rt-thread/bsp/nxp/imx/imx6ull-smart/drivers/drv_adc.c

245 lines
6.1 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-04-28 tyustli first version
*
*/
#include <rtthread.h>
#define RT_USING_ADC
#ifdef RT_USING_ADC
#define LOG_TAG "drv.adc"
#include <drv_log.h>
#include <rtdevice.h>
#include <ioremap.h>
#include "fsl_adc.h"
#include "drv_adc.h"
#include <drv_common.h>
#include <drivers/adc.h>
static rt_err_t imx6ull_adc_enabled(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled)
{
return RT_EOK;
}
static rt_err_t imx6ull_adc_convert(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value)
{
adc_channel_config_t adc_channel;
ADC_Type *base;
base = (ADC_Type *)(device->parent.user_data);
adc_channel.channelNumber = channel;
adc_channel.enableInterruptOnConversionCompleted = 0;
ADC_SetChannelConfig(base, 0, &adc_channel);
while (0U == ADC_GetChannelStatusFlags(base, 0))
{
continue;
}
*value = ADC_GetChannelConversionValue(base, 0);
return RT_EOK;
}
#if defined(BSP_USING_ADC1_1) || defined(BSP_USING_ADC1_2) || defined(BSP_USING_ADC1_3) || defined(BSP_USING_ADC1_4)
static struct rt_adc_ops imx6ull_adc_ops =
{
.enabled = imx6ull_adc_enabled,
.convert = imx6ull_adc_convert,
};
#endif
int imx6ull_adc_gpio_init(void)
{
#ifdef BSP_USING_ADC1_1
do {
struct imx6ull_iomuxc gpio;
uint32_t pin_fun_id[5]={IOMUXC_GPIO1_IO01_GPIO1_IO01};
gpio.muxRegister = pin_fun_id[0];
gpio.muxMode = pin_fun_id[1];
gpio.inputRegister = pin_fun_id[2];
gpio.inputDaisy = pin_fun_id[3];
gpio.configRegister = pin_fun_id[4];
gpio.inputOnfield = 0;
gpio.configValue = IOMUXC_SW_PAD_CTL_PAD_DSE(2U) | IOMUXC_SW_PAD_CTL_PAD_SPEED(2U);
imx6ull_gpio_init(&gpio);
}while(0);
#endif
#ifdef BSP_USING_ADC1_2
do {
struct imx6ull_iomuxc gpio;
uint32_t pin_fun_id[5]={IOMUXC_GPIO1_IO02_GPIO1_IO02};
gpio.muxRegister = pin_fun_id[0];
gpio.muxMode = pin_fun_id[1];
gpio.inputRegister = pin_fun_id[2];
gpio.inputDaisy = pin_fun_id[3];
gpio.configRegister = pin_fun_id[4];
gpio.inputOnfield = 0;
gpio.configValue = IOMUXC_SW_PAD_CTL_PAD_DSE(2U) | IOMUXC_SW_PAD_CTL_PAD_SPEED(2U);
imx6ull_gpio_init(&gpio);
}while(0);
#endif
#ifdef BSP_USING_ADC1_3
do {
struct imx6ull_iomuxc gpio;
uint32_t pin_fun_id[5]={IOMUXC_GPIO1_IO03_GPIO1_IO03};
gpio.muxRegister = pin_fun_id[0];
gpio.muxMode = pin_fun_id[1];
gpio.inputRegister = pin_fun_id[2];
gpio.inputDaisy = pin_fun_id[3];
gpio.configRegister = pin_fun_id[4];
gpio.inputOnfield = 0;
gpio.configValue = IOMUXC_SW_PAD_CTL_PAD_DSE(2U) | IOMUXC_SW_PAD_CTL_PAD_SPEED(2U);
imx6ull_gpio_init(&gpio);
}while(0);
#endif
#ifdef BSP_USING_ADC1_4
do {
struct imx6ull_iomuxc gpio;
uint32_t pin_fun_id[5]={IOMUXC_GPIO1_IO04_GPIO1_IO04};
gpio.muxRegister = pin_fun_id[0];
gpio.muxMode = pin_fun_id[1];
gpio.inputRegister = pin_fun_id[2];
gpio.inputDaisy = pin_fun_id[3];
gpio.configRegister = pin_fun_id[4];
gpio.inputOnfield = 0;
gpio.configValue = IOMUXC_SW_PAD_CTL_PAD_DSE(2U) | IOMUXC_SW_PAD_CTL_PAD_SPEED(2U);
imx6ull_gpio_init(&gpio);
}while(0);
#endif
return 0;
}
int rt_hw_adc_init(void)
{
rt_err_t ret = RT_EOK;
imx6ull_adc_gpio_init();
#if defined(BSP_USING_ADC1_1) || defined(BSP_USING_ADC1_2) || defined(BSP_USING_ADC1_3) || defined(BSP_USING_ADC1_4)
static adc_config_t ADC1_config_value;
static struct rt_adc_device adc1_device;
ADC_Type *adc1_base;
adc1_base = (ADC_Type *)rt_ioremap((void*)ADC1, 0x1000);
ADC_GetDefaultConfig(&ADC1_config_value);
ADC_Init(adc1_base, &ADC1_config_value);
ADC_DoAutoCalibration(adc1_base);
ret = rt_hw_adc_register(&adc1_device, "adc1", &imx6ull_adc_ops, adc1_base);
if (ret != RT_EOK)
{
LOG_E("register adc1 device failed error code = %d\n", ret);
}
#endif
return ret;
}
INIT_DEVICE_EXPORT(rt_hw_adc_init);
void set_adc_default(void *parameter)
{
int result = 0;
result = result;
#ifdef BSP_USING_ADC1_1
do {
struct rt_adc_device *device = RT_NULL;
device = (struct rt_adc_device *)rt_device_find("adc1");
if (!device)
{
result = -RT_EIO;
return;
}
result = rt_adc_enable(device, 1);
result = rt_adc_read(device, 1);
rt_kprintf("adc ch1 read result is %d\n",result);
} while(0);
#endif
#ifdef BSP_USING_ADC1_2
do {
struct rt_adc_device *device = RT_NULL;
device = (struct rt_adc_device *)rt_device_find("adc1");
if (!device)
{
result = -RT_EIO;
return;
}
result = rt_adc_enable(device, 2);
result = rt_adc_read(device, 2);
rt_kprintf("adc ch2 read result is %d\n",result);
} while(0);
#endif
#ifdef BSP_USING_ADC1_3
do {
struct rt_adc_device *device = RT_NULL;
device = (struct rt_adc_device *)rt_device_find("adc1");
if (!device)
{
result = -RT_EIO;
return;
}
result = rt_adc_enable(device, 3);
result = rt_adc_read(device, 3);
rt_kprintf("adc ch3 read result is %d\n",result);
} while(0);
#endif
#ifdef BSP_USING_ADC1_4
do {
struct rt_adc_device *device = RT_NULL;
device = (struct rt_adc_device *)rt_device_find("adc1");
if (!device)
{
result = -RT_EIO;
return;
}
result = rt_adc_enable(device, 4);
result = rt_adc_read(device, 4);
rt_kprintf("adc ch4 read result is %d\n",result);
} while(0);
#endif
}
static int set_adc_init(void)
{
rt_thread_t tid = rt_thread_create("adc_loop", set_adc_default, RT_NULL, 1024, 16, 20);
RT_ASSERT(tid != RT_NULL);
rt_thread_startup(tid);
return(RT_EOK);
}
INIT_APP_EXPORT(set_adc_init);
#endif /* BSP_USING_ADC */