c424cb8186
1. Disk and blk device management. 2. Support partitions probe auto. 3. Support DFS and user mode fops, ioctl. 4. Add a cmd for blk info. Signed-off-by: GuEe-GUI <2991707448@qq.com>
739 lines
19 KiB
C
739 lines
19 KiB
C
/*
|
|
* Copyright (c) 2006-2023, RT-Thread Development Team
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Change Logs:
|
|
* Date Author Notes
|
|
* 2022-05-05 linzhenxing first version
|
|
* 2023-02-25 GuEe-GUI make blk interface
|
|
*/
|
|
|
|
#include "efi.h"
|
|
|
|
#define DBG_TAG "blk.part.efi"
|
|
#define DBG_LVL DBG_INFO
|
|
#include <rtdbg.h>
|
|
|
|
static rt_bool_t force_gpt = 0;
|
|
|
|
static int force_gpt_setup(void)
|
|
{
|
|
#ifdef RT_USING_OFW
|
|
force_gpt = !!rt_ofw_bootargs_select("gpt", 0);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
INIT_CORE_EXPORT(force_gpt_setup);
|
|
|
|
/**
|
|
* @brief This function is EFI version of crc32 function.
|
|
*
|
|
* @param buf the buffer to calculate crc32 of.
|
|
* @param len the length of buf.
|
|
* @return EFI-style CRC32 value for @buf.
|
|
*/
|
|
rt_inline rt_uint32_t efi_crc32(const rt_uint8_t *buf, rt_size_t len)
|
|
{
|
|
rt_ubase_t crc = 0xffffffffUL;
|
|
|
|
for (rt_size_t i = 0; i < len; ++i)
|
|
{
|
|
crc ^= buf[i];
|
|
|
|
for (int j = 0; j < 8; ++j)
|
|
{
|
|
crc = (crc >> 1) ^ ((crc & 1) ? 0xedb88320L : 0);
|
|
}
|
|
}
|
|
|
|
return ~crc;
|
|
}
|
|
|
|
/**
|
|
* @brief This function get number of last logical block of device.
|
|
*
|
|
* @param disk the blk of disk.
|
|
* @return last LBA value on success, 0 on error.
|
|
* This is stored (by sd and ide-geometry) in
|
|
* the part[0] entry for this disk, and is the number of
|
|
* physical sectors available on the disk.
|
|
*/
|
|
static rt_size_t last_lba(struct rt_blk_disk *disk)
|
|
{
|
|
return rt_blk_disk_get_capacity(disk) - 1ULL;
|
|
}
|
|
|
|
rt_inline int pmbr_part_valid(gpt_mbr_record *part)
|
|
{
|
|
if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */
|
|
if (rt_le32_to_cpu(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
return GPT_MBR_PROTECTIVE;
|
|
}
|
|
|
|
/**
|
|
* @brief This function test Protective MBR for validity.
|
|
*
|
|
* @param mbr the pointer to a legacy mbr structure.
|
|
* @param total_sectors the amount of sectors in the device
|
|
* @return
|
|
* 0 -> Invalid MBR
|
|
* 1 -> GPT_MBR_PROTECTIVE
|
|
* 2 -> GPT_MBR_HYBRID
|
|
*/
|
|
static int is_pmbr_valid(legacy_mbr *mbr, rt_size_t total_sectors)
|
|
{
|
|
rt_uint32_t sz = 0;
|
|
int part = 0, ret = 0; /* invalid by default */
|
|
|
|
if (!mbr || rt_le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
|
|
{
|
|
goto _done;
|
|
}
|
|
|
|
for (int i = 0; i < 4; ++i)
|
|
{
|
|
ret = pmbr_part_valid(&mbr->partition_record[i]);
|
|
|
|
if (ret == GPT_MBR_PROTECTIVE)
|
|
{
|
|
part = i;
|
|
/*
|
|
* Ok, we at least know that there's a protective MBR,
|
|
* now check if there are other partition types for
|
|
* hybrid MBR.
