rt-thread/bsp/n32g452xx/Libraries/rt_drivers/drv_hwtimer.c

404 lines
8.5 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-08-20 breo.com first version
*/
#include <board.h>
#include "drv_hwtimer.h"
#define DRV_DEBUG
#define LOG_TAG "drv.hwtimer"
#include <drv_log.h>
#ifdef BSP_USING_HWTIMER
enum
{
#ifdef BSP_USING_HWTIM1
TIM1_INDEX,
#endif
#ifdef BSP_USING_HWTIM2
TIM2_INDEX,
#endif
#ifdef BSP_USING_HWTIM3
TIM3_INDEX,
#endif
#ifdef BSP_USING_HWTIM4
TIM4_INDEX,
#endif
#ifdef BSP_USING_HWTIM5
TIM5_INDEX,
#endif
#ifdef BSP_USING_HWTIM6
TIM6_INDEX,
#endif
#ifdef BSP_USING_HWTIM7
TIM7_INDEX,
#endif
#ifdef BSP_USING_HW_TIM8
TIM8_INDEX,
#endif
};
struct n32_hwtimer
{
rt_hwtimer_t time_device;
TIM_Module *tim_handle;
IRQn_Type tim_irqn;
char *name;
};
static struct n32_hwtimer n32_hwtimer_obj[] =
{
#ifdef BSP_USING_HWTIM1
TIM1_CONFIG,
#endif
#ifdef BSP_USING_HWTIM2
TIM2_CONFIG,
#endif
#ifdef BSP_USING_HWTIM3
TIM3_CONFIG,
#endif
#ifdef BSP_USING_HWTIM4
TIM4_CONFIG,
#endif
#ifdef BSP_USING_HWTIM5
TIM5_CONFIG,
#endif
#ifdef BSP_USING_HWTIM6
TIM6_CONFIG,
#endif
#ifdef BSP_USING_HWTIM7
TIM7_CONFIG,
#endif
#ifdef BSP_USING_HWTIM8
TIM8_CONFIG,
#endif
};
static void n32_timer_init(struct rt_hwtimer_device *timer, rt_uint32_t state)
{
RCC_ClocksType RCC_ClockStruct;
TIM_TimeBaseInitType TIM_TimeBaseStructure;
NVIC_InitType NVIC_InitStructure;
uint32_t freq = 0;
uint32_t input_clock;
uint32_t prescaler_value = 0;
TIM_Module *tim = RT_NULL;
struct n32_hwtimer *tim_device = RT_NULL;
RT_ASSERT(timer != RT_NULL);
if (state)
{
tim = (TIM_Module *)timer->parent.user_data;
tim_device = (struct n32_hwtimer *)timer;
RT_ASSERT((tim == TIM2) || (tim == TIM3) || (tim == TIM4) || (tim == TIM5)
|| (tim == TIM6) || (tim == TIM7));
/* timer clock enable */
n32_msp_hwtim_init(tim);
freq = timer->freq;
RCC_GetClocksFreqValue(&RCC_ClockStruct);
if (1 == (RCC_ClockStruct.HclkFreq / RCC_ClockStruct.Pclk1Freq))
input_clock = RCC_ClockStruct.Pclk1Freq;
else
input_clock = RCC_ClockStruct.Pclk1Freq * 2;
prescaler_value = (uint32_t)(input_clock / freq) - 1;
TIM_TimeBaseStructure.Period = freq - 1;
TIM_TimeBaseStructure.Prescaler = prescaler_value;
TIM_TimeBaseStructure.ClkDiv = TIM_CLK_DIV1;
TIM_TimeBaseStructure.RepetCnt = 0;
if (timer->info->cntmode == HWTIMER_CNTMODE_UP)
{
TIM_TimeBaseStructure.CntMode = TIM_CNT_MODE_UP;
}
else
{
TIM_TimeBaseStructure.CntMode = TIM_CNT_MODE_DOWN;
}
TIM_InitTimeBase(tim, &TIM_TimeBaseStructure);
/* Enable the TIMx global Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = tim_device->tim_irqn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
TIM_ConfigInt(tim, TIM_INT_UPDATE, ENABLE);
TIM_ClrIntPendingBit(tim, TIM_INT_UPDATE);
LOG_D("%s init success", tim_device->name);
}
}
static rt_err_t n32_timer_start(rt_hwtimer_t *timer, rt_uint32_t t, rt_hwtimer_mode_t opmode)
{
rt_err_t result = RT_EOK;
TIM_Module *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (TIM_Module *)timer->parent.user_data;
/* set tim cnt */
TIM_SetCnt(tim, 0);
/* set tim arr */
TIM_SetAutoReload(tim, t - 1);
if (opmode == HWTIMER_MODE_ONESHOT)
{
/* set timer to single mode */
TIM_SelectOnePulseMode(tim, TIM_OPMODE_SINGLE);
}
else
{
TIM_SelectOnePulseMode(tim, TIM_OPMODE_REPET);
}
/* start timer */
TIM_Enable(tim, ENABLE);
return result;
}
static void n32_timer_stop(rt_hwtimer_t *timer)
{
TIM_Module *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (TIM_Module *)timer->parent.user_data;
/* stop timer */
TIM_Enable(tim, DISABLE);
/* set tim cnt */
TIM_SetCnt(tim, 0);
}
