ze9hyr 563d11f8cd 警告消除及代码格式化
修改文件头信息

修改ACM32F030 BSP的文件格式

新增BSP驱动中的lib文件

IAR和GCC支持备份

1. 修复不能包含HAL_EFLASH.h问题, 2. 消除GCC编译的几个警告

1. gcc启动文件重命名;2. 文件头信息修改; 3. 硬件timer支持修改

移动 .ignore_format.yml到bsp的目录下

修改目录成相对目录
2021-09-08 13:10:39 +08:00

633 lines
16 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-08-23 AisinoChip the first version
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#include "rtconfig.h"
#include "board.h"
#include "uart_config.h"
#ifdef RT_USING_SERIAL
#ifdef RT_SERIAL_USING_DMA
struct dma_config
{
DMA_Channel_TypeDef *Instance;
rt_uint32_t dma_rcc;
IRQn_Type dma_irq;
rt_uint32_t channel;
rt_uint32_t request;
};
#endif
#ifdef RT_SERIAL_USING_DMA
static void DMA_Configuration(struct rt_serial_device *serial, rt_uint32_t flag);
#endif /* RT_SERIAL_USING_DMA */
struct acm32_uart_config
{
const char *name;
UART_TypeDef *Instance;
IRQn_Type irq_type;
enum_Enable_ID_t enable_id;
#ifdef RT_SERIAL_USING_DMA
struct dma_config *dma_rx;
struct dma_config *dma_tx;
#endif
enum_GPIOx_t tx_port;
enum_GPIOx_t rx_port;
rt_uint32_t tx_pin;
rt_uint32_t rx_pin;
};
struct acm32_uart
{
UART_HandleTypeDef handle;
struct acm32_uart_config *config;
#ifdef RT_SERIAL_USING_DMA
struct
{
DMA_HandleTypeDef handle;
rt_size_t last_index;
} dma_rx;
struct
{
DMA_HandleTypeDef handle;
} dma_tx;
#endif
rt_uint16_t uart_dma_flag;
struct rt_serial_device serial;
};
static rt_err_t uart_rx_indicate_cb(rt_device_t dev, rt_size_t size)
{
return RT_EOK;
}
static rt_err_t _uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct acm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart = rt_container_of(serial, struct acm32_uart, serial);
uart->handle.Instance = uart->config->Instance;
uart->handle.Init.BaudRate = cfg->baud_rate;
if (cfg->data_bits == DATA_BITS_8)
{
uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
}
else /* not support */
{
return -RT_EINVAL;
}
if (cfg->stop_bits == STOP_BITS_1)
{
uart->handle.Init.StopBits = UART_STOPBITS_1;
}
else if (cfg->stop_bits == STOP_BITS_2)
{
uart->handle.Init.StopBits = UART_STOPBITS_2;
}
else /* not support */
{
return -RT_EINVAL;
}
if (cfg->parity == PARITY_NONE)
{
uart->handle.Init.Parity = UART_PARITY_NONE;
}
else if (cfg->parity == PARITY_ODD)
{
uart->handle.Init.Parity = UART_PARITY_ODD;
}
else if (cfg->parity == PARITY_EVEN)
{
uart->handle.Init.Parity = UART_PARITY_EVEN;
}
else /* not support */
{
return -RT_EINVAL;
}
uart->handle.Init.Mode = UART_MODE_TX_RX;
uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
HAL_UART_Init(&uart->handle);
uart->handle.Instance->LCRH &= ~UART_LCRH_FEN;
return RT_EOK;
}
static rt_err_t _uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct acm32_uart *uart;
#ifdef RT_SERIAL_USING_DMA
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
#endif
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct acm32_uart, serial);
switch (cmd)
{
/* disable interrupt */
case RT_DEVICE_CTRL_CLR_INT:
NVIC_DisableIRQ(uart->config->irq_type);
/* Disable RX interrupt */
uart->handle.Instance->IE &= ~UART_IE_RXI;
break;
/* enable interrupt */
case RT_DEVICE_CTRL_SET_INT:
NVIC_EnableIRQ(uart->config->irq_type);
/* Enable RX interrupt */
uart->handle.Instance->IE |= UART_IE_RXI;
break;
#ifdef RT_SERIAL_USING_DMA
/* UART config */
case RT_DEVICE_CTRL_CONFIG :
DMA_Configuration(serial, (rt_uint32_t)ctrl_arg);
rt_device_set_rx_indicate((rt_device_t)serial, uart_rx_indicate_cb);
