rt-thread/bsp/apollo2/libraries/drivers/hal/am_hal_wdt.c

455 lines
15 KiB
C

//*****************************************************************************
//
// am_hal_wdt.c
//! @file
//!
//! @brief Hardware abstraction layer for the Watchdog Timer module.
//!
//! @addtogroup wdt2 Watchdog Timer (WDT)
//! @ingroup apollo2hal
//! @{
//
//*****************************************************************************
//*****************************************************************************
//
// Copyright (c) 2017, Ambiq Micro
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision 1.2.11 of the AmbiqSuite Development Package.
//
//*****************************************************************************
#include <stdint.h>
#include <stdbool.h>
#include "am_mcu_apollo.h"
//*****************************************************************************
//
// Adjacency check
//
// This is related to the timer read workaround. This macro checks to see if
// the two supplied count values are within one "tick" of eachother. It should
// still pass in the event of a timer rollover. The "B" read is assumed to
// follow the "A" read. The macro returns "TRUE" when the adjacent timer reads
// can be used.
//
//*****************************************************************************
#define adjacent(A, B) (((A) == (B)) || (((A) + 1) == (B)) || ((B) == 0))
//*****************************************************************************
//
//! @brief Configure the watchdog timer.
//!
//! @param psConfig - pointer to a configuration structure containing the
//! desired watchdog settings.
//!
//! This function will set the watchdog configuration register based on the
//! user's desired settings listed in the structure referenced by psConfig. If
//! the structure indicates that watchdog interrupts are desired, this function
//! will also set the interrupt enable bit in the configuration register.
//!
//! @note In order to actually receive watchdog interrupt and/or watchdog reset
//! events, the caller will also need to make sure that the watchdog interrupt
//! vector is enabled in the ARM NVIC, and that watchdog resets are enabled in
//! the reset generator module. Otherwise, the watchdog-generated interrupt and
//! reset events will have no effect.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_wdt_init(const am_hal_wdt_config_t *psConfig)
{
uint32_t ui32ConfigVal;
uint16_t ui16IntCount, ui16ResetCount;
bool bResetEnabled = psConfig->ui32Config & AM_HAL_WDT_ENABLE_RESET;
bool bInterruptEnabled = psConfig->ui32Config & AM_HAL_WDT_ENABLE_INTERRUPT;
//
// Read the desired settings from the psConfig structure.
//
ui16IntCount = psConfig->ui16InterruptCount;
ui16ResetCount = psConfig->ui16ResetCount;
//
// Write the interrupt and reset count values to a temporary variable.
//
// Accept the passed Config value, but clear the Counts that we are about to set.
ui32ConfigVal = psConfig->ui32Config & ~(AM_REG_WDT_CFG_INTVAL_M | AM_REG_WDT_CFG_RESVAL_M);
ui32ConfigVal |= AM_WRITE_SM(AM_REG_WDT_CFG_INTVAL, ui16IntCount);
ui32ConfigVal |= AM_WRITE_SM(AM_REG_WDT_CFG_RESVAL, ui16ResetCount);
//
// If interrupts should be enabled, set the appropriate bit in the
// temporary variable. Also, enable the interrupt in INTEN register in the
// watchdog module.
//
if ( bInterruptEnabled )
{
//
// Enable the watchdog interrupt if the configuration calls for them.
//
AM_REGn(WDT, 0, INTEN) |= AM_REG_WDT_INTEN_WDT_M;
}
else
{
//
// Disable the watchdog interrupt if the configuration doesn't call for
// watchdog interrupts.
//
AM_REGn(WDT, 0, INTEN) &= ~AM_REG_WDT_INTEN_WDT_M;
}
//
// If resets should be enabled, set the appropriate bit in the temporary
// variable.
//
if ( bResetEnabled )
{
//
// Also enable watchdog resets in the reset module.
//
AM_REG(RSTGEN, CFG) |= AM_REG_RSTGEN_CFG_WDREN_M;
}
else
{
//
// Disable watchdog resets in the reset module.
//
AM_REG(RSTGEN, CFG) &= ~AM_REG_RSTGEN_CFG_WDREN_M;
}
//
// Check for a user specified clock select. If none specified then
// set 128Hz.