static rt_uint32_t n32_timer_counter_get(rt_hwtimer_t *timer)
{
TIM_Module *tim = RT_NULL;
RT_ASSERT(timer != RT_NULL);
tim = (TIM_Module *)timer->parent.user_data;
return tim->CNT;
}
static rt_err_t n32_timer_ctrl(rt_hwtimer_t *timer, rt_uint32_t cmd, void *arg)
{
RCC_ClocksType RCC_ClockStruct;
TIM_Module *tim = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(timer != RT_NULL);
RT_ASSERT(arg != RT_NULL);
tim = (TIM_Module *)timer->parent.user_data;
switch (cmd)
{
case HWTIMER_CTRL_FREQ_SET:
{
rt_uint32_t input_clock;
rt_uint32_t freq;
rt_uint16_t val;
/* set timer frequence */
freq = *((rt_uint32_t *)arg);
/* time init */
RCC_GetClocksFreqValue(&RCC_ClockStruct);
if (1 == (RCC_ClockStruct.HclkFreq / RCC_ClockStruct.Pclk1Freq))
input_clock = RCC_ClockStruct.Pclk1Freq;
else
input_clock = RCC_ClockStruct.Pclk1Freq * 2;
val = input_clock / freq;
TIM_ConfigPrescaler(tim, val - 1, TIM_PSC_RELOAD_MODE_IMMEDIATE);
}
break;
default:
{
result = -RT_ENOSYS;
}
break;
}
return result;
}
static const struct rt_hwtimer_info _info = TIM_DEV_INFO_CONFIG;
static const struct rt_hwtimer_ops _ops =
{
.init = n32_timer_init,
.start = n32_timer_start,
.stop = n32_timer_stop,
.count_get = n32_timer_counter_get,
.control = n32_timer_ctrl,
};
#ifdef BSP_USING_HWTIM2
void TIM2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIM_GetIntStatus(TIM2, TIM_INT_UPDATE) == SET)
{
rt_device_hwtimer_isr(&n32_hwtimer_obj[TIM2_INDEX].time_device);
TIM_ClrIntPendingBit(TIM2, TIM_INT_UPDATE);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_HWTIM3
void TIM3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIM_GetIntStatus(TIM3, TIM_INT_UPDATE) == SET)
{
rt_device_hwtimer_isr(&n32_hwtimer_obj[TIM3_INDEX].time_device);
TIM_ClrIntPendingBit(TIM3, TIM_INT_UPDATE);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_HWTIM4
void TIM4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIM_GetIntStatus(TIM4, TIM_INT_UPDATE) == SET)
{
rt_device_hwtimer_isr(&n32_hwtimer_obj[TIM4_INDEX].time_device);
TIM_ClrIntPendingBit(TIM4, TIM_INT_UPDATE);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_HWTIM5
void TIM5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIM_GetIntStatus(TIM5, TIM_INT_UPDATE) == SET)
{
rt_device_hwtimer_isr(&n32_hwtimer_obj[TIM5_INDEX].time_device);
TIM_ClrIntPendingBit(TIM5, TIM_INT_UPDATE);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_HWTIM6
void TIM6_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIM_GetIntStatus(TIM6, TIM_INT_UPDATE) == SET)
{
rt_device_hwtimer_isr(&n32_hwtimer_obj[TIM6_INDEX].time_device);
TIM_ClrIntPendingBit(TIM6, TIM_INT_UPDATE);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#ifdef BSP_USING_HWTIM7
void TIM7_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
if (TIM_GetIntStatus(TIM7, TIM_INT_UPDATE) == SET)
{
rt_device_hwtimer_isr(&n32_hwtimer_obj[TIM7_INDEX].time_device);
TIM_ClrIntPendingBit(TIM7, TIM_INT_UPDATE);
}
/* leave interrupt */
rt_interrupt_leave();
}
#endif
static int rt_hw_hwtimer_init(void)
{
int i = 0;
int result = RT_EOK;
for (i = 0; i < sizeof(n32_hwtimer_obj) / sizeof(n32_hwtimer_obj[0]); i++)
{
n32_hwtimer_obj[i].time_device.info = &_info;
n32_hwtimer_obj[i].time_device.ops = &_ops;
if (rt_device_hwtimer_register(&n32_hwtimer_obj[i].time_device, n32_hwtimer_obj[i].name, n32_hwtimer_obj[i].tim_handle) == RT_EOK)
{
LOG_D("%s register success", n32_hwtimer_obj[i].name);
}
else
{
LOG_E("%s register failed", n32_hwtimer_obj[i].name);
result = -RT_ERROR;
}
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_hwtimer_init);
#endif /* BSP_USING_HWTIMER */