break;
#endif /* RT_SERIAL_USING_DMA */
}
return RT_EOK;
}
static int _uart_putc(struct rt_serial_device *serial, char c)
{
struct acm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct acm32_uart, serial);
while (uart->handle.Instance->FR & UART_FR_TXFF); /* wait Tx FIFO not full */
uart->handle.Instance->DR = c;
while ((uart->handle.Instance->FR & UART_FR_BUSY)); /* wait TX Complete */
return 1;
}
static int _uart_getc(struct rt_serial_device *serial)
{
struct acm32_uart *uart;
int ch;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct acm32_uart, serial);
ch = -1;
if (!(uart->handle.Instance->FR & UART_FR_RXFE)) /* Rx FIFO not empty */
{
ch = uart->handle.Instance->DR & 0xff;
}
return ch;
}
#ifdef RT_SERIAL_USING_DMA
/**
* Serial port receive idle process. This need add to uart idle ISR.
*
* @param serial serial device
*/
static void dma_uart_rx_idle_isr(struct rt_serial_device *serial)
{
struct acm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct acm32_uart, serial);
rt_size_t recv_total_index, recv_len;
rt_base_t level;
/* disable interrupt */
level = rt_hw_interrupt_disable();
recv_total_index = uart->handle.lu32_RxSize - (uart->handle.HDMA_Rx->Instance->CTRL & 0xFFF);
recv_len = recv_total_index - uart->handle.lu32_RxCount;
uart->handle.lu32_RxCount = recv_total_index;
/* enable interrupt */
rt_hw_interrupt_enable(level);
if (recv_len)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
}
/*
DMA receive done process. This need add to DMA receive done ISR.
@param serial serial device
*/
static void dma_rx_done_isr(struct rt_serial_device *serial)
{
struct acm32_uart *uart;
struct rt_serial_rx_fifo *rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct acm32_uart, serial);
rt_size_t recv_len;
rt_base_t level;
/* disable interrupt */
level = rt_hw_interrupt_disable();
recv_len = serial->config.bufsz - (uart->handle.HDMA_Rx->Instance->CTRL & 0xFFF);
uart->dma_rx.last_index = 0;
DMA->INT_TC_CLR |= 1 << (uart->config->dma_rx->channel); /* clear channel0 TC flag */
/* enable interrupt */
rt_hw_interrupt_enable(level);
if (recv_len)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
HAL_UART_Receive_DMA(&(uart->handle), &rx_fifo->buffer[rx_fifo->put_index], serial->config.bufsz);
}
static rt_size_t _uart_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
{
struct acm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct acm32_uart, serial);
if (size == 0)
{
return 0;
}
if (RT_SERIAL_DMA_TX == direction)
{
if (HAL_UART_Transmit_DMA(&uart->handle, buf, size) == HAL_OK)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DMADONE);
return size;
}
else
{
return 0;
}
}
return 0;
}
#endif /* RT_SERIAL_USING_DMA */
static const struct rt_uart_ops acm32_uart_ops =
{
_uart_configure,
_uart_control,
_uart_putc,
_uart_getc,
#ifdef RT_SERIAL_USING_DMA
_uart_dma_transmit,
#endif
};
#ifdef RT_SERIAL_USING_DMA
static void DMA_Configuration(struct rt_serial_device *serial, rt_uint32_t flag)
{
struct rt_serial_rx_fifo *rx_fifo;
DMA_HandleTypeDef *DMA_Handle;
struct dma_config *dma_config;
struct acm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct acm32_uart, serial);
if (RT_DEVICE_FLAG_DMA_RX == flag)
{
DMA_Handle = &uart->dma_rx.handle;
dma_config = uart->config->dma_rx;
}
else if (RT_DEVICE_FLAG_DMA_TX == flag)
{
DMA_Handle = &uart->dma_tx.handle;
dma_config = uart->config->dma_tx;
}
else
{
return;
}