//
if ( !(psConfig->ui32Config & AM_REG_WDT_CFG_CLKSEL_M) )
{
ui32ConfigVal |= AM_REG_WDT_CFG_CLKSEL_128HZ;
}
//
// Write the saved value to the watchdog configuration register.
//
AM_REGn(WDT, 0, CFG) = ui32ConfigVal;
}
//*****************************************************************************
//
//! @brief Starts the watchdog timer.
//!
//! Enables the watchdog timer tick using the 'enable' bit in the watchdog
//! configuration register. This function does not perform any locking of the
//! watchdog timer, so it can be disabled or reconfigured later.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_wdt_start(void)
{
//
// Make sure the watchdog timer is in the "reset" state, and then set the
// enable bit to start counting.
//
AM_REGn(WDT, 0, CFG) |= AM_REG_WDT_CFG_WDTEN_M;
AM_REGn(WDT, 0, RSTRT) |= AM_REG_WDT_RSTRT_RSTRT_KEYVALUE;
}
//*****************************************************************************
//
//! @brief Stops the watchdog timer.
//!
//! Disables the watchdog timer tick by clearing the 'enable' bit in the
//! watchdog configuration register.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_wdt_halt(void)
{
//
// Clear the watchdog enable bit.
//
AM_REGn(WDT, 0, CFG) &= ~AM_REG_WDT_CFG_WDTEN_M;
}
//*****************************************************************************
//
//! @brief Locks the watchdog configuration and starts the watchdog timer.
//!
//! This function sets the watchdog "lock" register, which prevents software
//! from re-configuring the watchdog. This action will also set the enable bit
//! for the watchdog timer, so it will start counting immediately.
//!
//! @return None.
//
//*****************************************************************************
void
am_hal_wdt_lock_and_start(void)
{
//
// Write the 'key' value to the watchdog lock register.
//
AM_REGn(WDT, 0, LOCK) = AM_REG_WDT_LOCK_LOCK_KEYVALUE;
}
//*****************************************************************************
//
//! @brief Read the state of the wdt interrupt status.
//!
//! @param bEnabledOnly - return the status of only the enabled interrupts.
//!
//! This function extracts the interrupt status bits and returns the enabled or
//! raw based on bEnabledOnly.
//!
//! @return WDT interrupt status.
//
//*****************************************************************************
uint32_t
am_hal_wdt_int_status_get(bool bEnabledOnly)
{
if (bEnabledOnly)
{
uint32_t u32RetVal = AM_REG(WDT, INTSTAT);
return u32RetVal & AM_REG(WDT, INTEN);
}
else
{
return AM_REG(WDT, INTSTAT);
}
}
//*****************************************************************************
//
//! @brief Set the state of the wdt interrupt status bit.
//!
//! This function sets the interrupt bit.
//!
//! @return None
//
//*****************************************************************************
void
am_hal_wdt_int_set(void)
{
AM_REG(WDT, INTSET) = AM_REG_WDT_INTSET_WDT_M;
}
//*****************************************************************************
//
//! @brief Clear the state of the wdt interrupt status bit.
//!
//! This function clear the interrupt bit.
//!
//! @return None
//
//*****************************************************************************
void
am_hal_wdt_int_clear(void)
{
AM_REGn(WDT, 0, INTCLR) = AM_REG_WDT_INTCLR_WDT_M;
}
//*****************************************************************************
//
//! @brief Enable the wdt interrupt.
//!
//! This function enable the interrupt.
//!
//! @return None
//
//*****************************************************************************
void
am_hal_wdt_int_enable(void)
{
AM_REG(WDT, INTEN) |= AM_REG_WDT_INTSET_WDT_M;
}
//*****************************************************************************
//
//! @brief Return the enabled WDT interrupts.
//!
//! This function returns the enabled WDT interrupts.
//!
//! @return enabled WDT interrupts.
//
//*****************************************************************************
uint32_t
am_hal_wdt_int_enable_get(void)
{
return AM_REG(WDT, INTEN);
}
//*****************************************************************************
//
//! @brief Disable the wdt interrupt.
//!
//! This function disablee the interrupt.
//!