|
|
*/
|
|
goto _check_hybrid;
|
|
}
|
|
}
|
|
|
|
if (ret != GPT_MBR_PROTECTIVE)
|
|
{
|
|
goto _done;
|
|
}
|
|
|
|
_check_hybrid:
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
if (mbr->partition_record[i].os_type != EFI_PMBR_OSTYPE_EFI_GPT &&
|
|
mbr->partition_record[i].os_type != 0x00)
|
|
{
|
|
ret = GPT_MBR_HYBRID;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Protective MBRs take up the lesser of the whole disk
|
|
* or 2 TiB (32bit LBA), ignoring the rest of the disk.
|
|
* Some partitioning programs, nonetheless, choose to set
|
|
* the size to the maximum 32-bit limitation, disregarding
|
|
* the disk size.
|
|
*
|
|
* Hybrid MBRs do not necessarily comply with this.
|
|
*
|
|
* Consider a bad value here to be a warning to support dd'ing
|
|
* an image from a smaller disk to a larger disk.
|
|
*/
|
|
if (ret == GPT_MBR_PROTECTIVE)
|
|
{
|
|
sz = rt_le32_to_cpu(mbr->partition_record[part].size_in_lba);
|
|
|
|
if (sz != (rt_uint32_t)total_sectors - 1 && sz != 0xffffffff)
|
|
{
|
|
LOG_W("GPT: mbr size in lba (%u) different than whole disk (%u)",
|
|
sz, rt_min_t(rt_uint32_t, total_sectors - 1, 0xffffffff));
|
|
}
|
|
}
|
|
|
|
_done:
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief This function read bytes from disk, starting at given LBA.
|
|
*
|
|
* @param disk the blk of disk.
|
|
* @param lba the Logical Block Address of the partition table.
|
|
* @param buffer the destination buffer.
|
|
* @param count the bytes to read.
|
|
* @return number of bytes read on success, 0 on error.
|
|
*/
|
|
static rt_size_t read_lba(struct rt_blk_disk *disk,
|
|
rt_uint64_t lba, rt_uint8_t *buffer, rt_size_t count)
|
|
{
|
|
rt_size_t totalreadcount = 0;
|
|
|
|
if (!buffer || lba > last_lba(disk))
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
for (rt_uint64_t n = lba; count; ++n)
|
|
{
|
|
int copied = 512;
|
|
|
|
disk->ops->read(disk, n, buffer, 1);
|
|
|
|
if (copied > count)
|
|
{
|
|
copied = count;
|
|
}
|
|
|
|
buffer += copied;
|
|
totalreadcount += copied;
|
|
count -= copied;
|
|
}
|
|
|
|
return totalreadcount;
|
|
}
|
|
|
|
/**
|
|
* @brief This function reads partition entries from disk.
|
|
*
|
|
* @param disk the blk of disk.
|
|
* @param gpt the GPT header
|
|
* @return ptes on success, null on error.
|
|
*/
|
|
static gpt_entry *alloc_read_gpt_entries(struct rt_blk_disk *disk,
|
|
gpt_header *gpt)
|
|
{
|
|
rt_size_t count;
|
|
gpt_entry *pte;
|
|
rt_uint64_t entry_lba;
|
|
|
|
if (!gpt)
|
|
{
|
|
return RT_NULL;
|
|
}
|
|
|
|
count = (rt_size_t)rt_le32_to_cpu(gpt->num_partition_entries) *
|
|
rt_le32_to_cpu(gpt->sizeof_partition_entry);
|
|
|
|
if (!count)
|
|
{
|
|
return RT_NULL;
|
|
}
|
|
|
|
pte = rt_malloc(count);
|
|
|
|
if (!pte)
|
|
{
|
|
return RT_NULL;
|
|
}
|
|
|
|
entry_lba = rt_le64_to_cpu(gpt->partition_entry_lba);
|
|
|
|
if (read_lba(disk, entry_lba, (rt_uint8_t *)pte, count) < count)
|
|
{
|
|
rt_free(pte);
|
|
pte = RT_NULL;
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
/* Remember to free pte when done */
|
|
return pte;
|
|
}
|
|
|
|
/**
|
|
* @brief This function allocates GPT header, reads into it from disk.
