rt-thread/bsp/stm32_radio/mp3/real/scalfact.c

392 lines
13 KiB
C

/* ***** BEGIN LICENSE BLOCK *****
* Version: RCSL 1.0/RPSL 1.0
*
* Portions Copyright (c) 1995-2002 RealNetworks, Inc. All Rights Reserved.
*
* The contents of this file, and the files included with this file, are
* subject to the current version of the RealNetworks Public Source License
* Version 1.0 (the "RPSL") available at
* http://www.helixcommunity.org/content/rpsl unless you have licensed
* the file under the RealNetworks Community Source License Version 1.0
* (the "RCSL") available at http://www.helixcommunity.org/content/rcsl,
* in which case the RCSL will apply. You may also obtain the license terms
* directly from RealNetworks. You may not use this file except in
* compliance with the RPSL or, if you have a valid RCSL with RealNetworks
* applicable to this file, the RCSL. Please see the applicable RPSL or
* RCSL for the rights, obligations and limitations governing use of the
* contents of the file.
*
* This file is part of the Helix DNA Technology. RealNetworks is the
* developer of the Original Code and owns the copyrights in the portions
* it created.
*
* This file, and the files included with this file, is distributed and made
* available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS ALL SUCH WARRANTIES,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
*
* Technology Compatibility Kit Test Suite(s) Location:
* http://www.helixcommunity.org/content/tck
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** */
/**************************************************************************************
* Fixed-point MP3 decoder
* Jon Recker (jrecker@real.com), Ken Cooke (kenc@real.com)
* June 2003
*
* scalfact.c - scalefactor unpacking functions
**************************************************************************************/
#include "coder.h"
/* scale factor lengths (num bits) */
static const char SFLenTab[16][2] = {
{0, 0}, {0, 1},
{0, 2}, {0, 3},
{3, 0}, {1, 1},
{1, 2}, {1, 3},
{2, 1}, {2, 2},
{2, 3}, {3, 1},
{3, 2}, {3, 3},
{4, 2}, {4, 3},
};
/**************************************************************************************
* Function: UnpackSFMPEG1
*
* Description: unpack MPEG 1 scalefactors from bitstream
*
* Inputs: BitStreamInfo, SideInfoSub, ScaleFactorInfoSub structs for this
* granule/channel
* vector of scfsi flags from side info, length = 4 (MAX_SCFBD)
* index of current granule
* ScaleFactorInfoSub from granule 0 (for granule 1, if scfsi[i] is set,
* then we just replicate the scale factors from granule 0 in the
* i'th set of scalefactor bands)
*
* Outputs: updated BitStreamInfo struct
* scalefactors in sfis (short and/or long arrays, as appropriate)
*
* Return: none
*
* Notes: set order of short blocks to s[band][window] instead of s[window][band]
* so that we index through consectutive memory locations when unpacking
* (make sure dequantizer follows same convention)
* Illegal Intensity Position = 7 (always) for MPEG1 scale factors
**************************************************************************************/
static void UnpackSFMPEG1(BitStreamInfo *bsi, SideInfoSub *sis, ScaleFactorInfoSub *sfis, int *scfsi, int gr, ScaleFactorInfoSub *sfisGr0)
{
int sfb;
int slen0, slen1;
/* these can be 0, so make sure GetBits(bsi, 0) returns 0 (no >> 32 or anything) */
slen0 = (int)SFLenTab[sis->sfCompress][0];
slen1 = (int)SFLenTab[sis->sfCompress][1];
if (sis->blockType == 2) {
/* short block, type 2 (implies winSwitchFlag == 1) */
