1)
{
return CAN_ENTRY_NOT_EXIT_ERROR;
}
}
}
}
return CAN_ENTRY_NOT_EXIT_ERROR;
}
static rt_err_t setfilter(struct lpccandata* plpccan,struct rt_can_filter_config *pconfig)
{
struct rt_can_filter_item* pitem = pconfig->items;
rt_uint32_t count = pconfig->count;
rt_int32_t pos;
CAN_ID_FORMAT_Type format;
CAN_ERROR lpccanres;
while(count)
{
if(pitem->ide)
{
format = EXT_ID_FORMAT;
}
else
{
format = STD_ID_FORMAT;
}
lpccanres = findfilter(plpccan, pitem, &pos);
if(pconfig->actived && lpccanres != CAN_OK)
{
if(pitem->mode)
{
lpccanres = CAN_LoadGroupEntry(plpccan->id, pitem->id, pitem->mask, format);
}
else
{
lpccanres = CAN_LoadExplicitEntry(plpccan->id, pitem->id, format);
}
}
else if(!pconfig->actived && lpccanres == CAN_OK)
{
AFLUT_ENTRY_Type type;
if(pitem->mode)
{
if(format == EXT_ID_FORMAT)
{
type = GROUP_EXTEND_ENTRY;
}
else
{
type = GROUP_STANDARD_ENTRY;
}
}
else
{
if(format == EXT_ID_FORMAT)
{
type = EXPLICIT_EXTEND_ENTRY;
}
else
{
type = EXPLICIT_STANDARD_ENTRY;
}
}
lpccanres = CAN_RemoveEntry(type, (rt_uint16_t)(pos));
}
else if(!pconfig->actived && lpccanres != CAN_OK)
{
lpccanres = CAN_OK;
}
if(lpccanres != CAN_OK)
{
return RT_EIO;
}
pitem++;
count--;
}
return RT_EOK;
}
static rt_err_t control(struct rt_can_device *can, int cmd, void *arg)
{
struct lpccandata* plpccan;
rt_uint32_t argval;
CAN_MODE_Type mode;
plpccan = (struct lpccandata* ) can->parent.user_data;
RT_ASSERT(plpccan != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
argval = (rt_uint32_t) arg;
if(argval == RT_DEVICE_FLAG_INT_RX)
{
CAN_IRQCmd(plpccan->id, CANINT_RIE, DISABLE);
CAN_IRQCmd(plpccan->id, CANINT_DOIE, DISABLE);
}
else if(argval == RT_DEVICE_FLAG_INT_TX)
{
CAN_IRQCmd(plpccan->id, CANINT_TIE1, DISABLE);
CAN_IRQCmd(plpccan->id, CANINT_TIE2, DISABLE);
CAN_IRQCmd(plpccan->id, CANINT_TIE3, DISABLE);
}
else if(argval == RT_DEVICE_CAN_INT_ERR)
{
CAN_IRQCmd(plpccan->id, CANINT_EIE, DISABLE);
}
break;
case RT_DEVICE_CTRL_SET_INT:
argval = (rt_uint32_t) arg;
if(argval == RT_DEVICE_FLAG_INT_RX)
{
CAN_IRQCmd(plpccan->id, CANINT_RIE, ENABLE);
CAN_IRQCmd(plpccan->id, CANINT_DOIE, ENABLE);
}
else if(argval == RT_DEVICE_FLAG_INT_TX)
{
CAN_IRQCmd(plpccan->id, CANINT_TIE1, ENABLE);
CAN_IRQCmd(plpccan->id, CANINT_TIE2, ENABLE);
CAN_IRQCmd(plpccan->id, CANINT_TIE3, ENABLE);
}
else if(argval == RT_DEVICE_CAN_INT_ERR)
{
CAN_IRQCmd(plpccan->id, CANINT_EIE, ENABLE);
}
break;
case RT_CAN_CMD_SET_FILTER:
return setfilter(plpccan, (struct rt_can_filter_config*) arg);
case RT_CAN_CMD_SET_MODE:
argval = (rt_uint32_t) arg;
if(argval != RT_CAN_MODE_NORMAL ||
argval != RT_CAN_MODE_LISEN)
{
return RT_ERROR;
}
if(argval != can->config.mode)
{
can->config.mode = argval;
switch(argval)
{
case RT_CAN_MODE_NORMAL:
mode = CAN_OPERATING_MODE;
