rt-thread/bsp/n32g452xx/Libraries/rt_drivers/drv_spi.c

470 lines
11 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-03-06 BalanceTWK first version
* 2022-04-16 wolfJane fix spixfer, add time out check
*/
#include <board.h>
#include <rtthread.h>
#include <rtdevice.h>
#ifdef RT_USING_SPI
#ifdef BSP_USING_SPI
#if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
#include "drv_spi.h"
#define DRV_DEBUG
#define LOG_TAG "drv.spi"
#include <drv_log.h>
#define SPI_TIME_OUT (1000)
enum
{
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
#ifdef BSP_USING_SPI2
SPI2_INDEX,
#endif
#ifdef BSP_USING_SPI3
SPI3_INDEX,
#endif
#ifdef BSP_USING_SPI4
SPI4_INDEX,
#endif
#ifdef BSP_USING_SPI5
SPI5_INDEX,
#endif
#ifdef BSP_USING_SPI6
SPI6_INDEX,
#endif
};
struct n32_spi_config
{
SPI_Module *module;
char *bus_name;
};
/* n32 spi dirver class */
struct n32_spi
{
SPI_InitType SPI_InitStructure;
struct n32_spi_config *config;
struct rt_spi_configuration *cfg;
struct rt_spi_bus spi_bus;
};
static struct n32_spi_config spi_config[] =
{
#ifdef BSP_USING_SPI1
{
.module = SPI1,
.bus_name = "spi1",
},
#endif
#ifdef BSP_USING_SPI2
{
.module = SPI2,
.bus_name = "spi2",
},
#endif
#ifdef BSP_USING_SPI3
{
.module = SPI3,
.bus_name = "spi3",
},
#endif
};
static struct n32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
static rt_err_t n32_spi_init(struct n32_spi *spi_drv, struct rt_spi_configuration *cfg)
{
RT_ASSERT(spi_drv != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
SPI_InitType *SPI_InitStructure = &spi_drv->SPI_InitStructure;
SPI_Module *spi_handle = spi_drv->config->module;
/* GPIO configuration ------------------------------------------------------*/
n32_msp_spi_init(spi_drv->config->module);
if (cfg->mode & RT_SPI_SLAVE)
{
/* SPI_InitStructure->SpiMode = SPI_MODE_SLAVE; */
return RT_ERROR;
}
else
{
SPI_InitStructure->SpiMode = SPI_MODE_MASTER;
}
if (cfg->mode & RT_SPI_3WIRE)
{
SPI_InitStructure->DataDirection = SPI_DIR_SINGLELINE_TX;
}
else
{
SPI_InitStructure->DataDirection = SPI_DIR_DOUBLELINE_FULLDUPLEX;
}
if (cfg->data_width == 8)
{
SPI_InitStructure->DataLen = SPI_DATA_SIZE_8BITS;
}
else if (cfg->data_width == 16)
{
SPI_InitStructure->DataLen = SPI_DATA_SIZE_16BITS;
}
else
{
return -RT_EIO;
}
if (cfg->mode & RT_SPI_CPHA)
{
SPI_InitStructure->CLKPHA = SPI_CLKPHA_SECOND_EDGE;
}
else
{
SPI_InitStructure->CLKPHA = SPI_CLKPHA_FIRST_EDGE;
}
if (cfg->mode & RT_SPI_CPOL)
{
SPI_InitStructure->CLKPOL = SPI_CLKPOL_HIGH;
}
else
{
SPI_InitStructure->CLKPOL = SPI_CLKPOL_LOW;
}
if (cfg->mode & RT_SPI_NO_CS)
{
SPI_InitStructure->NSS = SPI_NSS_HARD;
}
else
{
SPI_InitStructure->NSS = SPI_NSS_SOFT;
}
RCC_ClocksType RCC_Clock;
RCC_GetClocksFreqValue(&RCC_Clock);
rt_uint64_t SPI_APB_CLOCK;
if (SPI1 == spi_handle)
{
SPI_APB_CLOCK = RCC_Clock.Pclk1Freq;
}
else if (SPI2 == spi_handle || SPI3 == spi_handle)
{
SPI_APB_CLOCK = RCC_Clock.Pclk2Freq;
}
if (cfg->max_hz >= SPI_APB_CLOCK / 2)
{
SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_2;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 4)
{
SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_4;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 8)
{
SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_8;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 16)
{
SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_16;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 32)
{
SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_32;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 64)
{
SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_64;
}
else if (cfg->max_hz >= SPI_APB_CLOCK / 128)
{
SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_128;
}
else
{
SPI_InitStructure->BaudRatePres = SPI_BR_PRESCALER_256;
}
if (cfg->mode & RT_SPI_MSB)
{
SPI_InitStructure->FirstBit = SPI_FB_MSB;
}
else
{
SPI_InitStructure->FirstBit = SPI_FB_LSB;
}
SPI_InitStructure->CRCPoly = 7;
SPI_Init(spi_handle, SPI_InitStructure);
/* Enable SPI_MASTER TXE interrupt */
SPI_I2S_EnableInt(spi_handle, SPI_I2S_INT_TE, ENABLE);
/* Enable SPI_MASTER */
SPI_Enable(spi_handle, ENABLE);
return RT_EOK;
}
static rt_err_t spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct n32_spi *spi_drv = rt_container_of(device->bus, struct n32_spi, spi_bus);