if (sis->mixedBlock) {
/* do long block portion */
for (sfb = 0; sfb < 8; sfb++)
sfis->l[sfb] = (char)GetBits(bsi, slen0);
sfb = 3;
} else {
/* all short blocks */
sfb = 0;
}
for ( ; sfb < 6; sfb++) {
sfis->s[sfb][0] = (char)GetBits(bsi, slen0);
sfis->s[sfb][1] = (char)GetBits(bsi, slen0);
sfis->s[sfb][2] = (char)GetBits(bsi, slen0);
}
for ( ; sfb < 12; sfb++) {
sfis->s[sfb][0] = (char)GetBits(bsi, slen1);
sfis->s[sfb][1] = (char)GetBits(bsi, slen1);
sfis->s[sfb][2] = (char)GetBits(bsi, slen1);
}
/* last sf band not transmitted */
sfis->s[12][0] = sfis->s[12][1] = sfis->s[12][2] = 0;
} else {
/* long blocks, type 0, 1, or 3 */
if(gr == 0) {
/* first granule */
for (sfb = 0; sfb < 11; sfb++)
sfis->l[sfb] = (char)GetBits(bsi, slen0);
for (sfb = 11; sfb < 21; sfb++)
sfis->l[sfb] = (char)GetBits(bsi, slen1);
return;
} else {
/* second granule
* scfsi: 0 = different scalefactors for each granule, 1 = copy sf's from granule 0 into granule 1
* for block type == 2, scfsi is always 0
*/
sfb = 0;
if(scfsi[0]) for( ; sfb < 6 ; sfb++) sfis->l[sfb] = sfisGr0->l[sfb];
else for( ; sfb < 6 ; sfb++) sfis->l[sfb] = (char)GetBits(bsi, slen0);
if(scfsi[1]) for( ; sfb <11 ; sfb++) sfis->l[sfb] = sfisGr0->l[sfb];
else for( ; sfb <11 ; sfb++) sfis->l[sfb] = (char)GetBits(bsi, slen0);
if(scfsi[2]) for( ; sfb <16 ; sfb++) sfis->l[sfb] = sfisGr0->l[sfb];
else for( ; sfb <16 ; sfb++) sfis->l[sfb] = (char)GetBits(bsi, slen1);
if(scfsi[3]) for( ; sfb <21 ; sfb++) sfis->l[sfb] = sfisGr0->l[sfb];
else for( ; sfb <21 ; sfb++) sfis->l[sfb] = (char)GetBits(bsi, slen1);
}
/* last sf band not transmitted */
sfis->l[21] = 0;
sfis->l[22] = 0;
}
}
/* NRTab[size + 3*is_right][block type][partition]
* block type index: 0 = (bt0,bt1,bt3), 1 = bt2 non-mixed, 2 = bt2 mixed
* partition: scale factor groups (sfb1 through sfb4)
* for block type = 2 (mixed or non-mixed) / by 3 is rolled into this table
* (for 3 short blocks per long block)
* see 2.4.3.2 in MPEG 2 (low sample rate) spec
* stuff rolled into this table:
* NRTab[x][1][y] --> (NRTab[x][1][y]) / 3
* NRTab[x][2][>=1] --> (NRTab[x][2][>=1]) / 3 (first partition is long block)
*/
static const char NRTab[6][3][4] = {
/* non-intensity stereo */
{ {6, 5, 5, 5},
{3, 3, 3, 3}, /* includes / 3 */
{6, 3, 3, 3}, /* includes / 3 except for first entry */
},
{ {6, 5, 7, 3},
{3, 3, 4, 2},
{6, 3, 4, 2},
},
{ {11, 10, 0, 0},
{6, 6, 0, 0},
{6, 3, 6, 0}, /* spec = [15,18,0,0], but 15 = 6L + 9S, so move 9/3=3 into col 1, 18/3=6 into col 2 and adj. slen[1,2] below */
},
/* intensity stereo, right chan */
{ {7, 7, 7, 0},
{4, 4, 4, 0},
{6, 5, 4, 0},
},
{ {6, 6, 6, 3},
{4, 3, 3, 2},
{6, 4, 3, 2},
},
{ {8, 8, 5, 0},
{5, 4, 3, 0},
{6, 6, 3, 0},
}
};
/**************************************************************************************
* Function: UnpackSFMPEG2
*
* Description: unpack MPEG 2 scalefactors from bitstream
*
* Inputs: BitStreamInfo, SideInfoSub, ScaleFactorInfoSub structs for this
* granule/channel
* index of current granule and channel
* ScaleFactorInfoSub from this granule
* modeExt field from frame header, to tell whether intensity stereo is on
* ScaleFactorJS struct for storing IIP info used in Dequant()
*
* Outputs: updated BitStreamInfo struct
* scalefactors in sfis (short and/or long arrays, as appropriate)
* updated intensityScale and preFlag flags
*
* Return: none
*
* Notes: Illegal Intensity Position = (2^slen) - 1 for MPEG2 scale factors
*
* TODO: optimize the / and % stuff (only do one divide, get modulo x
* with (x / m) * m, etc.)