|
|
*
|
|
* @param disk the blk of disk.
|
|
* @param lba the Logical Block Address of the partition table
|
|
* @return GPT header on success, null on error.
|
|
*/
|
|
static gpt_header *alloc_read_gpt_header(struct rt_blk_disk *disk, rt_uint64_t lba)
|
|
{
|
|
gpt_header *gpt;
|
|
rt_uint32_t ssz = rt_blk_disk_get_logical_block_size(disk);
|
|
|
|
gpt = rt_malloc(ssz);
|
|
|
|
if (!gpt)
|
|
{
|
|
return RT_NULL;
|
|
}
|
|
|
|
if (read_lba(disk, lba, (rt_uint8_t *)gpt, ssz) < ssz)
|
|
{
|
|
rt_free(gpt);
|
|
gpt = RT_NULL;
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
/* Remember to free gpt when finished with it */
|
|
return gpt;
|
|
}
|
|
|
|
/**
|
|
* @brief This function tests one GPT header and PTEs for validity.
|
|
*
|
|
* @param disk the blk of disk.
|
|
* @param lba the Logical Block Address of the GPT header to test.
|
|
* @param gpt the GPT header ptr, filled on return.
|
|
* @param ptes the PTEs ptr, filled on return.
|
|
* @returns true if valid, false on error.
|
|
* If valid, returns pointers to newly allocated GPT header and PTEs.
|
|
*/
|
|
static rt_bool_t is_gpt_valid(struct rt_blk_disk *disk,
|
|
rt_uint64_t lba, gpt_header **gpt, gpt_entry **ptes)
|
|
{
|
|
rt_uint32_t crc, origcrc;
|
|
rt_uint64_t lastlba, pt_size;
|
|
rt_ssize_t logical_block_size;
|
|
|
|
if (!ptes)
|
|
{
|
|
return RT_FALSE;
|
|
}
|
|
|
|
if (!(*gpt = alloc_read_gpt_header(disk, lba)))
|
|
{
|
|
return RT_FALSE;
|
|
}
|
|
|
|
/* Check the GUID Partition Table signature */
|
|
if (rt_le64_to_cpu((*gpt)->signature) != GPT_HEADER_SIGNATURE)
|
|
{
|
|
LOG_D("%s: GUID Partition Table Header signature is wrong: %lld != %lld",
|
|
to_disk_name(disk),
|
|
(rt_uint64_t)rt_le64_to_cpu((*gpt)->signature),
|
|
(rt_uint64_t)GPT_HEADER_SIGNATURE);
|
|
|
|
goto _fail;
|
|
}
|
|
|
|
/* Check the GUID Partition Table header size is too big */
|
|
logical_block_size = rt_blk_disk_get_logical_block_size(disk);
|
|
|
|
if (rt_le32_to_cpu((*gpt)->header_size) > logical_block_size)
|
|
{
|
|
LOG_D("%s: GUID Partition Table Header size is too large: %u > %u",
|
|
to_disk_name(disk),
|
|
rt_le32_to_cpu((*gpt)->header_size),
|
|
logical_block_size);
|
|
|
|
goto _fail;
|
|
}
|
|
|
|
/* Check the GUID Partition Table header size is too small */
|
|
if (rt_le32_to_cpu((*gpt)->header_size) < sizeof(gpt_header))
|
|
{
|
|
LOG_D("%s: GUID Partition Table Header size is too small: %u < %u",
|
|
to_disk_name(disk),
|
|
rt_le32_to_cpu((*gpt)->header_size),
|
|
sizeof(gpt_header));
|
|
|
|
goto _fail;
|
|
}
|
|
|
|
/* Check the GUID Partition Table CRC */
|
|
origcrc = rt_le32_to_cpu((*gpt)->header_crc32);
|
|
(*gpt)->header_crc32 = 0;
|
|
