rt-thread/bsp/hc32/libraries/hc32_drivers/drv_can.c

1340 lines
41 KiB
C

/*
* Copyright (C) 2022-2024, Xiaohua Semiconductor Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-04-28 CDT first version
* 2022-06-07 xiaoxiaolisunny add hc32f460 series
* 2022-06-08 CDT fix a bug of RT_CAN_CMD_SET_FILTER
* 2022-06-15 lianghongquan fix bug, FILTER_COUNT, RT_CAN_CMD_SET_FILTER, interrupt setup and processing.
*/
#include "drv_can.h"
#include <drv_config.h>
#include <board_config.h>
#if defined(BSP_USING_CAN)
#define LOG_TAG "drv_can"
#if defined(BSP_USING_CAN1) || defined(BSP_USING_CAN2)
#if defined(RT_CAN_USING_CANFD) && defined(HC32F460)
#error "Selected mcu does not support canfd!"
#endif
#define TSEG1_MIN_FOR_CAN2_0 (2U)
#define TSEG1_MAX_FOR_CAN2_0 (65U)
#define TSEG1_MIN_FOR_CANFD_ARBITRATION (2U)
#define TSEG1_MAX_FOR_CANFD_ARBITRATION (65U)
#define TSEG1_MIN_FOR_CANFD_DATA (2U)
#define TSEG1_MAX_FOR_CANFD_DATA (17U)
#define TSEG2_MIN_FOR_CAN2_0 (1U)
#define TSEG2_MAX_FOR_CAN2_0 (8U)
#define TSEG2_MIN_FOR_CANFD_ARBITRATION (1U)
#define TSEG2_MAX_FOR_CANFD_ARBITRATION (32U)
#define TSEG2_MIN_FOR_CANFD_DATA (1U)
#define TSEG2_MAX_FOR_CANFD_DATA (8U)
#define TSJW_MIN_FOR_CAN2_0 (1U)
#define TSJW_MAX_FOR_CAN2_0 (16U)
#define TSJW_MIN_FOR_CANFD_ARBITRATION (1U)
#define TSJW_MAX_FOR_CANFD_ARBITRATION (16U)
#define TSJW_MIN_FOR_CANFD_DATA (1U)
#define TSJW_MAX_FOR_CANFD_DATA (8U)
#define NUM_TQ_MIN_FOR_CAN2_0 (8U)
#define NUM_TQ_MAX_FOR_CAN2_0 (TSEG1_MAX_FOR_CAN2_0 + TSEG2_MAX_FOR_CAN2_0)
#define NUM_TQ_MIN_FOR_CANFD_ARBITRATION (8U)
#define NUM_TQ_MAX_FOR_CANFD_ARBITRATION (TSEG1_MAX_FOR_CANFD_ARBITRATION + TSEG2_MAX_FOR_CANFD_ARBITRATION)
#define NUM_TQ_MIN_FOR_CANFD_DATA (8U)
#define NUM_TQ_MAX_FOR_CANFD_DATA (TSEG1_MAX_FOR_CANFD_DATA + TSEG2_MAX_FOR_CANFD_DATA)
#define NUM_PRESCALE_MAX (256U)
#define MIN_TQ_MUL_PRESCALE (4U)
#define CAN_BIT_TIMING_CAN2_0 (1U << 0)
#define CAN_BIT_TIMING_CANFD_ARBITRATION (1U << 1)
#define CAN_BIT_TIMING_CANFD_DATA (1U << 2)
#if defined(HC32F4A0)
#define FILTER_COUNT (16U)
#define CAN1_INT_SRC (INT_SRC_CAN1_HOST)
#define CAN2_INT_SRC (INT_SRC_CAN2_HOST)
#endif
#if defined (HC32F460)
#define FILTER_COUNT (8U)
#define CAN1_INT_SRC (INT_SRC_CAN_INT)
#endif
#define IS_VALID_PRIV_MODE(mode) ((mode == RT_CAN_MODE_PRIV) || (mode == RT_CAN_MODE_NOPRIV))
#define IS_VALID_WORK_MODE(mode) (mode <= RT_CAN_MODE_LOOPBACKANLISTEN)
#define IS_VALID_BAUD_RATE_CAN2_0(baud) (baud == (CAN10kBaud) \
|| baud == (CAN20kBaud) \
|| baud == (CAN50kBaud) \
|| baud == (CAN125kBaud) \
|| baud == (CAN250kBaud) \
|| baud == (CAN500kBaud) \
|| baud == (CAN1MBaud) \
)
#define IS_VALID_BAUD_RATE_CANFD_ARBITRATION(baud) IS_VALID_BAUD_RATE_CAN2_0(baud)
#define IS_VALID_BAUD_RATE_CANFD_DATA(baud) (baud == (CANFD_DATA_BAUD_1M) \
|| baud == (CANFD_DATA_BAUD_2M) \
|| baud == (CANFD_DATA_BAUD_4M) \
|| baud == (CANFD_DATA_BAUD_5M) \
|| baud == (CANFD_DATA_BAUD_8M) \
)
enum
{
#ifdef BSP_USING_CAN1
CAN1_INDEX,
#endif
#ifdef BSP_USING_CAN2
CAN2_INDEX,
#endif
CAN_INDEX_MAX,
};
struct can_baud_rate_tab
{
rt_uint32_t baud_rate;
stc_can_bit_time_config_t ll_sbt;
};
struct canfd_baud_rate_tab
{
rt_uint32_t clk_src;
rt_uint8_t phase;
rt_uint32_t baud;
stc_can_bit_time_config_t ll_bt;
};
typedef struct
{
uint8_t tq_min;
uint8_t tq_max;
uint8_t seg1_min;
uint8_t seg1_max;
uint8_t seg2_min;
uint8_t seg2_max;
uint8_t sjw_min;
uint8_t sjw_max;
uint8_t min_diff_seg1_minus_seg2;
} can_bit_timing_table_t;
#ifndef RT_CAN_USING_CANFD
static const struct can_baud_rate_tab _g_baudrate_tab[] =
{
{CAN1MBaud, CAN_BIT_TIME_CONFIG_1M_BAUD},
{CAN800kBaud, CAN_BIT_TIME_CONFIG_800K_BAUD},
{CAN500kBaud, CAN_BIT_TIME_CONFIG_500K_BAUD},
{CAN250kBaud, CAN_BIT_TIME_CONFIG_250K_BAUD},
{CAN125kBaud, CAN_BIT_TIME_CONFIG_125K_BAUD},
{CAN100kBaud, CAN_BIT_TIME_CONFIG_100K_BAUD},
{CAN50kBaud, CAN_BIT_TIME_CONFIG_50K_BAUD},
{CAN20kBaud, CAN_BIT_TIME_CONFIG_20K_BAUD},
{CAN10kBaud, CAN_BIT_TIME_CONFIG_10K_BAUD},
};
#endif
typedef struct
{
struct rt_can_device rt_can;
struct can_dev_init_params init;
CM_CAN_TypeDef *instance;
stc_can_init_t ll_init;
} can_device;