DMA_Handle->Instance = dma_config->Instance;
if (RT_DEVICE_FLAG_DMA_RX == flag)
{
DMA_Handle->Init.Data_Flow = DMA_DATA_FLOW_P2M;
DMA_Handle->Init.Mode = DMA_NORMAL;
DMA_Handle->Init.Source_Inc = DMA_SOURCE_ADDR_INCREASE_DISABLE;
DMA_Handle->Init.Desination_Inc = DMA_DST_ADDR_INCREASE_ENABLE;
}
else if (RT_DEVICE_FLAG_DMA_TX == flag)
{
DMA_Handle->Init.Data_Flow = DMA_DATA_FLOW_M2P;
DMA_Handle->Init.Mode = DMA_NORMAL;
DMA_Handle->Init.Source_Inc = DMA_SOURCE_ADDR_INCREASE_ENABLE;
DMA_Handle->Init.Desination_Inc = DMA_DST_ADDR_INCREASE_DISABLE;
}
DMA_Handle->Init.Request_ID = dma_config->request;
DMA_Handle->Init.Source_Width = DMA_SRC_WIDTH_BYTE;
DMA_Handle->Init.Desination_Width = DMA_DST_WIDTH_BYTE;
if (HAL_DMA_Init(DMA_Handle) != HAL_OK)
{
RT_ASSERT(0);
}
if (RT_DEVICE_FLAG_DMA_RX == flag)
{
__HAL_LINK_DMA(uart->handle, HDMA_Rx, uart->dma_rx.handle);
}
else if (RT_DEVICE_FLAG_DMA_TX == flag)
{
__HAL_LINK_DMA(uart->handle, HDMA_Tx, uart->dma_tx.handle);
}
/* enable interrupt */
if (flag == RT_DEVICE_FLAG_DMA_RX)
{
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
/* Start DMA transfer */
if (HAL_UART_Receive_DMA(&(uart->handle), rx_fifo->buffer, serial->config.bufsz) != HAL_OK)
{
/* Transfer error in reception process */
RT_ASSERT(0);
}
}
}
#endif /* RT_SERIAL_USING_DMA */
enum
{
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
UART3_INDEX,
#endif
UART_MAX_INDEX,
};
static struct acm32_uart_config uart_config[] =
{
#ifdef BSP_USING_UART1
UART1_CONFIG,
#endif
#ifdef BSP_USING_UART2
UART2_CONFIG,
#endif
#ifdef BSP_USING_UART3
UART3_CONFIG,
#endif
};
static struct acm32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
#ifdef RT_SERIAL_USING_DMA
static void uart_get_dma_config(void)
{
#if defined(BSP_USING_UART1)
#if defined(BSP_UART1_RX_USING_DMA)
static struct dma_config uart1_rx_dma_conf = UART1_DMA_RX_CONFIG;
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
uart_config[UART1_INDEX].dma_rx = &uart1_rx_dma_conf;
#endif /* BSP_UART1_RX_USING_DMA */
#if defined(BSP_UART1_TX_USING_DMA)
static struct dma_config uart1_tx_dma_conf = UART1_DMA_TX_CONFIG;
uart_obj[UART1_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
uart_config[UART1_INDEX].dma_tx = &uart1_tx_dma_conf;
#endif /* BSP_UART1_TX_USING_DMA */
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
#if defined(BSP_UART2_RX_USING_DMA)
static struct dma_config uart2_rx_dma_conf = UART2_DMA_RX_CONFIG;
uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
uart_config[UART2_INDEX].dma_rx = &uart2_rx_dma_conf;
#endif /* BSP_UART2_RX_USING_DMA */
#if defined(BSP_UART2_TX_USING_DMA)
static struct dma_config uart2_tx_dma_conf = UART2_DMA_TX_CONFIG;
uart_obj[UART2_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
uart_config[UART2_INDEX].dma_tx = &uart2_tx_dma_conf;
#endif /* BSP_UART2_TX_USING_DMA */
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
#if defined(BSP_UART3_RX_USING_DMA)
static struct dma_config uart3_rx_dma_conf = UART3_DMA_RX_CONFIG;
uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_RX;
uart_config[UART3_INDEX].dma_rx = &uart3_rx_dma_conf;
#endif /* BSP_UART3_RX_USING_DMA */
#if defined(BSP_UART3_TX_USING_DMA)
static struct dma_config uart3_tx_dma_conf = UART3_DMA_TX_CONFIG;
uart_obj[UART3_INDEX].uart_dma_flag |= RT_DEVICE_FLAG_DMA_TX;
uart_config[UART3_INDEX].dma_tx = &uart3_tx_dma_conf;
#endif /* BSP_UART3_TX_USING_DMA */
#endif /* BSP_USING_UART3 */