spi_drv->cfg = configuration;
return n32_spi_init(spi_drv, configuration);
}
static rt_ssize_t _spi_recv(SPI_Module *hspi,
uint8_t *tx_buff,
uint8_t *rx_buff,
uint32_t length,
uint32_t timeout)
{
/* Init tickstart for timeout management*/
uint32_t tickstart = rt_tick_get();
uint8_t dat = 0;
if ((tx_buff == RT_NULL) && (rx_buff == RT_NULL) || (length == 0))
{
return -RT_EIO;
}
while (length--)
{
while (SPI_I2S_GetStatus(hspi, SPI_I2S_TE_FLAG) == RESET)
{
if ((rt_tick_get() - tickstart) > timeout)
{
return RT_ETIMEOUT;
}
}
SPI_I2S_TransmitData(hspi, *tx_buff++);
while (SPI_I2S_GetStatus(hspi, SPI_I2S_RNE_FLAG) == RESET)
{
if ((rt_tick_get() - tickstart) > timeout)
{
return RT_ETIMEOUT;
}
}
dat = SPI_I2S_ReceiveData(hspi);
if (rx_buff)
{
*rx_buff++ = dat;
}
}
return RT_EOK;
}
static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
rt_size_t send_length;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
rt_ssize_t stat = RT_EOK;
/* Check Direction parameter */
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
RT_ASSERT(message != RT_NULL);
struct n32_spi *spi_drv = rt_container_of(device->bus, struct n32_spi, spi_bus);
struct n32_hw_spi_cs *cs = device->parent.user_data;
SPI_Module *spi_handle = spi_drv->config->module;
if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS))
{
if (device->config.mode & RT_SPI_CS_HIGH)
{
GPIO_SetBits(cs->module, cs->pin);
}
else
{
GPIO_ResetBits(cs->module, cs->pin);
}
}
send_length = message->length;
recv_buf = message->recv_buf;
send_buf = message->send_buf;
/* start once data exchange in DMA mode */
if (message->send_buf && message->recv_buf)
{
LOG_D("%s:%d", __FUNCTION__, __LINE__);
stat = -RT_EIO;
}
else if (message->send_buf)
{
stat = _spi_recv(spi_handle,
(uint8_t *)send_buf,
RT_NULL,
send_length,
SPI_TIME_OUT);
}
else
{
rt_memset(recv_buf, 0xff, send_length);
stat = _spi_recv(spi_handle,
(uint8_t *)recv_buf,
(uint8_t *)recv_buf,
send_length,
SPI_TIME_OUT);
}
if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS))
{
if (device->config.mode & RT_SPI_CS_HIGH)
{
GPIO_ResetBits(cs->module, cs->pin);
}
else
{
GPIO_SetBits(cs->module, cs->pin);
}
}
if (stat != RT_EOK)
{
send_length = 0;
}
return send_length;
}
static const struct rt_spi_ops n32_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer,
};
static int rt_hw_spi_bus_init(void)
{
rt_err_t result;
for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
{
spi_bus_obj[i].config = &spi_config[i];
spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &n32_spi_ops);
RT_ASSERT(result == RT_EOK);
LOG_D("%s bus init done", spi_config[i].bus_name);
}
return result;
}
int rt_hw_spi_init(void)
{
/* TODO: n32_get_dma_info(); */
return rt_hw_spi_bus_init();
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_Module *cs_gpiox, uint32_t cs_gpio_pin)
{
rt_err_t result;
struct rt_spi_device *spi_device;
struct n32_hw_spi_cs *cs_pin;
GPIO_InitType GPIO_InitStructure;
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
/* Enable the GPIO Clock */
if (cs_gpiox == GPIOA)
{
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE);
}
else if (cs_gpiox == GPIOB)
{
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOB, ENABLE);
}
else if (cs_gpiox == GPIOC)
{
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOC, ENABLE);
}
else if (cs_gpiox == GPIOD)
{
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOD, ENABLE);
}
else if (cs_gpiox == GPIOE)
{
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOE, ENABLE);
}
else if (cs_gpiox == GPIOF)
{
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOF, ENABLE);
}
else if (cs_gpiox == GPIOG)
{
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOG, ENABLE);
}
/* Configure the GPIO pin */
if (cs_gpio_pin <= GPIO_PIN_ALL)
{
GPIO_InitStructure.Pin = cs_gpio_pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitPeripheral(cs_gpiox, &GPIO_InitStructure);
}
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct n32_hw_spi_cs *)rt_malloc(sizeof(struct n32_hw_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->module = cs_gpiox;
cs_pin->pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
if (result != RT_EOK)
{
LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
#endif /* BSP_USING_SPIx */
#endif /* BSP_USING_SPI */
#endif /* RT_USING_SPI */