#ifdef RT_CAN_USING_CANFD
static const can_bit_timing_table_t _g_can_bit_timing_tbl[3] =
{
{
.tq_min = NUM_TQ_MIN_FOR_CAN2_0,
.tq_max = NUM_TQ_MAX_FOR_CAN2_0,
.seg1_min = TSEG1_MIN_FOR_CAN2_0,
.seg1_max = TSEG1_MAX_FOR_CAN2_0,
.seg2_min = TSEG2_MIN_FOR_CAN2_0,
.seg2_max = TSEG2_MAX_FOR_CAN2_0,
.sjw_min = TSJW_MIN_FOR_CAN2_0,
.sjw_max = TSJW_MAX_FOR_CAN2_0,
.min_diff_seg1_minus_seg2 = 2,
},
{
.tq_min = NUM_TQ_MIN_FOR_CANFD_ARBITRATION,
.tq_max = NUM_TQ_MAX_FOR_CANFD_ARBITRATION,
.seg1_min = TSEG1_MIN_FOR_CANFD_ARBITRATION,
.seg1_max = TSEG1_MAX_FOR_CANFD_ARBITRATION,
.seg2_min = TSEG2_MIN_FOR_CANFD_ARBITRATION,
.seg2_max = TSEG2_MAX_FOR_CANFD_ARBITRATION,
.sjw_min = TSJW_MIN_FOR_CANFD_ARBITRATION,
.sjw_max = TSJW_MAX_FOR_CANFD_ARBITRATION,
.min_diff_seg1_minus_seg2 = 2,
},
{
.tq_min = NUM_TQ_MIN_FOR_CANFD_DATA,
.tq_max = NUM_TQ_MAX_FOR_CANFD_DATA,
.seg1_min = TSEG1_MIN_FOR_CANFD_DATA,
.seg1_max = TSEG1_MAX_FOR_CANFD_DATA,
.seg2_min = TSEG2_MIN_FOR_CANFD_DATA,
.seg2_max = TSEG2_MAX_FOR_CANFD_DATA,
.sjw_min = TSJW_MIN_FOR_CANFD_DATA,
.sjw_max = TSJW_MAX_FOR_CANFD_DATA,
.min_diff_seg1_minus_seg2 = 1,
}
};
static const struct canfd_baud_rate_tab _g_baudrate_fd[] =
{
{CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_250K, 1U, 64U, 16U, 16U},
{CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_500K, 1U, 32U, 8U, 8U},
{CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_1M, 1U, 16U, 4U, 4U},
{CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_2M, 1U, 8U, 2U, 2U},
{CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_4M, 1U, 4U, 1U, 1U},
{CAN_CLOCK_SRC_20M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_5M, 1U, 3U, 1U, 1U},
{CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_250K, 2U, 64U, 16U, 16U},
{CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_500K, 1U, 64U, 16U, 16U},
{CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_DATA_BAUD_1M, 1U, 32U, 8U, 8U},
{CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_2M, 1U, 16U, 4U, 4U},
{CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_4M, 1U, 8U, 2U, 2U},
{CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_5M, 1U, 6U, 2U, 2U},
{CAN_CLOCK_SRC_40M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_8M, 1U, 4U, 1U, 1U},
{CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_250K, 4U, 64U, 16U},
{CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_ARBITRATION_BAUD_500K, 2U, 64U, 16U},
{CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_ARBITRATION, CANFD_DATA_BAUD_1M, 2U, 32U, 8U, 8U},
{CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_2M, 2U, 16U, 4U, 4U},
{CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_4M, 1U, 16U, 4U, 4U},
{CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_5M, 1U, 12U, 4U, 4U},
{CAN_CLOCK_SRC_80M, CAN_BIT_TIMING_CANFD_ARBITRATION | CAN_BIT_TIMING_CANFD_DATA, CANFD_DATA_BAUD_8M, 1U, 8U, 2U, 2U},
};
#endif
static can_device _g_can_dev_array[] =
{
#if defined(HC32F4A0)
#ifdef BSP_USING_CAN1
{
{0},
CAN1_INIT_PARAMS,
.instance = CM_CAN1,
},
#endif
#ifdef BSP_USING_CAN2
{
{0},
CAN2_INIT_PARAMS,
.instance = CM_CAN2,
},
#endif
#endif
#if defined (HC32F460)
#ifdef BSP_USING_CAN1
{
{0},
CAN1_INIT_PARAMS,
.instance = CM_CAN,
},
#endif
#endif
};
static void _init_ll_struct_filter(can_device *p_can_dev);
#ifndef RT_CAN_USING_CANFD
static rt_uint32_t _get_can_baud_index(rt_uint32_t baud)
{
rt_uint32_t len, index;
len = sizeof(_g_baudrate_tab) / sizeof(_g_baudrate_tab[0]);
for (index = 0; index < len; index++)
{
if (_g_baudrate_tab[index].baud_rate == baud)
return index;
}
return 0; /* default baud is CAN1MBaud */
}
#endif
static rt_uint32_t _get_can_work_mode(rt_uint32_t mode)
{
rt_uint32_t work_mode;
switch (mode)
{
case RT_CAN_MODE_NORMAL:
work_mode = CAN_WORK_MD_NORMAL;
break;
case RT_CAN_MODE_LISTEN:
work_mode = CAN_WORK_MD_SILENT;
break;
case RT_CAN_MODE_LOOPBACK:
work_mode = CAN_WORK_MD_ELB;
break;
case RT_CAN_MODE_LOOPBACKANLISTEN:
work_mode = CAN_WORK_MD_ELB_SILENT;
break;
default:
work_mode = CAN_WORK_MD_NORMAL;
break;
}
return work_mode;
}
static uint32_t _get_filter_idx(struct rt_can_filter_config *p_filter_in)