crc = efi_crc32((const rt_uint8_t *)(*gpt), rt_le32_to_cpu((*gpt)->header_size));
|
|
|
|
if (crc != origcrc)
|
|
{
|
|
LOG_D("%s: GUID Partition Table Header CRC is wrong: %x != %x",
|
|
to_disk_name(disk), crc, origcrc);
|
|
|
|
goto _fail;
|
|
}
|
|
|
|
(*gpt)->header_crc32 = rt_cpu_to_le32(origcrc);
|
|
|
|
/*
|
|
* Check that the start_lba entry points to the LBA that contains
|
|
* the GUID Partition Table
|
|
*/
|
|
if (rt_le64_to_cpu((*gpt)->start_lba) != lba)
|
|
{
|
|
LOG_D("%s: GPT start_lba incorrect: %lld != %lld",
|
|
to_disk_name(disk),
|
|
(rt_uint64_t)rt_le64_to_cpu((*gpt)->start_lba),
|
|
(rt_uint64_t)lba);
|
|
|
|
goto _fail;
|
|
}
|
|
|
|
/* Check the first_usable_lba and last_usable_lba are within the disk */
|
|
lastlba = last_lba(disk);
|
|
|
|
if (rt_le64_to_cpu((*gpt)->first_usable_lba) > lastlba)
|
|
{
|
|
LOG_D("%s: GPT: first_usable_lba incorrect: %lld > %lld",
|
|
to_disk_name(disk),
|
|
(rt_uint64_t)rt_le64_to_cpu((*gpt)->first_usable_lba),
|
|
(rt_uint64_t)lastlba);
|
|
|
|
goto _fail;
|
|
}
|
|
|
|
if (rt_le64_to_cpu((*gpt)->last_usable_lba) > lastlba)
|
|
{
|
|
LOG_D("%s: GPT: last_usable_lba incorrect: %lld > %lld",
|
|
to_disk_name(disk),
|
|
(rt_uint64_t)rt_le64_to_cpu((*gpt)->last_usable_lba),
|
|
(rt_uint64_t)lastlba);
|
|
|
|
goto _fail;
|
|
}
|
|
if (rt_le64_to_cpu((*gpt)->last_usable_lba) < rt_le64_to_cpu((*gpt)->first_usable_lba))
|
|
{
|
|
LOG_D("%s: GPT: last_usable_lba incorrect: %lld > %lld",
|
|
to_disk_name(disk),
|
|
(rt_uint64_t)rt_le64_to_cpu((*gpt)->last_usable_lba),
|
|
(rt_uint64_t)rt_le64_to_cpu((*gpt)->first_usable_lba));
|
|
|
|
goto _fail;
|
|
}
|
|
|
|
/* Check that sizeof_partition_entry has the correct value */
|
|
if (rt_le32_to_cpu((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry))
|
|
{
|
|
LOG_D("%s: GUID Partition Entry Size check failed", to_disk_name(disk));
|
|
|
|
goto _fail;
|
|
}
|
|
|
|
/* Sanity check partition table size */
|
|
pt_size = (rt_uint64_t)rt_le32_to_cpu((*gpt)->num_partition_entries) *
|
|
rt_le32_to_cpu((*gpt)->sizeof_partition_entry);
|
|
|
|
if (!(*ptes = alloc_read_gpt_entries(disk, *gpt)))
|
|
{
|
|
goto _fail;
|
|
}
|
|
|
|
/* Check the GUID Partition Entry Array CRC */
|
|
crc = efi_crc32((const rt_uint8_t *)(*ptes), pt_size);
|
|
|
|
if (crc != rt_le32_to_cpu((*gpt)->partition_entry_array_crc32))
|
|
{
|
|
LOG_D("%s: GUID Partition Entry Array CRC check failed", to_disk_name(disk));
|
|
|
|
goto _fail_ptes;
|
|
}
|
|
|
|
/* We're done, all's well */
|
|
return RT_TRUE;
|
|
|
|
_fail_ptes:
|
|
rt_free(*ptes);
|
|
*ptes = RT_NULL;
|
|
|
|
_fail:
|
|
rt_free(*gpt);
|
|
*gpt = RT_NULL;
|
|
|
|
return RT_FALSE;
|
|
}
|
|
|
|
/**
|
|
* @brief This function tests one PTE for validity.