break;
case RT_CAN_MODE_LISEN:
mode = CAN_LISTENONLY_MODE;
break;
case RT_CAN_MODE_LOOPBACKANLISEN:
mode = CAN_SELFTEST_MODE;
break;
default:
return RT_EIO;
}
CAN_ModeConfig(plpccan->id, mode, ENABLE);
if(mode == CAN_SELFTEST_MODE)
{
//CAN_ModeConfig(CAN_1, CAN_TEST_MODE, ENABLE);
CAN_SetAFMode(CAN_ACC_BP);
}
}
break;
case RT_CAN_CMD_SET_BAUD:
argval = (rt_uint32_t) arg;
if(argval != can->config.baud_rate)
{
can->config.baud_rate = argval;
return lpccan_baud_set(plpccan->id, (rt_uint32_t) arg);
}
break;
case RT_CAN_CMD_SET_PRIV:
argval = (rt_uint32_t) arg;
if(argval != RT_CAN_MODE_PRIV ||
argval != RT_CAN_MODE_NOPRIV)
{
return RT_ERROR;
}
if(argval != can->config.privmode)
{
can->config.privmode = argval;
CAN_ModeConfig(plpccan->id, CAN_TXPRIORITY_MODE, ENABLE);
}
break;
case RT_CAN_CMD_GET_STATUS:
{
can->status.rcverrcnt = 0;
can->status.snderrcnt = 0;
can->status.errcode = 0;
if(arg != &can->status)
{
rt_memcpy(arg,&can->status,sizeof(can->status));
}
}
break;
}
return RT_EOK;
}
static int sendmsg(struct rt_can_device *can, const void* buf, rt_uint32_t boxno)
{
struct lpccandata* plpccan;
LPC_CAN_TypeDef* pCan;
struct rt_can_msg* pmsg;
rt_uint32_t SR_Mask;
rt_uint32_t CMRMsk;
plpccan = (struct lpccandata* ) can->parent.user_data;
RT_ASSERT(plpccan != RT_NULL);
pCan = lcpcan_get_reg_base(plpccan->id);
RT_ASSERT(pCan != RT_NULL);
pmsg = (struct rt_can_msg*) buf;
if(boxno > 2)
{
return RT_ERROR;
}
CMRMsk = 0x01 | (0x01 << (boxno + 5));
SR_Mask = 0x01 <<(boxno * 8 + 2);
if(pCan->SR & SR_Mask)
{
volatile unsigned int *pTFI = (&pCan->TFI1 + 0 + 4 * boxno);
volatile unsigned int *pTID = (&pCan->TFI1 + 1 + 4 * boxno);
volatile unsigned int *pTDA = (&pCan->TFI1 + 2 + 4 * boxno);
volatile unsigned int *pTDB = (&pCan->TFI1 + 3 + 4 * boxno);
rt_uint32_t data;
/* Transmit Channel 1 is available */
/* Write frame informations and frame data into its CANxTFI1,
* CANxTID1, CANxTDA1, CANxTDB1 register */
*pTFI &= ~ 0x000F0000;
*pTFI |= (pmsg->len) << 16;
if(pmsg->rtr == REMOTE_FRAME)
{
*pTFI |= (1 << 30); //set bit RTR
}
else
{
*pTFI &= ~(1 << 30);
}
if(pmsg->ide == EXT_ID_FORMAT)
{
*pTFI |= (((uint32_t)1) << 31); //set bit FF
}
else
{
*pTFI &= ~(((uint32_t)1) << 31);
}
if(can->config.privmode)
{
*pTFI &= ~0x000000FF;
*pTFI |= pmsg->priv;
}
/* Write CAN ID*/
*pTID = pmsg->id;
/*Write first 4 data bytes*/
data = (pmsg->data[0]) | (((pmsg->data[1]))<< 8) | ((pmsg->data[2]) << 16) | ((pmsg->data[3]) << 24);
*pTDA = data;
/*Write second 4 data bytes*/
data = (pmsg->data[4]) | (((pmsg->data[5])) << 8) | ((pmsg->data[6]) << 16) | ((pmsg->data[7]) << 24);
*pTDB = data;
/*Write transmission request*/
pCan->CMR = CMRMsk;
return RT_EOK;
}
else
{
return RT_ERROR;
}
}
static int recvmsg(struct rt_can_device *can, void* buf, rt_uint32_t boxno)
