2014-07-13 14:13:39 +08:00

162 lines
3.8 KiB
C

#include <rtthread.h>
#include "board.h"
#include "drv_led.h"
/**
*
* LED1 <==> GPIO4[12]
* LED2 <==> GPIO4[13]
*
**/
#define LED_NUM 8
#define LED1_PIN 12
#define LED1_PORT 4
#define LED2_PIN 13
#define LED2_PORT 4
struct led_ctrl
{
uint8_t num;
uint8_t port;
};
struct lpc_led
{
/* inherit from rt_device */
struct rt_device parent;
struct led_ctrl ctrl[LED_NUM];
};
static struct lpc_led led;
static rt_err_t rt_led_init(rt_device_t dev)
{
/* Enable clock and init GPIO outputs */
LPC_CCU1->CLK_M4_GPIO_CFG = CCU_CLK_CFG_AUTO | CCU_CLK_CFG_RUN;
while (!(LPC_CCU1->CLK_M4_GPIO_STAT & CCU_CLK_STAT_RUN));
/* set GPIO4[12] GPIO4[13] as GPIO. */
LPC_SCU->SFSP9_0 = 0; /* GPIO4[12] */
LPC_SCU->SFSP9_1 = 0; /* GPIO4[13] */
/* set GPIO4[12] GPIO4[13] output. */
LPC_GPIO_PORT->DIR[LED1_PORT] |= 0x01 << LED1_PIN;
LPC_GPIO_PORT->DIR[LED2_PORT] |= 0x01 << LED2_PIN;
/* turn off all the led */
LPC_GPIO_PORT->CLR[LED1_PORT] |= 0x01 << LED1_PIN;
LPC_GPIO_PORT->CLR[LED2_PORT] |= 0x01 << LED2_PIN;
led.ctrl[0].num = LED1_PIN;
led.ctrl[0].port = LED1_PORT;
led.ctrl[1].num = LED2_PIN;
led.ctrl[1].port = LED2_PORT;
return RT_EOK;
}
static rt_err_t rt_led_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_led_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_size_t rt_led_read(rt_device_t dev, rt_off_t pos, void *buffer,
rt_size_t size)
{
rt_ubase_t index = 0;
rt_ubase_t nr = size;
rt_uint8_t *value = buffer;
RT_ASSERT(dev == &led.parent);
RT_ASSERT((pos + size) <= LED_NUM);
for (index = 0; index < nr; index++)
{
if ((LPC_GPIO_PORT->PIN[led.ctrl[pos + index].port] & (1 << led.ctrl[pos + index].num)) != 0)
{
*value = 0;
}
else
{
*value = 1;
}
value++;
}
return index;
}
static rt_size_t rt_led_write(rt_device_t dev, rt_off_t pos,
const void *buffer, rt_size_t size)
{
rt_ubase_t index = 0;
rt_ubase_t nw = size;
const rt_uint8_t *value = buffer;
RT_ASSERT(dev == &led.parent);
RT_ASSERT((pos + size) <= LED_NUM);
for (index = 0; index < nw; index++)
{
if (*value++)
{
LPC_GPIO_PORT->CLR[led.ctrl[pos + index].port] = (1 << led.ctrl[pos + index].num);
}
else
{
LPC_GPIO_PORT->SET[led.ctrl[pos + index].port] = (1 << led.ctrl[pos + index].num);
}
}
return index;
}
static rt_err_t rt_led_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
RT_ASSERT(dev == &led.parent);
if (cmd == LED_DEVICE_CTRL)
{
rt_uint32_t *led_num = args;
*led_num = LED_NUM;
}
return RT_EOK;
}
int rt_led_hw_init(void)
{
led.parent.type = RT_Device_Class_Char;
led.parent.rx_indicate = RT_NULL;
led.parent.tx_complete = RT_NULL;
led.parent.init = rt_led_init;
led.parent.open = rt_led_open;
led.parent.close = rt_led_close;
led.parent.read = rt_led_read;
led.parent.write = rt_led_write;
led.parent.control = rt_led_control;
led.parent.user_data = RT_NULL;
/* register a character device */
rt_device_register(&led.parent, "led", RT_DEVICE_FLAG_RDWR);
/* init led device */
rt_led_init(&led.parent);
return 0;
}
INIT_DEVICE_EXPORT(rt_led_hw_init);
#ifdef RT_USING_FINSH
#include <finsh.h>
void led_test(rt_uint32_t led_num, rt_uint32_t value)
{
rt_uint8_t led_value = value;
rt_led_write(&led.parent, led_num, &led_value, 1);
}
FINSH_FUNCTION_EXPORT(led_test, e.g: led_test(0, 100).)
#endif