Shell 7450ef6c4d
[rt-smart] kernel virtual memory management layer (#6809)
synchronize virtual memory system works.
adding kernel virtual memory management layer for page-based MMU enabled architecture
porting libcpu MMU codes
porting lwp memory related codes
2023-01-08 21:08:55 -05:00

362 lines
8.3 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2013-07-20 Bernard first version
*/
#include <backtrace.h>
#include <board.h>
#include <rthw.h>
#include <rtthread.h>
#include "interrupt.h"
#include "mm_fault.h"
#ifdef RT_USING_FINSH
extern long list_thread(void);
#endif
#ifdef RT_USING_SMART
#include <lwp.h>
#include <lwp_arch.h>
#ifdef LWP_USING_CORE_DUMP
#include <lwp_core_dump.h>
#endif
void sys_exit(int value);
void check_user_fault(struct rt_hw_exp_stack *regs, uint32_t pc_adj, char *info)
{
uint32_t mode = regs->cpsr;
if ((mode & 0x1f) == 0x10)
{
rt_kprintf("%s! pc = 0x%08x\n", info, regs->pc - pc_adj);
#ifdef LWP_USING_CORE_DUMP
lwp_core_dump(regs, pc_adj);
#endif
sys_exit(-1);
}
}
int check_user_stack(struct rt_hw_exp_stack *regs)
{
void *dfar = RT_NULL;
asm volatile("MRC p15, 0, %0, c6, c0, 0" : "=r"(dfar));
if ((dfar >= (void *)USER_STACK_VSTART) && (dfar < (void *)USER_STACK_VEND))
{
struct rt_mm_fault_msg msg = {
.fault_op = MM_FAULT_OP_WRITE,
.fault_type = MM_FAULT_TYPE_PAGE_FAULT,
.vaddr = dfar,
};
if (rt_mm_fault_try_fix(&msg))
{
regs->pc -= 8;
return 1;
}
}
return 0;
}
#endif
/**
* this function will show registers of CPU
*
* @param regs the registers point
*/
void rt_hw_show_register(struct rt_hw_exp_stack *regs)
{
rt_kprintf("Execption:\n");
rt_kprintf("r00:0x%08x r01:0x%08x r02:0x%08x r03:0x%08x\n", regs->r0, regs->r1, regs->r2, regs->r3);
rt_kprintf("r04:0x%08x r05:0x%08x r06:0x%08x r07:0x%08x\n", regs->r4, regs->r5, regs->r6, regs->r7);
rt_kprintf("r08:0x%08x r09:0x%08x r10:0x%08x\n", regs->r8, regs->r9, regs->r10);
rt_kprintf("fp :0x%08x ip :0x%08x\n", regs->fp, regs->ip);
rt_kprintf("sp :0x%08x lr :0x%08x pc :0x%08x\n", regs->sp, regs->lr, regs->pc);
rt_kprintf("cpsr:0x%08x\n", regs->cpsr);
#ifdef RT_USING_SMART
{
uint32_t v;
asm volatile ("MRC p15, 0, %0, c5, c0, 0":"=r"(v));
rt_kprintf("dfsr:0x%08x\n", v);
asm volatile ("MRC p15, 0, %0, c2, c0, 0":"=r"(v));
rt_kprintf("ttbr0:0x%08x\n", v);
asm volatile ("MRC p15, 0, %0, c6, c0, 0":"=r"(v));
rt_kprintf("dfar:0x%08x\n", v);
rt_kprintf("0x%08x -> 0x%08x\n", v, rt_kmem_v2p((void *)v));
}
#endif
}
/**
* When comes across an instruction which it cannot handle,
* it takes the undefined instruction trap.
*
* @param regs system registers
*
* @note never invoke this function in application
*/
#ifdef RT_USING_FPU
void set_fpexc(rt_uint32_t val);
#endif
void rt_hw_trap_undef(struct rt_hw_exp_stack *regs)
{
#ifdef RT_USING_FPU
{
uint32_t ins;
uint32_t addr;
if (regs->cpsr & (1 << 5))
{
/* thumb mode */
addr = regs->pc - 2;
ins = (uint32_t)*(uint16_t *)addr;
if ((ins & (3 << 11)) != 0)
{
/* 32 bit ins */
ins <<= 16;
ins += *(uint16_t *)(addr + 2);
}
}
else
{
addr = regs->pc - 4;
ins = *(uint32_t *)addr;
}
if ((ins & 0xe00) == 0xa00)
{
/* float ins */
set_fpexc(1U << 30);
regs->pc = addr;
return;
}
}
#endif
#ifdef RT_USING_SMART
check_user_fault(regs, 4, "User undefined instruction");
#endif
rt_unwind(regs, 4);
rt_kprintf("undefined instruction:\n");
rt_hw_show_register(regs);
#ifdef RT_USING_FINSH
list_thread();
#endif
rt_hw_cpu_shutdown();
}
/**
* The software interrupt instruction (SWI) is used for entering
* Supervisor mode, usually to request a particular supervisor
* function.