{
struct lpccandata* plpccan;
LPC_CAN_TypeDef* pCan;
plpccan = (struct lpccandata* ) can->parent.user_data;
RT_ASSERT(plpccan != RT_NULL);
pCan = lcpcan_get_reg_base(plpccan->id);
RT_ASSERT(pCan != RT_NULL);
//CAN_ReceiveMsg
//check status of Receive Buffer
if((pCan->SR &0x00000001))
{
uint32_t data;
struct rt_can_msg* pmsg = (struct rt_can_msg*) buf;
/* Receive message is available */
/* Read frame informations */
pmsg->ide = (uint8_t)(((pCan->RFS) & 0x80000000) >> 31);
pmsg->rtr = (uint8_t)(((pCan->RFS) & 0x40000000) >> 30);
pmsg->len = (uint8_t)(((pCan->RFS) & 0x000F0000) >> 16);
/* Read CAN message identifier */
pmsg->id = pCan->RID;
/* Read the data if received message was DATA FRAME */
if (!pmsg->rtr)
{
/* Read first 4 data bytes */
data = pCan->RDA;
pmsg->data[0] = data & 0x000000FF;
pmsg->data[1] = (data & 0x0000FF00) >> 8;
pmsg->data[2] = (data & 0x00FF0000) >> 16;
pmsg->data[3] = (data & 0xFF000000) >> 24;
/* Read second 4 data bytes */
if(pmsg->len > 4)
{
data = pCan->RDB;
pmsg->data[4] = data & 0x000000FF;
pmsg->data[5] = (data & 0x0000FF00) >> 8;
pmsg->data[6] = (data & 0x00FF0000) >> 16;
pmsg->data[7] = (data & 0xFF000000) >> 24;
}
pmsg->hdr = 0;
/*release receive buffer*/
pCan->CMR = 0x04;
}
else
{
/* Received Frame is a Remote Frame, not have data, we just receive
* message information only */
pCan->CMR = 0x04; /*release receive buffer*/
return SUCCESS;
}
}
else
{
// no receive message available
return ERROR;
}
return RT_EOK;
}
static const struct rt_can_ops canops =
{
configure,
control,
sendmsg,
recvmsg,
};
#ifdef RT_USING_LPCCAN1
#ifdef RT_CAN_USING_LED
#endif
static struct lpccandata lpccandata1 =
{
CAN_ID_1,
};
static struct rt_can_device lpccan1;
#endif /*RT_USINGLPCCAN1*/
#ifdef RT_USING_LPCCAN2
#ifdef RT_CAN_USING_LED
#endif
static struct lpccandata lpccandata2 =
{
CAN_ID_2,
};
static struct rt_can_device lpccan2;
#endif /*RT_USINGLPCCAN2*/
/*----------------- INTERRUPT SERVICE ROUTINES --------------------------*/
/*********************************************************************//**
* @brief Event Router IRQ Handler
* @param[in] None
* @return None
**********************************************************************/
void CAN_IRQHandler(void)
{
rt_uint32_t IntStatus;
rt_interrupt_enter();
#ifdef RT_USING_LPCCAN1
IntStatus = CAN_IntGetStatus(CAN_1);
//check receive interrupt
if((IntStatus >> 0) & 0x01)
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_RX_IND | 0<<8);
}
//check Transmit Interrupt interrupt1
if((IntStatus >> 1) & 0x01)
{
rt_uint32_t state = 0;
state = CAN_GetCTRLStatus(CAN_1, CANCTRL_STS);
if(state & (0x01 << 3))
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_DONE | 0<<8);
}
else