}
#endif
rt_err_t rt_hw_uart_init(void)
{
rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct acm32_uart);
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
rt_err_t rc = RT_EOK;
#ifdef RT_SERIAL_USING_DMA
uart_get_dma_config();
#endif
for (int i = 0; i < obj_num; i++)
{
uart_obj[i].config = &uart_config[i];
uart_obj[i].serial.ops = &acm32_uart_ops;
uart_obj[i].serial.config = config;
/* register UART device */
rc = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].config->name,
RT_DEVICE_FLAG_RDWR
| RT_DEVICE_FLAG_INT_RX
| RT_DEVICE_FLAG_INT_TX
| uart_obj[i].uart_dma_flag
, NULL);
RT_ASSERT(rc == RT_EOK);
}
return rc;
}
static void uart_isr(struct rt_serial_device *serial)
{
struct acm32_uart *uart = rt_container_of(serial, struct acm32_uart, serial);
RT_ASSERT(serial != RT_NULL);
/* receive interrupt enabled */
if (uart->handle.Instance->IE & UART_IE_RXI)
{
if (uart->handle.Instance->RIS & UART_RIS_RXI)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
}
#ifdef RT_SERIAL_USING_DMA
if (uart->handle.Instance->IE & UART_IE_RTI) /* Receive TimeOut Interrupt */
{
dma_uart_rx_idle_isr(serial);
/* Clear RTI Status */
uart->handle.Instance->ICR = UART_ICR_RTI;
}
#endif /* RT_SERIAL_USING_DMA */
if (uart->handle.Instance->IE & UART_IE_TXI && \
uart->handle.Instance->RIS & UART_RIS_TXI)
{
/* Clear TXI Status */
uart->handle.Instance->ICR = UART_ICR_TXI;
if (serial->parent.open_flag & RT_DEVICE_FLAG_INT_TX)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);
}
/* Disable TX interrupt */
uart->handle.Instance->IE &= ~UART_IE_TXI;
}
}
#if defined(BSP_USING_UART1)
void UART1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uart_obj[UART1_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
void UART2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uart_obj[UART2_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART3)
void UART3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&uart_obj[UART3_INDEX].serial);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART1 */
#ifdef RT_SERIAL_USING_DMA
void DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
for (int i = 0; i < UART_MAX_INDEX; i++)
{
if (DMA->RAW_INT_TC_STATUS & (1 << uart_obj[i].config->dma_rx->channel))
{
dma_rx_done_isr(&uart_obj[i].serial);
break;
}
if (DMA->RAW_INT_TC_STATUS & (1 << uart_obj[i].config->dma_tx->channel))
{
DMA->INT_TC_CLR |= 1 << (uart_obj[i].config->dma_tx->channel); /* clear channel0 TC flag */
break;
}
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* RT_SERIAL_USING_DMA */
void HAL_UART_MspInit(UART_HandleTypeDef *huart)
{
struct acm32_uart *uart;
GPIO_InitTypeDef GPIO_Uart;
RT_ASSERT(huart != RT_NULL);
/* get uart object */
uart = rt_container_of(huart, struct acm32_uart, handle);
/* Enable Clock */
System_Module_Enable(uart->config->enable_id);
/* Initialization GPIO */
GPIO_Uart.Pin = uart->config->tx_pin;
GPIO_Uart.Mode = GPIO_MODE_AF_PP;
GPIO_Uart.Pull = GPIO_PULLUP;
GPIO_Uart.Alternate = GPIO_FUNCTION_2;
HAL_GPIO_Init(uart->config->tx_port, &GPIO_Uart);
GPIO_Uart.Pin = uart->config->rx_pin;
GPIO_Uart.Mode = GPIO_MODE_AF_PP;
GPIO_Uart.Pull = GPIO_PULLUP;
GPIO_Uart.Alternate = GPIO_FUNCTION_2;
HAL_GPIO_Init(uart->config->rx_port, &GPIO_Uart);
/* NVIC Config */
NVIC_ClearPendingIRQ(uart->config->irq_type);
NVIC_SetPriority(uart->config->irq_type, 5);
NVIC_EnableIRQ(uart->config->irq_type);
}
#endif /* RT_USING_SEARIAL */