{
uint32_t filter_selected = 0;
for (int i = 0; i < p_filter_in->count; i++)
{
if (p_filter_in->items[i].hdr_bank != -1)
{
filter_selected |= 1 << p_filter_in->items[i].hdr_bank;
}
}
for (int i = 0; i < p_filter_in->count; i++)
{
if (p_filter_in->items[i].hdr_bank == -1)
{
for (int j = 0; j < FILTER_COUNT; j++)
{
if ((filter_selected & 1 << j) == 0)
{
p_filter_in->items[i].hdr_bank = j;
filter_selected |= 1 << p_filter_in->items[i].hdr_bank;
break;
}
}
}
}
return filter_selected;
}
static uint8_t _get_can_data_bytes_len(uint32_t dlc)
{
uint8_t data_bytes = 0;
dlc &= 0xFU;
if (dlc <= 8U)
{
data_bytes = dlc;
}
else
{
switch (dlc)
{
case CAN_DLC12:
data_bytes = 12U;
break;
case CAN_DLC16:
data_bytes = 16U;
break;
case CAN_DLC20:
data_bytes = 20U;
break;
case CAN_DLC24:
data_bytes = 24U;
break;
case CAN_DLC32:
data_bytes = 32U;
break;
case CAN_DLC48:
data_bytes = 48U;
break;
case CAN_DLC64:
data_bytes = 64U;
break;
default:
/* Code should never touch here */
break;
}
}
return data_bytes;
}
static rt_bool_t _check_filter_params(struct rt_can_filter_config *p_filter_in)
{
RT_ASSERT(p_filter_in != NULL);
RT_ASSERT(p_filter_in->count <= FILTER_COUNT);
for (int i = 0; i < p_filter_in->count; i++)
{
if (p_filter_in->items[i].hdr_bank != -1 && p_filter_in->items[i].hdr_bank >= FILTER_COUNT)
{
RT_ASSERT(p_filter_in->items[i].hdr_bank < FILTER_COUNT);
return RT_FALSE;
}
if (p_filter_in->items[i].mode == 1)
{
RT_ASSERT(p_filter_in->items[i].mode == 0);
return RT_FALSE;
}
if (p_filter_in->items[i].rtr == 1)
{
RT_ASSERT(p_filter_in->items[i].rtr == 0);
return RT_FALSE;
}
}
return RT_TRUE;
}
#ifdef RT_CAN_USING_CANFD
static uint32_t _get_can_clk_src(CM_CAN_TypeDef *CANx)
{
uint32_t can_clk = 0;
switch ((rt_uint32_t)CANx)
{
#ifdef BSP_USING_CAN1
case (rt_uint32_t)CM_CAN1:
can_clk = CAN1_CLOCK_SEL;
break;
#endif
#ifdef BSP_USING_CAN2
case (rt_uint32_t)CM_CAN2:
can_clk = CAN2_CLOCK_SEL;
break;
#endif
default:
break;
}
return can_clk;
}
static rt_bool_t _get_can_bit_timing_default(uint32_t can_clk, rt_uint32_t baud, rt_uint32_t option,
stc_can_bit_time_config_t *p_stc_bit_cfg)
{
rt_uint32_t len, index;
rt_bool_t found = RT_FALSE;
len = sizeof(_g_baudrate_fd) / sizeof(_g_baudrate_fd[0]);
for (index = 0; index < len; index++)
{
if ((_g_baudrate_fd[index].clk_src == can_clk) && \
((_g_baudrate_fd[index].phase & option) == option) \
)
{
if (_g_baudrate_fd[index].baud == baud)
{
found = RT_TRUE;
break;
}
}
}
if (found)
{
rt_memcpy(p_stc_bit_cfg, &_g_baudrate_fd[index].ll_bt, sizeof(stc_can_bit_time_config_t));
}
return found;
}
static inline void _get_can_bit_timing(stc_can_bit_time_config_t *p_ll_time, struct rt_can_bit_timing *p_cfg_time)
{
p_ll_time->u32Prescaler = p_cfg_time->prescaler;
p_ll_time->u32TimeSeg1 = p_cfg_time->num_seg1;
p_ll_time->u32TimeSeg2 = p_cfg_time->num_seg2;
p_ll_time->u32SJW = p_cfg_time->num_sjw;
}
static inline void _get_can_bit_timing_fd(stc_canfd_config_t *p_ll_time, struct rt_can_bit_timing *p_cfg_time)
{
p_ll_time->stcBitCfg.u32Prescaler = p_cfg_time->prescaler;
p_ll_time->stcBitCfg.u32TimeSeg1 = p_cfg_time->num_seg1;
p_ll_time->stcBitCfg.u32TimeSeg2 = p_cfg_time->num_seg2;
p_ll_time->stcBitCfg.u32SJW = p_cfg_time->num_sjw;
p_ll_time->u8SSPOffset = p_cfg_time->num_sspoff;
if (p_cfg_time->num_sspoff)
{
p_ll_time->u8TDC = CAN_FD_TDC_ENABLE;
}
}
static rt_err_t _get_can_closest_prescaler(uint32_t num_tq_mul_prescaler, uint32_t start_prescaler,
uint32_t max_tq, uint32_t min_tq)
{
rt_bool_t has_found = RT_FALSE;
uint32_t prescaler = start_prescaler;
while (!has_found)
{
if ((num_tq_mul_prescaler / prescaler > max_tq) || (num_tq_mul_prescaler % prescaler != 0))
{
++prescaler;
continue;
}
else
{
has_found = RT_TRUE;
break;
}
}
uint32_t tq = num_tq_mul_prescaler / prescaler;
if (tq * prescaler == num_tq_mul_prescaler)
{
has_found = RT_TRUE;
}
else if (tq < min_tq)
{
has_found = RT_FALSE;
}
return has_found ? prescaler : 0U;
}
static rt_err_t _calc_can_bit_timing(CM_CAN_TypeDef *CANx, int option, uint32_t baudrate,
stc_can_bit_time_config_t *p_stc_bit_cfg)
{
rt_err_t status = -RT_ERROR;