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_FAIL | 0<<8);
}
}
//check Error Warning Interrupt
if((IntStatus >> 2) & 0x01)
{
rt_uint32_t errtype;
rt_uint32_t state;
errtype = (IntStatus >> 16);
if(errtype & 0x1F && lpccan1.status.lasterrtype == (errtype & 0x1F))
{
switch((errtype & 0x1F))
{
case 00011: // Start of Frame
case 00010: // ID28 ... ID21
case 00110: //ID20 ... ID18
case 00100: // SRTR Bit
case 00101: // IDE bit
case 00111: // ID17 ... 13
case 01111: // ID12 ... ID5
case 01110: // ID4 ... ID0
case 01100: // RTR Bit
case 01011: // Data Length Code
case 01010: // Data Field
lpccan1.status.formaterrcnt++;
break;
case 01101: // Reserved Bit 1
case 01001: // Reserved Bit 0
lpccan1.status.bitpaderrcnt++;
break;
case 01000: // CRC Sequence
case 11000: // CRC Delimiter
lpccan1.status.crcerrcnt++;
break;
case 11001: // Acknowledge Slot
case 11011: // Acknowledge Delimiter
lpccan1.status.ackerrcnt++;
break;
case 11010: // End of Frame
case 10010: // Intermission
lpccan1.status.formaterrcnt++;
break;
}
lpccan1.status.lasterrtype = errtype & 0x1F;
}
state = CAN_GetCTRLStatus(CAN_1, CANCTRL_GLOBAL_STS);
lpccan1.status.rcverrcnt = (state >> 16) & 0xFF;
lpccan1.status.snderrcnt = (state >> 24) & 0xFF;
lpccan1.status.errcode = (state >> 5) & 0x06;
}
//check Data Overrun Interrupt Interrupt
if((IntStatus >> 3) & 0x01)
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_RXOF_IND | 0<<8);
}
//check Transmit Interrupt interrupt2
if((IntStatus >> 9) & 0x01)
{
rt_uint32_t state = 0;
state = CAN_GetCTRLStatus(CAN_1, CANCTRL_STS);
if(state & (0x01 << 11))
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_DONE | 1<<8);
}
else
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_FAIL | 1<<8);
}
}
//check Transmit Interrupt interrupt3
if((IntStatus >> 10) & 0x01)
{
rt_uint32_t state = 0;
state = CAN_GetCTRLStatus(CAN_1, CANCTRL_STS);
if(state & (0x01 << 19))
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_DONE | 2<<8);
}
else
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_FAIL | 2<<8);
}
}
#endif /*RT_USING_LPCCAN1*/
#ifdef RT_USING_LPCCAN2
IntStatus = CAN_IntGetStatus(CAN_2);
//check receive interrupt
if((IntStatus >> 0) & 0x01)
{
rt_hw_can_isr(&lpccan2,RT_CAN_EVENT_RX_IND | 0<<8);
}
//check Transmit Interrupt interrupt1
if((IntStatus >> 1) & 0x01)
{
rt_uint32_t state = 0;
state = CAN_GetCTRLStatus(CAN_2, CANCTRL_STS);
if(state & (0x01 << 3))
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_DONE | 0<<8);
}
else
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_FAIL | 0<<8);
}
}
//check Error Warning Interrupt
if((IntStatus >> 2) & 0x01)
{
rt_uint32_t errtype;
errtype = (IntStatus >> 16);
if(errtype & 0x1F && lpccan2.status.lasterrtype == (errtype & 0x1F))
{
switch((errtype & 0x1F))
{
case 00011: // Start of Frame