**************************************************************************************/
static void UnpackSFMPEG2(BitStreamInfo *bsi, SideInfoSub *sis, ScaleFactorInfoSub *sfis, int gr, int ch, int modeExt, ScaleFactorJS *sfjs)
{
int i, sfb, sfcIdx, btIdx, nrIdx, iipTest;
int slen[4], nr[4];
int sfCompress, preFlag, intensityScale;
sfCompress = sis->sfCompress;
preFlag = 0;
intensityScale = 0;
/* stereo mode bits (1 = on): bit 1 = mid-side on/off, bit 0 = intensity on/off */
if (! ((modeExt & 0x01) && (ch == 1)) ) {
/* in other words: if ((modeExt & 0x01) == 0 || ch == 0) */
if (sfCompress < 400) {
/* max slen = floor[(399/16) / 5] = 4 */
slen[0] = (sfCompress >> 4) / 5;
slen[1]= (sfCompress >> 4) % 5;
slen[2]= (sfCompress & 0x0f) >> 2;
slen[3]= (sfCompress & 0x03);
sfcIdx = 0;
} else if (sfCompress < 500) {
/* max slen = floor[(99/4) / 5] = 4 */
sfCompress -= 400;
slen[0] = (sfCompress >> 2) / 5;
slen[1]= (sfCompress >> 2) % 5;
slen[2]= (sfCompress & 0x03);
slen[3]= 0;
sfcIdx = 1;
} else {
/* max slen = floor[11/3] = 3 (sfCompress = 9 bits in MPEG2) */
sfCompress -= 500;
slen[0] = sfCompress / 3;
slen[1] = sfCompress % 3;
slen[2] = slen[3] = 0;
if (sis->mixedBlock) {
/* adjust for long/short mix logic (see comment above in NRTab[] definition) */
slen[2] = slen[1];
slen[1] = slen[0];
}
preFlag = 1;
sfcIdx = 2;
}
} else {
/* intensity stereo ch = 1 (right) */
intensityScale = sfCompress & 0x01;
sfCompress >>= 1;
if (sfCompress < 180) {
/* max slen = floor[35/6] = 5 (from mod 36) */
slen[0] = (sfCompress / 36);
slen[1] = (sfCompress % 36) / 6;
slen[2] = (sfCompress % 36) % 6;
slen[3] = 0;
sfcIdx = 3;
} else if (sfCompress < 244) {
/* max slen = floor[63/16] = 3 */
sfCompress -= 180;
slen[0] = (sfCompress & 0x3f) >> 4;
slen[1] = (sfCompress & 0x0f) >> 2;
slen[2] = (sfCompress & 0x03);
slen[3] = 0;
sfcIdx = 4;
} else {
/* max slen = floor[11/3] = 3 (max sfCompress >> 1 = 511/2 = 255) */
sfCompress -= 244;
slen[0] = (sfCompress / 3);
slen[1] = (sfCompress % 3);
slen[2] = slen[3] = 0;
sfcIdx = 5;
}
}
/* set index based on block type: (0,1,3) --> 0, (2 non-mixed) --> 1, (2 mixed) ---> 2 */
btIdx = 0;
if (sis->blockType == 2)
btIdx = (sis->mixedBlock ? 2 : 1);
for (i = 0; i < 4; i++)
nr[i] = (int)NRTab[sfcIdx][btIdx][i];
/* save intensity stereo scale factor info */
if( (modeExt & 0x01) && (ch == 1) ) {
for (i = 0; i < 4; i++) {
sfjs->slen[i] = slen[i];
sfjs->nr[i] = nr[i];
}
sfjs->intensityScale = intensityScale;
}
sis->preFlag = preFlag;
/* short blocks */
if(sis->blockType == 2) {
if(sis->mixedBlock) {
/* do long block portion */
iipTest = (1 << slen[0]) - 1;
for (sfb=0; sfb < 6; sfb++) {
sfis->l[sfb] = (char)GetBits(bsi, slen[0]);