|
|
*
|
|
* @param pte the pte to check.
|
|
* @param lastlba the last lba of the disk.
|
|
* @return valid boolean of pte.
|
|
*/
|
|
rt_inline rt_bool_t is_pte_valid(const gpt_entry *pte, const rt_size_t lastlba)
|
|
{
|
|
if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) ||
|
|
rt_le64_to_cpu(pte->starting_lba) > lastlba ||
|
|
rt_le64_to_cpu(pte->ending_lba) > lastlba)
|
|
{
|
|
return RT_FALSE;
|
|
}
|
|
|
|
return RT_TRUE;
|
|
}
|
|
|
|
/**
|
|
* @brief This function search disk for valid GPT headers and PTEs.
|
|
*
|
|
* @param disk the blk of disk.
|
|
* @param pgpt the primary GPT header.
|
|
* @param agpt the alternate GPT header.
|
|
* @param lastlba the last LBA number.
|
|
*/
|
|
static void compare_gpts(struct rt_blk_disk *disk,
|
|
gpt_header *pgpt, gpt_header *agpt, rt_uint64_t lastlba)
|
|
{
|
|
int error_found = 0;
|
|
|
|
if (!pgpt || !agpt)
|
|
{
|
|
return;
|
|
}
|
|
|
|
if (rt_le64_to_cpu(pgpt->start_lba) != rt_le64_to_cpu(agpt->alternate_lba))
|
|
{
|
|
LOG_W("%s: GPT:Primary header LBA(%lld) != Alt(%lld), header alternate_lba",
|
|
to_disk_name(disk),
|
|
(rt_uint64_t)rt_le64_to_cpu(pgpt->start_lba),
|
|
(rt_uint64_t)rt_le64_to_cpu(agpt->alternate_lba));
|
|
|
|
++error_found;
|
|
}
|
|
|
|
if (rt_le64_to_cpu(pgpt->alternate_lba) != rt_le64_to_cpu(agpt->start_lba))
|
|
{
|
|
LOG_W("%s: GPT:Primary header alternate_lba(%lld) != Alt(%lld), header start_lba",
|
|
to_disk_name(disk),
|
|
(rt_uint64_t)rt_le64_to_cpu(pgpt->alternate_lba),
|
|
(rt_uint64_t)rt_le64_to_cpu(agpt->start_lba));
|
|
|
|
++error_found;
|
|
}
|
|
|
|
if (rt_le64_to_cpu(pgpt->first_usable_lba) != rt_le64_to_cpu(agpt->first_usable_lba))
|
|
{
|
|
LOG_W("%s: GPT:first_usable_lbas don't match %lld != %lld",
|
|
to_disk_name(disk),
|
|
(rt_uint64_t)rt_le64_to_cpu(pgpt->first_usable_lba),
|
|
(rt_uint64_t)rt_le64_to_cpu(agpt->first_usable_lba));
|
|
|
|
++error_found;
|
|
}
|
|
|
|
if (rt_le64_to_cpu(pgpt->last_usable_lba) != rt_le64_to_cpu(agpt->last_usable_lba))
|
|
{
|
|
LOG_W("%s: GPT:last_usable_lbas don't match %lld != %lld",
|
|
to_disk_name(disk),
|
|
(rt_uint64_t)rt_le64_to_cpu(pgpt->last_usable_lba),
|
|
(rt_uint64_t)rt_le64_to_cpu(agpt->last_usable_lba));
|
|
|
|
++error_found;
|
|
}
|
|
|
|
if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid))
|
|
{
|
|
LOG_W("%s: GPT:disk_guids don't match", to_disk_name(disk));
|
|
|
|
++error_found;
|
|
}
|
|
|
|
if (rt_le32_to_cpu(pgpt->num_partition_entries) !=
|
|
rt_le32_to_cpu(agpt->num_partition_entries))