case 00010: // ID28 ... ID21
case 00110: //ID20 ... ID18
case 00100: // SRTR Bit
case 00101: // IDE bit
case 00111: // ID17 ... 13
case 01111: // ID12 ... ID5
case 01110: // ID4 ... ID0
case 01100: // RTR Bit
case 01011: // Data Length Code
case 01010: // Data Field
lpccan2.status.formaterrcnt++;
break;
case 01101: // Reserved Bit 1
case 01001: // Reserved Bit 0
lpccan2.status.bitpaderrcnt++;
break;
case 01000: // CRC Sequence
case 11000: // CRC Delimiter
lpccan2.status.crcerrcnt++;
break;
case 11001: // Acknowledge Slot
case 11011: // Acknowledge Delimiter
lpccan2.status.ackerrcnt++;
break;
case 11010: // End of Frame
case 10010: // Intermission
lpccan2.status.formaterrcnt++;
break;
}
lpccan2.status.lasterrtype = errtype & 0x1F;
}
rt_uint32_t state = 0;
state = CAN_GetCTRLStatus(CAN_2, CANCTRL_GLOBAL_STS);
lpccan2.status.rcverrcnt = (state >> 16) & 0xFF;
lpccan2.status.snderrcnt = (state >> 24) & 0xFF;
lpccan2.status.errcode = (state >> 5) & 0x06;
}
//check Data Overrun Interrupt Interrupt
if((IntStatus >> 3) & 0x01)
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_RXOF_IND | 0<<8);
}
//check Transmit Interrupt interrupt2
if((IntStatus >> 9) & 0x01)
{
rt_uint32_t state = 0;
state = CAN_GetCTRLStatus(CAN_2, CANCTRL_STS);
if(state & (0x01 << 11))
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_DONE | 1<<8);
}
else
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_FAIL | 1<<8);
}
}
//check Transmit Interrupt interrupt3
if((IntStatus >> 10) & 0x01)
{
rt_uint32_t state = 0;
state = CAN_GetCTRLStatus(CAN_2, CANCTRL_STS);
if(state & (0x01 << 19))
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_DONE | 2<<8);
}
else
{
rt_hw_can_isr(&lpccan1,RT_CAN_EVENT_TX_FAIL | 2<<8);
}
}
#endif /*RT_USING_LPCCAN2*/
rt_interrupt_leave();
}
int lpc_can_init(void)
{
#ifdef RT_USING_LPCCAN1
lpccan1.config.baud_rate=CAN1MBaud;
lpccan1.config.msgboxsz=16;
lpccan1.config.sndboxnumber=3;
lpccan1.config.mode=RT_CAN_MODE_NORMAL;
lpccan1.config.privmode=0;
#ifdef RT_CAN_USING_LED
#endif
lpccan1.config.ticks = 50;
#ifdef RT_CAN_USING_HDR
#endif
//Enable CAN Interrupt
NVIC_EnableIRQ(CAN_IRQn);
rt_hw_can_register(&lpccan1, "lpccan1", &canops, &lpccandata1);
#endif /*RT_USING_LPCCAN1*/
#ifdef RT_USING_LPCCAN2
lpccan2.config.baud_rate=CAN1MBaud;
lpccan2.config.msgboxsz=16;
lpccan2.config.sndboxnumber=3;
lpccan2.config.mode=RT_CAN_MODE_NORMAL;
lpccan2.config.privmode=0;
#ifdef RT_CAN_USING_LED
#endif
lpccan2.config.ticks = 50;
#ifdef RT_CAN_USING_HDR
#endif
//Enable CAN Interrupt
NVIC_EnableIRQ(CAN_IRQn);
#ifdef RT_CAN_USING_HDR
#endif
rt_hw_can_register(&lpccan2, "lpccan2", &canops, &lpccandata2);
#endif /*RT_USING_LPCCAN2*/
return RT_EOK;
}
INIT_BOARD_EXPORT(lpc_can_init);
#endif /*RT_USING_CAN*/