}
sfb = 3; /* start sfb for short */
nrIdx = 1;
} else {
/* all short blocks, so start nr, sfb at 0 */
sfb = 0;
nrIdx = 0;
}
/* remaining short blocks, sfb just keeps incrementing */
for ( ; nrIdx <= 3; nrIdx++) {
iipTest = (1 << slen[nrIdx]) - 1;
for (i=0; i < nr[nrIdx]; i++, sfb++) {
sfis->s[sfb][0] = (char)GetBits(bsi, slen[nrIdx]);
sfis->s[sfb][1] = (char)GetBits(bsi, slen[nrIdx]);
sfis->s[sfb][2] = (char)GetBits(bsi, slen[nrIdx]);
}
}
/* last sf band not transmitted */
sfis->s[12][0] = sfis->s[12][1] = sfis->s[12][2] = 0;
} else {
/* long blocks */
sfb = 0;
for (nrIdx = 0; nrIdx <= 3; nrIdx++) {
iipTest = (1 << slen[nrIdx]) - 1;
for(i=0; i < nr[nrIdx]; i++, sfb++) {
sfis->l[sfb] = (char)GetBits(bsi, slen[nrIdx]);
}
}
/* last sf band not transmitted */
sfis->l[21] = sfis->l[22] = 0;
}
}
/**************************************************************************************
* Function: UnpackScaleFactors
*
* Description: parse the fields of the MP3 scale factor data section
*
* Inputs: MP3DecInfo structure filled by UnpackFrameHeader() and UnpackSideInfo()
* buffer pointing to the MP3 scale factor data
* pointer to bit offset (0-7) indicating starting bit in buf[0]
* number of bits available in data buffer
* index of current granule and channel
*
* Outputs: updated platform-specific ScaleFactorInfo struct
* updated bitOffset
*
* Return: length (in bytes) of scale factor data, -1 if null input pointers
**************************************************************************************/
int UnpackScaleFactors(MP3DecInfo *mp3DecInfo, unsigned char *buf, int *bitOffset, int bitsAvail, int gr, int ch)
{
int bitsUsed;
unsigned char *startBuf;
BitStreamInfo bitStreamInfo, *bsi;
FrameHeader *fh;
SideInfo *si;
ScaleFactorInfo *sfi;
/* validate pointers */
if (!mp3DecInfo || !mp3DecInfo->FrameHeaderPS || !mp3DecInfo->SideInfoPS || !mp3DecInfo->ScaleFactorInfoPS)
return -1;
fh = ((FrameHeader *)(mp3DecInfo->FrameHeaderPS));
si = ((SideInfo *)(mp3DecInfo->SideInfoPS));
sfi = ((ScaleFactorInfo *)(mp3DecInfo->ScaleFactorInfoPS));
/* init GetBits reader */
startBuf = buf;
bsi = &bitStreamInfo;
SetBitstreamPointer(bsi, (bitsAvail + *bitOffset + 7) / 8, buf);
if (*bitOffset)
GetBits(bsi, *bitOffset);
if (fh->ver == MPEG1)
UnpackSFMPEG1(bsi, &si->sis[gr][ch], &sfi->sfis[gr][ch], si->scfsi[ch], gr, &sfi->sfis[0][ch]);
else
UnpackSFMPEG2(bsi, &si->sis[gr][ch], &sfi->sfis[gr][ch], gr, ch, fh->modeExt, &sfi->sfjs);
mp3DecInfo->part23Length[gr][ch] = si->sis[gr][ch].part23Length;
bitsUsed = CalcBitsUsed(bsi, buf, *bitOffset);
buf += (bitsUsed + *bitOffset) >> 3;
*bitOffset = (bitsUsed + *bitOffset) & 0x07;
return (buf - startBuf);
}