|
|
{
|
|
LOG_W("%s: GPT:num_partition_entries don't match: 0x%x != 0x%x",
|
|
to_disk_name(disk),
|
|
rt_le32_to_cpu(pgpt->num_partition_entries),
|
|
rt_le32_to_cpu(agpt->num_partition_entries));
|
|
|
|
++error_found;
|
|
}
|
|
|
|
if (rt_le32_to_cpu(pgpt->sizeof_partition_entry) !=
|
|
rt_le32_to_cpu(agpt->sizeof_partition_entry))
|
|
{
|
|
LOG_W("%s: GPT:sizeof_partition_entry values don't match: 0x%x != 0x%x",
|
|
to_disk_name(disk),
|
|
rt_le32_to_cpu(pgpt->sizeof_partition_entry),
|
|
rt_le32_to_cpu(agpt->sizeof_partition_entry));
|
|
|
|
++error_found;
|
|
}
|
|
|
|
if (rt_le32_to_cpu(pgpt->partition_entry_array_crc32) !=
|
|
rt_le32_to_cpu(agpt->partition_entry_array_crc32))
|
|
{
|
|
LOG_W("%s: GPT:partition_entry_array_crc32 values don't match: 0x%x != 0x%x",
|
|
to_disk_name(disk),
|
|
rt_le32_to_cpu(pgpt->partition_entry_array_crc32),
|
|
rt_le32_to_cpu(agpt->partition_entry_array_crc32));
|
|
|
|
++error_found;
|
|
}
|
|
|
|
if (rt_le64_to_cpu(pgpt->alternate_lba) != lastlba)
|
|
{
|
|
LOG_W("%s: GPT:Primary header thinks Alt. header is not at the end of the disk: %lld != %lld",
|
|
to_disk_name(disk),
|
|
(rt_uint64_t)rt_le64_to_cpu(pgpt->alternate_lba),
|
|
(rt_uint64_t)lastlba);
|
|
|
|
++error_found;
|
|
}
|
|
|
|
if (rt_le64_to_cpu(agpt->start_lba) != lastlba)
|
|
{
|
|
LOG_W("%s: GPT:Alternate GPT header not at the end of the disk: %lld != %lld",
|
|
to_disk_name(disk),
|
|
(rt_uint64_t)rt_le64_to_cpu(agpt->start_lba),
|
|
(rt_uint64_t)lastlba);
|
|
|
|
++error_found;
|
|
}
|
|
|
|
if (error_found)
|
|
{
|
|
LOG_W("GPT: Use GNU Parted to correct GPT errors");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function search disk for valid GPT headers and PTEs.
|
|
*
|
|
* @param disk the disk parsed partitions.
|
|
* @param gpt the GPT header ptr, filled on return.
|
|
* @param ptes the PTEs ptr, filled on return.
|
|
* @return 1 if valid, 0 on error.
|
|
* If valid, returns pointers to newly allocated GPT header and PTEs.
|
|
* Validity depends on PMBR being valid (or being overridden by the
|
|
* 'gpt' kernel command line option) and finding either the Primary
|
|
* GPT header and PTEs valid, or the Alternate GPT header and PTEs
|
|
* valid. If the Primary GPT header is not valid, the Alternate GPT header
|
|
* is not checked unless the 'gpt' kernel command line option is passed.
|
|
* This protects against devices which misreport their size, and forces
|
|
* the user to decide to use the Alternate GPT.