*
* @param regs system registers
*
* @note never invoke this function in application
*/
void rt_hw_trap_swi(struct rt_hw_exp_stack *regs)
{
rt_kprintf("software interrupt:\n");
rt_hw_show_register(regs);
#ifdef RT_USING_FINSH
list_thread();
#endif
rt_hw_cpu_shutdown();
}
/**
* An abort indicates that the current memory access cannot be completed,
* which occurs during an instruction prefetch.
*
* @param regs system registers
*
* @note never invoke this function in application
*/
void rt_hw_trap_pabt(struct rt_hw_exp_stack *regs)
{
#ifdef RT_USING_SMART
if (dbg_check_event(regs, 4))
{
return;
}
check_user_fault(regs, 4, "User prefetch abort");
#endif
rt_unwind(regs, 4);
rt_kprintf("prefetch abort:\n");
rt_hw_show_register(regs);
#ifdef RT_USING_FINSH
list_thread();
#endif
rt_hw_cpu_shutdown();
}
/**
* An abort indicates that the current memory access cannot be completed,
* which occurs during a data access.
*
* @param regs system registers
*
* @note never invoke this function in application
*/
void rt_hw_trap_dabt(struct rt_hw_exp_stack *regs)
{
#ifdef RT_USING_SMART
if (dbg_check_event(regs, 8))
{
return;
}
if (check_user_stack(regs))
{
return;
}
check_user_fault(regs, 8, "User data abort");
#endif
rt_unwind(regs, 8);
rt_kprintf("data abort:");
rt_hw_show_register(regs);
#ifdef RT_USING_FINSH
list_thread();
#endif
rt_hw_cpu_shutdown();
}
/**
* Normally, system will never reach here
*
* @param regs system registers
*
* @note never invoke this function in application
*/
void rt_hw_trap_resv(struct rt_hw_exp_stack *regs)
{
rt_kprintf("reserved trap:\n");
rt_hw_show_register(regs);
#ifdef RT_USING_FINSH
list_thread();
#endif
rt_hw_cpu_shutdown();
}
void rt_hw_trap_irq(void)
{
#ifdef SOC_BCM283x
extern rt_uint8_t core_timer_flag;
void *param;
uint32_t irq;
rt_isr_handler_t isr_func;
extern struct rt_irq_desc isr_table[];
uint32_t value = 0;
value = IRQ_PEND_BASIC & 0x3ff;
if(core_timer_flag != 0)
{
uint32_t cpu_id = rt_hw_cpu_id();
uint32_t int_source = CORE_IRQSOURCE(cpu_id);
if (int_source & 0x0f)
{
if (int_source & 0x08)
{
isr_func = isr_table[IRQ_ARM_TIMER].handler;
#ifdef RT_USING_INTERRUPT_INFO
isr_table[IRQ_ARM_TIMER].counter++;
#endif
if (isr_func)
{
param = isr_table[IRQ_ARM_TIMER].param;
isr_func(IRQ_ARM_TIMER, param);
}
}
}
}
/* local interrupt*/
if (value)
{
if (value & (1 << 8))
{
value = IRQ_PEND1;
irq = __rt_ffs(value) - 1;
}
else if (value & (1 << 9))
{
value = IRQ_PEND2;
irq = __rt_ffs(value) + 31;
}
else
{
value &= 0x0f;
irq = __rt_ffs(value) + 63;
}
/* get interrupt service routine */
isr_func = isr_table[irq].handler;
#ifdef RT_USING_INTERRUPT_INFO
isr_table[irq].counter++;
#endif
if (isr_func)
{
/* Interrupt for myself. */
param = isr_table[irq].param;
/* turn to interrupt service routine */
isr_func(irq, param);
}
}
#else
void *param;
int ir, ir_real;
rt_isr_handler_t isr_func;
extern struct rt_irq_desc isr_table[];
ir = rt_hw_interrupt_get_irq();
ir_real = ir & 0x3ff;
if (ir == 1023)
{
/* Spurious interrupt */
return;
}
/* get interrupt service routine */
isr_func = isr_table[ir_real].handler;
#ifdef RT_USING_INTERRUPT_INFO
isr_table[ir_real].counter++;
#endif
if (isr_func)
{
/* Interrupt for myself. */
param = isr_table[ir_real].param;
/* turn to interrupt service routine */
isr_func(ir, param);
}
/* end of interrupt */
rt_hw_interrupt_ack(ir);
#endif
}
void rt_hw_trap_fiq(void)
{
void *param;
int ir;
rt_isr_handler_t isr_func;
extern struct rt_irq_desc isr_table[];
ir = rt_hw_interrupt_get_irq();
/* get interrupt service routine */
isr_func = isr_table[ir].handler;
param = isr_table[ir].param;
/* turn to interrupt service routine */
isr_func(ir, param);
/* end of interrupt */
rt_hw_interrupt_ack(ir);
}