uint32_t can_clk = _get_can_clk_src(CANx);
if (_get_can_bit_timing_default(can_clk, baudrate, option, p_stc_bit_cfg) == RT_TRUE)
{
status = RT_EOK;
return status;
}
do
{
uint8_t idx = 0;
for (int i = 0; i < 3; i++)
{
if (option & (1 << i))
{
idx = (uint8_t)i;
break;
}
}
if ((idx >= 3) || (baudrate == 0U) ||
(can_clk / baudrate < MIN_TQ_MUL_PRESCALE) || (p_stc_bit_cfg == NULL))
{
break;
}
const can_bit_timing_table_t *tbl = &_g_can_bit_timing_tbl[idx];
if (can_clk / baudrate < tbl->tq_min)
{
break;
}
uint32_t num_tq_mul_prescaler = can_clk / baudrate;
uint32_t start_prescaler = 1U;
uint32_t num_seg1, num_seg2;
rt_bool_t has_found = RT_FALSE;
/* Find out the minimum prescaler */
uint32_t current_prescaler;
while (!has_found)
{
current_prescaler = _get_can_closest_prescaler(num_tq_mul_prescaler, start_prescaler,
tbl->tq_max,
tbl->tq_min);
if ((current_prescaler < start_prescaler) || (current_prescaler > NUM_PRESCALE_MAX))
{
break;
}
uint32_t num_tq = num_tq_mul_prescaler / current_prescaler;
num_seg2 = (num_tq - tbl->min_diff_seg1_minus_seg2) / 2U;
num_seg1 = num_tq - num_seg2;
while (num_seg2 > tbl->seg2_max)
{
num_seg2--;
num_seg1++;
}
/* Recommended sample point is 75% - 80% */
while ((num_seg1 * 1000U) / num_tq < CAN_SAMPLEPOINT_MIN)
{
++num_seg1;
--num_seg2;
}
if ((num_seg1 * 1000U) / num_tq > CAN_SAMPLEPOINT_MAX)
{
break;
}
if ((num_seg2 >= tbl->seg2_min) && (num_seg1 <= tbl->seg1_max))
{
has_found = RT_TRUE;
}
else
{
start_prescaler = current_prescaler + 1U;
}
}
if (has_found)
{
uint32_t num_sjw = LL_MIN(tbl->sjw_max, num_seg2);
p_stc_bit_cfg->u32TimeSeg1 = num_seg1;
p_stc_bit_cfg->u32TimeSeg2 = num_seg2;
p_stc_bit_cfg->u32SJW = num_sjw;
p_stc_bit_cfg->u32Prescaler = current_prescaler;
status = RT_EOK;
}
}
while (RT_FALSE);
return status;
}
#else
static rt_err_t _config_can20_baud(can_device *p_can_dev, void *arg)
{
rt_uint32_t argval = (rt_uint32_t)arg;
rt_uint32_t baud_index;
rt_err_t rt_ret = RT_EOK;
RT_ASSERT(IS_VALID_BAUD_RATE_CAN2_0(argval));
if (argval == p_can_dev->rt_can.config.baud_rate)
{
return rt_ret;
}
baud_index = _get_can_baud_index(argval);
p_can_dev->ll_init.stcBitCfg = _g_baudrate_tab[baud_index].ll_sbt;
/* init can */
CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
p_can_dev->rt_can.config.baud_rate = argval;
return rt_ret;
}
#endif
static rt_err_t _config_can_filter(can_device *p_can_dev, void *arg)
{
struct rt_can_filter_config *p_filter_in = (struct rt_can_filter_config *)arg;
if (_check_filter_params(p_filter_in) == RT_FALSE)
{
return -RT_EINVAL;
}
_init_ll_struct_filter(p_can_dev);
uint32_t filter_select = _get_filter_idx(p_filter_in);
p_can_dev->ll_init.u16FilterSelect = filter_select;
for (int i = 0; i < p_filter_in->count; i++)
{
p_can_dev->ll_init.pstcFilter[i].u32ID = p_filter_in->items[i].id & 0x1FFFFFFF;
/* rt-thread CAN mask, 1 mean filer, 0 mean ignore. *
* HDSC HC32 CAN mask, 0 mean filer, 1 mean ignore. */
p_can_dev->ll_init.pstcFilter[i].u32IDMask = (~p_filter_in->items[i].mask) & 0x1FFFFFFF;
switch (p_filter_in->items[i].ide)
{
case (RT_CAN_STDID):
p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_STD;
break;
case (RT_CAN_EXTID):
p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_EXT;
break;
default:
p_can_dev->ll_init.pstcFilter[i].u32IDType = CAN_ID_STD_EXT;
break;
}
}
(void)CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
return RT_EOK;
}
static rt_err_t _config_can_work_mode(can_device *p_can_dev, void *arg)
{
rt_err_t rt_ret = RT_EOK;
rt_uint32_t argval = (rt_uint32_t) arg;
if (argval == p_can_dev->rt_can.config.mode)
{
return rt_ret;
}
RT_ASSERT(IS_VALID_WORK_MODE(argval));
p_can_dev->ll_init.u8WorkMode = _get_can_work_mode(argval);
CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
p_can_dev->rt_can.config.mode = argval;
return rt_ret;
}
static rt_err_t _config_can_priv_mode(can_device *p_can_dev, void *arg)
{
rt_err_t rt_ret = RT_EOK;
rt_uint32_t argval = (rt_uint32_t) arg;
RT_ASSERT(IS_VALID_PRIV_MODE(argval));
p_can_dev->rt_can.config.privmode = argval;
return rt_ret;
}
static void _config_can_int(can_device *p_can_dev, int cmd, void *arg)
{
en_functional_state_t stat = ENABLE;