|
|
*/
|
|
static rt_bool_t find_valid_gpt(struct rt_blk_disk *disk,
|
|
gpt_header **gpt, gpt_entry **ptes)
|
|
{
|
|
int good_pgpt = 0, good_agpt = 0, good_pmbr = 0;
|
|
gpt_header *pgpt = RT_NULL, *agpt = RT_NULL;
|
|
gpt_entry *pptes = RT_NULL, *aptes = RT_NULL;
|
|
legacy_mbr *legacymbr;
|
|
rt_size_t total_sectors = rt_blk_disk_get_capacity(disk);
|
|
rt_size_t lastlba;
|
|
|
|
if (!ptes)
|
|
{
|
|
return RT_FALSE;
|
|
}
|
|
|
|
lastlba = last_lba(disk);
|
|
|
|
if (!force_gpt)
|
|
{
|
|
/* This will be added to the EFI Spec. per Intel after v1.02. */
|
|
legacymbr = rt_malloc(sizeof(*legacymbr));
|
|
|
|
if (!legacymbr)
|
|
{
|
|
return RT_FALSE;
|
|
}
|
|
|
|
read_lba(disk, 0, (rt_uint8_t *)legacymbr, sizeof(*legacymbr));
|
|
good_pmbr = is_pmbr_valid(legacymbr, total_sectors);
|
|
rt_free(legacymbr);
|
|
|
|
if (!good_pmbr)
|
|
{
|
|
return RT_FALSE;
|
|
}
|
|
|
|
LOG_D("%s: Device has a %s MBR", to_disk_name(disk),
|
|
good_pmbr == GPT_MBR_PROTECTIVE ? "protective" : "hybrid");
|
|
}
|
|
|
|
good_pgpt = is_gpt_valid(disk, GPT_PRIMARY_PARTITION_TABLE_LBA, &pgpt, &pptes);
|
|
|
|
if (good_pgpt)
|
|
{
|
|
good_agpt = is_gpt_valid(disk, rt_le64_to_cpu(pgpt->alternate_lba), &agpt, &aptes);
|
|
}
|
|
|
|
if (!good_agpt && force_gpt)
|
|
{
|
|
good_agpt = is_gpt_valid(disk, lastlba, &agpt, &aptes);
|
|
}
|
|
|
|
/* The obviously unsuccessful case */
|
|
if (!good_pgpt && !good_agpt)
|
|
{
|
|
goto _fail;
|
|
}
|
|
|
|
compare_gpts(disk, pgpt, agpt, lastlba);
|
|
|
|
/* The good cases */
|
|
if (good_pgpt)
|
|
{
|
|
*gpt = pgpt;
|
|
*ptes = pptes;
|
|
rt_free(agpt);
|
|
rt_free(aptes);
|
|
|
|
if (!good_agpt)
|
|
{
|
|
LOG_D("%s: Alternate GPT is invalid, using primary GPT", to_disk_name(disk));
|
|
}
|
|
|
|
return RT_TRUE;
|
|
}
|
|
else if (good_agpt)
|
|
{
|
|
*gpt = agpt;
|
|
*ptes = aptes;
|
|
rt_free(pgpt);
|
|
rt_free(pptes);
|
|
|
|
LOG_D("%s: Primary GPT is invalid, using alternate GPT", to_disk_name(disk));
|
|
|
|
return RT_TRUE;
|
|
}
|
|
|
|
_fail:
|
|
rt_free(pgpt);
|
|
rt_free(agpt);
|
|
rt_free(pptes);
|
|
rt_free(aptes);
|
|
|
|
*gpt = RT_NULL;
|
|
*ptes = RT_NULL;
|
|
|
|
return RT_FALSE;
|
|
}
|
|
|
|
rt_err_t efi_partition(struct rt_blk_disk *disk)
|
|
{
|
|
rt_uint32_t entries_nr;
|
|
gpt_header *gpt = RT_NULL;
|
|
gpt_entry *ptes = RT_NULL;
|
|
|
|
if (!find_valid_gpt(disk, &gpt, &ptes) || !gpt || !ptes)
|
|
{
|
|
rt_free(gpt);
|
|
rt_free(ptes);
|
|
|
|
return -RT_EINVAL;
|
|
}
|
|
|
|
entries_nr = rt_le32_to_cpu(gpt->num_partition_entries);
|
|
|
|
for (int i = 0; i < entries_nr && i < disk->max_partitions; ++i)
|
|
{
|
|
rt_uint64_t start = rt_le64_to_cpu(ptes[i].starting_lba);
|
|
rt_uint64_t size = rt_le64_to_cpu(ptes[i].ending_lba) -
|
|
rt_le64_to_cpu(ptes[i].starting_lba) + 1ULL;
|
|
|
|
if (!is_pte_valid(&ptes[i], last_lba(disk)))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
if (blk_put_partition(disk, "gpt", start, size, i) == -RT_ENOMEM)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
rt_free(gpt);
|
|
rt_free(ptes);
|
|
|
|
return RT_EOK;
|
|
}
|