//! @return None
//
//*****************************************************************************
void
am_hal_wdt_int_disable(void)
{
AM_REG(WDT, INTEN) &= ~AM_REG_WDT_INTSET_WDT_M;
}
//*****************************************************************************
//
// Static function for reading the WDT counter value.
//
//*****************************************************************************
#if defined(__GNUC_STDC_INLINE__)
__attribute__((naked))
static
void
back2back_read_asm(uint32_t *pui32Array, uint32_t *pui32Register)
{
// pui32Array[] is a pointer to a 3 word data array provided by the caller.
// pui32Register = address of the timer to be read.
__asm
(
// Do 3 back-to-back reads of the register
" ldr r2, [r1, #0]\n" // Get counter register value
" ldr r3, [r1, #0]\n" // Get counter register value again
" ldr r1, [r1, #0]\n" // Get counter register value for a third time
" str r2, [r0, #0]\n" // Store register value to variable
" str r3, [r0, #4]\n" // Store register value to variable
" str r1, [r0, #8]\n" // Store register value to variable
" bx lr\n"
);
}
#elif defined(__ARMCC_VERSION)
__asm static uint32_t
back2back_read_asm(uint32_t *pui32Array, uint32_t *pui32Register)
{
ldr r2, [r1, #0] // Get TMRn register value
ldr r3, [r1, #0] // Get TMRn register value again
ldr r1, [r1, #0] // Get TMRn register value for a third time
str r2, [r0, #0] // Store register value to variable
str r3, [r0, #4] // Store register value to variable
str r1, [r0, #8] // Store register value to variable
bx lr
}
#elif defined(__IAR_SYSTEMS_ICC__)
#pragma diag_suppress = Pe940 // Suppress IAR compiler warning about missing
// return statement on a non-void function
__stackless static uint32_t
back2back_read_asm(uint32_t *pui32Array, uint32_t *pui32Register)
{
__asm(" ldr r2, [r1, #0]"); // Get TMRn register value
__asm(" ldr r3, [r1, #0]"); // Get TMRn register value again
__asm(" ldr r1, [r1, #0]"); // Get TMRn register value for a third time
__asm(" str r2, [r0, #0]"); // Store register value to variable
__asm(" str r3, [r0, #4]"); // Store register value to variable
__asm(" str r1, [r0, #8]"); // Store register value to variable
__asm(" bx lr");
}
#pragma diag_default = Pe940 // Restore IAR compiler warning
#endif
//*****************************************************************************
//
//! @brief Get the wdt counter value.
//!
//! This function reads the current value of watch dog timer counter register.
//!
//! WARNING caller is responsible for masking interrutps before calling this
//! function.
//!
//! @return None
//
//*****************************************************************************
uint32_t
am_hal_wdt_counter_get(void)
{
uint32_t ui32Values[3] = {0};
uint32_t ui32Value;
//
// First, go read the value from the counter register 3 times
// back to back in assembly language.
//
back2back_read_asm(ui32Values, (uint32_t *)AM_REG_WDTn(0));
//
// Now, we'll figure out which of the three values is the correct time.
//
if (ui32Values[0] == ui32Values[1])
{
//
// If the first two values match, then neither one was a bad read.
// We'll take this as the current time.
//
ui32Value = ui32Values[1];
}
else
{
//
// If the first two values didn't match, then one of them might be bad.
// If one of the first two values is bad, then the third one should
// always be correct. We'll take the third value as the correct count.
//
ui32Value = ui32Values[2];
//
// If all of the statements about the architecture are true, the third
// value should be correct, and it should always be within one count of
// either the first or the second value.
//
// Just in case, we'll check against the previous two values to make
// sure that our final answer was reasonable. If it isn't, we will
// flag it as a "bad read", and fail this assert statement.
//
// This shouldn't ever happen, and it hasn't ever happened in any of
// our tests so far.
//
am_hal_debug_assert_msg((adjacent(ui32Values[1], ui32Values[2]) ||
adjacent(ui32Values[0], ui32Values[2])),
"Bad CDT read");
}
return ui32Value;
}
//*****************************************************************************
//
// End Doxygen group.
//! @}
//
//*****************************************************************************