rt_uint32_t flag = (rt_uint32_t)arg;
if (cmd == RT_DEVICE_CTRL_CLR_INT)
{
if (flag == RT_DEVICE_CAN_INT_ERR)
{
RT_ASSERT(p_can_dev->init.single_trans_mode == RT_FALSE);
}
stat = DISABLE;
}
switch (flag)
{
case RT_DEVICE_FLAG_INT_RX:
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX, stat);
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_WARN, stat);
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_BUF_FULL, stat);
CAN_IntCmd(p_can_dev->instance, CAN_INT_RX_OVERRUN, stat);
break;
case RT_DEVICE_FLAG_INT_TX:
CAN_IntCmd(p_can_dev->instance, CAN_INT_STB_TX, stat);
CAN_IntCmd(p_can_dev->instance, CAN_INT_PTB_TX, stat);
break;
case RT_DEVICE_CAN_INT_ERR:
CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_INT, stat);
CAN_IntCmd(p_can_dev->instance, CAN_INT_ARBITR_LOST, stat);
CAN_IntCmd(p_can_dev->instance, CAN_INT_ERR_PASSIVE, stat);
CAN_IntCmd(p_can_dev->instance, CAN_INT_BUS_ERR, stat);
break;
default:
break;
}
}
#ifdef RT_CAN_USING_CANFD
static void _init_ll_struct_canfd(can_device *p_can_dev)
{
if (p_can_dev->ll_init.pstcCanFd == NULL)
{
p_can_dev->ll_init.pstcCanFd = (stc_canfd_config_t *)rt_malloc(sizeof(stc_canfd_config_t));
}
RT_ASSERT((p_can_dev->ll_init.pstcCanFd != RT_NULL));
CAN_FD_StructInit(p_can_dev->ll_init.pstcCanFd);
switch ((rt_uint32_t)p_can_dev->instance)
{
#ifdef BSP_USING_CAN1
case (rt_uint32_t)CM_CAN1:
p_can_dev->ll_init.pstcCanFd->u8Mode = CAN1_CANFD_MODE;
break;
#endif
#ifdef BSP_USING_CAN2
case (rt_uint32_t)CM_CAN2:
p_can_dev->ll_init.pstcCanFd->u8Mode = CAN2_CANFD_MODE;
break;
#endif
default:
break;
}
}
static rt_err_t _config_can_bit_timing(can_device *p_can_dev, void *arg)
{
rt_err_t rt_ret = RT_EOK;
struct rt_can_bit_timing_config *timing_configs = (struct rt_can_bit_timing_config *)arg;
RT_ASSERT(timing_configs != RT_NULL);
RT_ASSERT(timing_configs->count == 1 || timing_configs->count == 2);
RT_ASSERT(timing_configs->items[0].num_sspoff == 0);
_get_can_bit_timing(&p_can_dev->ll_init.stcBitCfg, &timing_configs->items[0]);
if (timing_configs->count == 2)
{
_get_can_bit_timing_fd(p_can_dev->ll_init.pstcCanFd, &timing_configs->items[1]);
}
/* init can */
CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
p_can_dev->rt_can.config.can_timing = timing_configs->items[0];
if (timing_configs->count == 2)
{
p_can_dev->rt_can.config.canfd_timing = timing_configs->items[1];
}
return rt_ret;
}
static rt_err_t _canfd_control(can_device *p_can_dev, int cmd, void *arg)
{
rt_uint32_t argval;
rt_err_t timing_stat;
switch (cmd)
{
case RT_CAN_CMD_SET_BAUD:
argval = (rt_uint32_t) arg;
RT_ASSERT(IS_VALID_BAUD_RATE_CANFD_ARBITRATION(argval));
if (p_can_dev->rt_can.config.baud_rate == argval)
{
break;
}
timing_stat = _calc_can_bit_timing(p_can_dev->instance, \
CAN_BIT_TIMING_CANFD_ARBITRATION, \
argval, \
&p_can_dev->ll_init.stcBitCfg);
if (timing_stat != RT_EOK)
{
return timing_stat;
}
CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
p_can_dev->rt_can.config.baud_rate = argval;
break;
case RT_CAN_CMD_SET_CANFD:
if (p_can_dev->rt_can.config.enable_canfd == argval)
{
break;
}
p_can_dev->rt_can.config.enable_canfd = (rt_uint32_t) argval;
break;
case RT_CAN_CMD_SET_BAUD_FD:
argval = (rt_uint32_t) arg;
RT_ASSERT(IS_VALID_BAUD_RATE_CANFD_DATA(argval));
if (p_can_dev->rt_can.config.baud_rate_fd == argval)
{
break;
}
timing_stat = _calc_can_bit_timing(p_can_dev->instance, \
CAN_BIT_TIMING_CANFD_DATA, \
argval, \
&p_can_dev->ll_init.pstcCanFd->stcBitCfg);
if (timing_stat != RT_EOK)
{
return timing_stat;
}
p_can_dev->ll_init.pstcCanFd->u8SSPOffset = p_can_dev->ll_init.pstcCanFd->stcBitCfg.u32TimeSeg1;
CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
p_can_dev->rt_can.config.baud_rate_fd = argval;
break;
case RT_CAN_CMD_SET_BITTIMING:
return _config_can_bit_timing(p_can_dev, arg);
default:
break;
}
return RT_EOK;
}
#endif
static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
{
can_device *p_can_dev;
rt_err_t rt_ret = RT_EOK;
RT_ASSERT(can);
RT_ASSERT(cfg);
p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
RT_ASSERT(p_can_dev);
RT_ASSERT(IS_VALID_WORK_MODE(cfg->mode));
p_can_dev->ll_init.u8WorkMode = _get_can_work_mode(cfg->mode);
#ifdef RT_CAN_USING_CANFD
if (cfg->use_bit_timing)
{
_get_can_bit_timing(&p_can_dev->ll_init.stcBitCfg, &cfg->can_timing);
_get_can_bit_timing_fd(p_can_dev->ll_init.pstcCanFd, &cfg->canfd_timing);
}
else
{
RT_ASSERT(IS_VALID_BAUD_RATE_CANFD_ARBITRATION(cfg->baud_rate));
RT_ASSERT(IS_VALID_BAUD_RATE_CANFD_DATA(cfg->baud_rate_fd));
rt_ret = _calc_can_bit_timing(p_can_dev->instance, \
CAN_BIT_TIMING_CANFD_ARBITRATION, \
cfg->baud_rate, \
&p_can_dev->ll_init.stcBitCfg);
if (rt_ret != RT_EOK)
{
return rt_ret;
}
rt_ret = _calc_can_bit_timing(p_can_dev->instance, \
CAN_BIT_TIMING_CANFD_DATA, \
cfg->baud_rate_fd, \
&p_can_dev->ll_init.pstcCanFd->stcBitCfg);
if (rt_ret != RT_EOK)
{
return rt_ret;
}
}
p_can_dev->ll_init.pstcCanFd->u8SSPOffset = p_can_dev->ll_init.pstcCanFd->stcBitCfg.u32TimeSeg1;
#else
RT_ASSERT(IS_VALID_BAUD_RATE_CAN2_0(cfg->baud_rate));
rt_uint32_t baud_index = _get_can_baud_index(cfg->baud_rate);
p_can_dev->ll_init.stcBitCfg = _g_baudrate_tab[baud_index].ll_sbt;
#endif
/* init can */
CAN_Init(p_can_dev->instance, &p_can_dev->ll_init);
struct can_configure pre_config = p_can_dev->rt_can.config;
rt_memcpy(&p_can_dev->rt_can.config, cfg, sizeof(struct can_configure));
/* restore unmodifiable member */
if ((p_can_dev->rt_can.parent.open_flag & RT_DEVICE_OFLAG_OPEN) == RT_DEVICE_OFLAG_OPEN)
{
p_can_dev->rt_can.config.msgboxsz = pre_config.msgboxsz;
p_can_dev->rt_can.config.ticks = pre_config.ticks;
}
#ifdef RT_CAN_USING_HDR
p_can_dev->rt_can.config.maxhdr = pre_config.maxhdr;
#endif
p_can_dev->rt_can.config.sndboxnumber = pre_config.sndboxnumber;
return rt_ret;
}
static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
{
can_device *p_can_dev;
RT_ASSERT(can != RT_NULL);
p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
RT_ASSERT(p_can_dev);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
case RT_DEVICE_CTRL_SET_INT:
_config_can_int(p_can_dev, cmd, arg);
break;
case RT_CAN_CMD_SET_FILTER:
return _config_can_filter(p_can_dev, arg);
case RT_CAN_CMD_SET_MODE:
return _config_can_work_mode(p_can_dev, arg);
case RT_CAN_CMD_SET_BAUD:
#ifdef RT_CAN_USING_CANFD
return _canfd_control(p_can_dev, cmd, arg);
#else
return _config_can20_baud(p_can_dev, arg);
#endif
case RT_CAN_CMD_SET_PRIV:
return _config_can_priv_mode(p_can_dev, arg);
case RT_CAN_CMD_GET_STATUS:
{
struct rt_can_status *rt_can_stat = (struct rt_can_status *)arg;
stc_can_error_info_t stcErr = {0};
CAN_GetErrorInfo(p_can_dev->instance, &stcErr);
rt_can_stat->rcverrcnt = stcErr.u8RxErrorCount;
rt_can_stat->snderrcnt = stcErr.u8TxErrorCount;
rt_can_stat->lasterrtype = stcErr.u8ErrorType;
rt_can_stat->errcode = CAN_GetStatusValue(p_can_dev->instance);
}
break;
#ifdef RT_CAN_USING_CANFD
case RT_CAN_CMD_SET_CANFD:
case RT_CAN_CMD_SET_BAUD_FD:
case RT_CAN_CMD_SET_BITTIMING:
return _canfd_control(p_can_dev, cmd, arg);
#endif
default:
return -(RT_EINVAL);
}
return RT_EOK;
}
static rt_ssize_t _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
{
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
stc_can_tx_frame_t stc_tx_frame = {0};
int32_t ll_ret;
RT_ASSERT(can != RT_NULL);
can_device *p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
RT_ASSERT(p_can_dev);
stc_tx_frame.u32ID = pmsg->id;
if (RT_CAN_DTR == pmsg->rtr)
{
stc_tx_frame.RTR = 0;
}
else
{
stc_tx_frame.RTR = 1;
}
#ifdef RT_CAN_USING_CANFD
if (pmsg->fd_frame != 0)
{
RT_ASSERT(pmsg->len <= CAN_DLC64);
}
else
{
RT_ASSERT(pmsg->len <= CAN_DLC8);
}
stc_tx_frame.FDF = pmsg->fd_frame;
stc_tx_frame.BRS = pmsg->brs;
#endif
stc_tx_frame.DLC = pmsg->len & 0x0FU;
/* Set up the IDE */
stc_tx_frame.IDE = pmsg->ide;
/* Set up the data field */
uint32_t msg_len = _get_can_data_bytes_len(stc_tx_frame.DLC);
rt_memcpy(&stc_tx_frame.au8Data, pmsg->data, msg_len);
ll_ret = CAN_FillTxFrame(p_can_dev->instance, CAN_TX_BUF_PTB, &stc_tx_frame);
if (ll_ret != LL_OK)
{
return -RT_ERROR;
}
/* Request transmission */
CAN_StartTx(p_can_dev->instance, CAN_TX_REQ_PTB);
return RT_EOK;
}
static rt_ssize_t _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
{
int32_t ll_ret;
struct rt_can_msg *pmsg;
stc_can_rx_frame_t ll_rx_frame;
RT_ASSERT(can != RT_NULL);
can_device *p_can_dev = (can_device *)rt_container_of(can, can_device, rt_can);
RT_ASSERT(p_can_dev);
pmsg = (struct rt_can_msg *) buf;
/* get data */
ll_ret = CAN_GetRxFrame(p_can_dev->instance, &ll_rx_frame);
if (ll_ret != LL_OK)
return -RT_ERROR;
/* get id */
if (0 == ll_rx_frame.IDE)
{
pmsg->ide = RT_CAN_STDID;
}
else
{
pmsg->ide = RT_CAN_EXTID;
}
pmsg->id = ll_rx_frame.u32ID;
/* get type */
if (0 == ll_rx_frame.RTR)
{
pmsg->rtr = RT_CAN_DTR;
}
else
{
pmsg->rtr = RT_CAN_RTR;
}
/* get len */
pmsg->len = ll_rx_frame.DLC;
/* get hdr_index */
pmsg->hdr_index = 0;
pmsg->priv = 0;
#ifdef RT_CAN_USING_CANFD
pmsg->fd_frame = ll_rx_frame.FDF;
pmsg->brs = ll_rx_frame.BRS;
#endif
uint32_t msg_len = _get_can_data_bytes_len(ll_rx_frame.DLC);
rt_memcpy(pmsg->data, &ll_rx_frame.au8Data, msg_len);
return RT_EOK;
}
static const struct rt_can_ops _can_ops =
{
_can_config,
_can_control,
_can_sendmsg,
_can_recvmsg,
};
rt_inline void _isr_can_rx(can_device *p_can_dev)
{
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_OVF) == SET)
{
/* RX overflow. */
rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_RXOF_IND);
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_OVF);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX) == SET)
{
/* Received a frame. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX);
rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_RX_IND);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_WARN) == SET)
{
/* RX buffer warning. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_WARN);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_FULL) == SET)
{
/* RX buffer full. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_BUF_FULL);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_RX_OVERRUN) == SET)
{
/* RX buffer overrun. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_RX_OVERRUN);
}
}
rt_inline void _isr_can_tx(can_device *p_can_dev)
{
rt_bool_t is_tx_done = RT_FALSE;
rt_bool_t need_check_single_trans = RT_FALSE;
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TX_BUF_FULL) == SET)
{
/* TX buffer full. */
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TX_ABORTED) == SET)
{
/* TX aborted. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_TX_ABORTED);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_PTB_TX) == SET)
{
/* PTB transmitted. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_PTB_TX);
if (p_can_dev->ll_init.u8PTBSingleShotTx == CAN_PTB_SINGLESHOT_TX_ENABLE)
{
need_check_single_trans = RT_TRUE;
}
else
{
is_tx_done = RT_TRUE;
}
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_STB_TX) == SET)
{
/* STB transmitted. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_STB_TX);
if (p_can_dev->ll_init.u8STBSingleShotTx == CAN_STB_SINGLESHOT_TX_ENABLE)
{
need_check_single_trans = RT_TRUE;
}
else
{
is_tx_done = RT_TRUE;
}
}
if (need_check_single_trans)
{
if ((CAN_GetStatus(p_can_dev->instance, CAN_FLAG_BUS_ERR) != SET) \
|| (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ARBITR_LOST) != SET))
{
is_tx_done = RT_TRUE;
}
}
if (is_tx_done)
{
rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_TX_DONE);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ARBITR_LOST) == SET)
{
rt_hw_can_isr(&p_can_dev->rt_can, RT_CAN_EVENT_TX_FAIL);
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ARBITR_LOST);
}
}
rt_inline void _isr_can_err(can_device *p_can_dev)
{
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ERR_INT) == SET)
{
/* ERROR. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ERR_INT);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_BUS_ERR) == SET)
{
/* BUS ERROR. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_BUS_ERR);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_ERR_PASSIVE) == SET)
{
/* error-passive to error-active or error-active to error-passive. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_ERR_PASSIVE);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_TEC_REC_WARN) == SET)
{
/* TEC or REC reached warning limit. */
CAN_ClearStatus(p_can_dev->instance, CAN_FLAG_TEC_REC_WARN);
}
if (CAN_GetStatus(p_can_dev->instance, CAN_FLAG_BUS_OFF) == SET)
{
/* BUS OFF. */
}
}
rt_inline void _isr_ttcan(can_device *p_can_dev)
{
if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_TIME_TRIG) == SET)
{
/* Time trigger interrupt. */
CAN_TTC_ClearStatus(p_can_dev->instance, CAN_TTC_FLAG_TIME_TRIG);
}
if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_TRIG_ERR) == SET)
{
/* Trigger error interrupt. */
}
if (CAN_TTC_GetStatus(p_can_dev->instance, CAN_TTC_FLAG_WATCH_TRIG) == SET)
{
/* Watch trigger interrupt. */
CAN_TTC_ClearStatus(p_can_dev->instance, CAN_TTC_FLAG_WATCH_TRIG);
}
}
static void _isr_can(can_device *p_can_dev)
{
stc_can_error_info_t stcErr;
(void)CAN_GetErrorInfo(p_can_dev->instance, &stcErr);
_isr_can_rx(p_can_dev);
_isr_can_tx(p_can_dev);
_isr_can_err(p_can_dev);
_isr_ttcan(p_can_dev);
}
#if defined(BSP_USING_CAN1)
static void _irq_handler_can1(void)
{
rt_interrupt_enter();
_isr_can(&_g_can_dev_array[CAN1_INDEX]);
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_CAN2)
static void _irq_handler_can2(void)
{
rt_interrupt_enter();
_isr_can(&_g_can_dev_array[CAN2_INDEX]);
rt_interrupt_leave();
}
#endif
static void _enable_can_clock(void)
{
#if defined(HC32F4A0)
#if defined(BSP_USING_CAN1)
FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN1, ENABLE);
#endif
#if defined(BSP_USING_CAN2)
FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN2, ENABLE);
#endif
#endif
#if defined(HC32F460)
#if defined(BSP_USING_CAN1)
FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_CAN, ENABLE);
#endif
#endif
}
static void _config_can_irq(void)
{
struct hc32_irq_config irq_config;
#if defined(BSP_USING_CAN1)
irq_config.irq_num = BSP_CAN1_IRQ_NUM;
irq_config.int_src = CAN1_INT_SRC;
irq_config.irq_prio = BSP_CAN1_IRQ_PRIO;
/* register interrupt */
hc32_install_irq_handler(&irq_config,
_irq_handler_can1,
RT_TRUE);
#endif
#if defined(BSP_USING_CAN2)
irq_config.irq_num = BSP_CAN2_IRQ_NUM;
irq_config.int_src = CAN2_INT_SRC;
irq_config.irq_prio = BSP_CAN2_IRQ_PRIO;
/* register interrupt */
hc32_install_irq_handler(&irq_config,
_irq_handler_can2,
RT_TRUE);
#endif
}
static void _init_ll_struct_filter(can_device *p_can_dev)
{
if (p_can_dev->ll_init.pstcFilter == RT_NULL)
{
p_can_dev->ll_init.pstcFilter = (stc_can_filter_config_t *)rt_malloc(sizeof(stc_can_filter_config_t) * FILTER_COUNT);
}
RT_ASSERT((p_can_dev->ll_init.pstcFilter != RT_NULL));
rt_memset(p_can_dev->ll_init.pstcFilter, 0, sizeof(stc_can_filter_config_t) * FILTER_COUNT);
p_can_dev->ll_init.pstcFilter[0].u32ID = 0U;
p_can_dev->ll_init.pstcFilter[0].u32IDMask = 0x1FFFFFFF;
p_can_dev->ll_init.pstcFilter[0].u32IDType = CAN_ID_STD_EXT;
p_can_dev->ll_init.u16FilterSelect = CAN_FILTER1;
}
static void _init_struct_by_static_cfg(can_device *p_can_dev)
{
struct can_configure rt_can_config = CANDEFAULTCONFIG;
rt_can_config.privmode = RT_CAN_MODE_NOPRIV;
rt_can_config.ticks = 50;
#ifdef RT_CAN_USING_HDR
rt_can_config.maxhdr = FILTER_COUNT;
#endif
#ifdef RT_CAN_USING_CANFD
rt_can_config.baud_rate_fd = CANFD_DATA_BAUD_1M;
#endif
rt_can_config.sndboxnumber = 1;
p_can_dev->rt_can.config = rt_can_config;
if (p_can_dev->init.single_trans_mode)
{
p_can_dev->ll_init.u8PTBSingleShotTx = CAN_PTB_SINGLESHOT_TX_ENABLE;
}
#ifdef RT_CAN_USING_CANFD
_init_ll_struct_canfd(p_can_dev);
#endif
_init_ll_struct_filter(p_can_dev);
}
extern rt_err_t rt_hw_board_can_init(CM_CAN_TypeDef *CANx);
extern void CanPhyEnable(void);
int rt_hw_can_init(void)
{
_config_can_irq();
_enable_can_clock();
CanPhyEnable();
int result = RT_EOK;
uint32_t i = 0;
for (; i < CAN_INDEX_MAX; i++)
{
CAN_StructInit(&_g_can_dev_array[i].ll_init);
_init_struct_by_static_cfg(&_g_can_dev_array[i]);
/* register CAN device */
rt_hw_board_can_init(_g_can_dev_array[i].instance);
rt_hw_can_register(&_g_can_dev_array[i].rt_can, \
_g_can_dev_array[i].init.name,
&_can_ops,
&_g_can_dev_array[i]);
}
return result;
}
INIT_DEVICE_EXPORT(rt_hw_can_init);
#endif
#endif /* BSP_USING_CAN */
/************************** end of file ******************/