rt-thread/bsp/airm2m/air32f103/libraries/rt_drivers/drv_adc.c

281 lines
7.4 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-02-22 airm2m first version
*/
#include <board.h>
#include <rtthread.h>
#include <rtdevice.h>
#include "drv_adc.h"
#if defined(BSP_USING_ADC1) || defined(BSP_USING_ADC2)
//#define DRV_DEBUG
#define LOG_TAG "drv.adc"
#include <drv_log.h>
static ADC_HandleTypeDef adc_config[] =
{
#ifdef BSP_USING_ADC1
{ \
.Instance = ADC1, \
.Init.ADC_Mode = ADC_Mode_Independent, \
.Init.ADC_ScanConvMode = DISABLE, \
.Init.ADC_ContinuousConvMode = DISABLE, \
.Init.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None, \
.Init.ADC_DataAlign = ADC_DataAlign_Right, \
.Init.ADC_NbrOfChannel = 1, \
},
#endif
#ifdef BSP_USING_ADC2
{ \
.Instance = ADC2, \
.Init.ADC_Mode = ADC_Mode_Independent, \
.Init.ADC_ScanConvMode = DISABLE, \
.Init.ADC_ContinuousConvMode = DISABLE, \
.Init.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None, \
.Init.ADC_DataAlign = ADC_DataAlign_Right, \
.Init.ADC_NbrOfChannel = 1, \
}
#endif
};
struct air32_adc
{
ADC_HandleTypeDef ADC_Handler;
struct rt_adc_device air32_adc_device;
};
static struct air32_adc air32_adc_obj[sizeof(adc_config) / sizeof(adc_config[0])];
static rt_uint8_t air32_adc_get_resolution(struct rt_adc_device *device)
{
//the resolution which can not be changed is just 12bit;
return 12;
}
static rt_int16_t air32_adc_get_vref (struct rt_adc_device *device)
{
RT_ASSERT(device);
return 3300;
}
static rt_err_t air32_adc_enabled(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled)
{
ADC_HandleTypeDef *air32_adc_handler;
RT_ASSERT(device != RT_NULL);
air32_adc_handler = device->parent.user_data;
if (enabled)
{
ADC_Cmd(air32_adc_handler->Instance, ENABLE);
}
else
{
ADC_Cmd(air32_adc_handler->Instance, DISABLE);
}
return RT_EOK;
}
static rt_uint32_t air32_adc_get_channel(rt_uint32_t channel)
{
rt_uint32_t air32_channel = 0;
switch (channel)
{
case 0:
air32_channel = ADC_Channel_0;
break;
case 1:
air32_channel = ADC_Channel_1;
break;
case 2:
air32_channel = ADC_Channel_2;
break;
case 3:
air32_channel = ADC_Channel_3;
break;
case 4:
air32_channel = ADC_Channel_4;
break;
case 5:
air32_channel = ADC_Channel_5;
break;
case 6:
air32_channel = ADC_Channel_6;
break;
case 7:
air32_channel = ADC_Channel_7;
break;
case 8:
air32_channel = ADC_Channel_8;
break;
case 9:
air32_channel = ADC_Channel_9;
break;
case 10:
air32_channel = ADC_Channel_10;
break;
case 11:
air32_channel = ADC_Channel_11;
break;
case 12:
air32_channel = ADC_Channel_12;
break;
case 13:
air32_channel = ADC_Channel_13;
break;
case 14:
air32_channel = ADC_Channel_14;
break;
case 15:
air32_channel = ADC_Channel_15;
break;
#ifdef ADC_CHANNEL_16
case 16:
air32_channel = ADC_Channel_16;
break;
#endif /* ADC_CHANNEL_16 */
#ifdef ADC_CHANNEL_17
case 17:
air32_channel = ADC_Channel_17;
break;
#endif /* ADC_CHANNEL_17 */
#ifdef ADC_CHANNEL_18
case 18:
air32_channel = ADC_Channel_18;
break;
#endif /* ADC_CHANNEL_18 */
#ifdef ADC_CHANNEL_19
case 19:
air32_channel = ADC_Channel_19;
break;
#endif /* ADC_CHANNEL_19 */
}
return air32_channel;
}
static rt_err_t air32_get_adc_value(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value)
{
ADC_ChannelConfTypeDef ADC_ChanConf;
ADC_HandleTypeDef *air32_adc_handler;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(value != RT_NULL);
air32_adc_handler = device->parent.user_data;
rt_memset(&ADC_ChanConf, 0, sizeof(ADC_ChanConf));
#ifndef ADC_CHANNEL_16
if (channel == 16)
{
LOG_E("ADC channel must not be 16.");
return -RT_ERROR;
}
#endif
/* ADC channel number is up to 17 */
#if !defined(ADC_CHANNEL_18)
if (channel <= 17)
/* ADC channel number is up to 19 */
#elif defined(ADC_CHANNEL_19)
if (channel <= 19)
/* ADC channel number is up to 18 */
#else
if (channel <= 18)
#endif
{
/* set air32 ADC channel */
ADC_ChanConf.Channel = air32_adc_get_channel(channel);
}
else
{
#if !defined(ADC_CHANNEL_18)
LOG_E("ADC channel must be between 0 and 17.");
#elif defined(ADC_CHANNEL_19)
LOG_E("ADC channel must be between 0 and 19.");
#else
LOG_E("ADC channel must be between 0 and 18.");
#endif
return -RT_ERROR;
}
ADC_ChanConf.Rank = 1;
ADC_ChanConf.SamplingTime = ADC_SampleTime_239Cycles5;
ADC_RegularChannelConfig(air32_adc_handler->Instance,ADC_ChanConf.Channel , ADC_ChanConf.Rank, ADC_ChanConf.SamplingTime );
/* start ADC */
ADC_SoftwareStartConvCmd(air32_adc_handler->Instance, ENABLE);
/* Wait for the ADC to convert */
while(!ADC_GetFlagStatus(air32_adc_handler->Instance, ADC_FLAG_EOC ));
/* get ADC value */
*value = (rt_uint32_t)ADC_GetConversionValue(air32_adc_handler->Instance);
ADC_ClearFlag( air32_adc_handler->Instance, ADC_FLAG_EOC);
return RT_EOK;
}
static const struct rt_adc_ops air32_adc_ops =
{
.enabled = air32_adc_enabled,
.convert = air32_get_adc_value,
.get_resolution = air32_adc_get_resolution,
.get_vref = air32_adc_get_vref
};
static int air32_adc_init(void)
{
int result = RT_EOK;
/* save adc name */
char name_buf[5] = {'a', 'd', 'c', '0', 0};
int i = 0;
for (i = 0; i < sizeof(adc_config) / sizeof(adc_config[0]); i++)
{
/* ADC init */
name_buf[3] = '0';
air32_adc_obj[i].ADC_Handler = adc_config[i];
#if defined(ADC1)
if (air32_adc_obj[i].ADC_Handler.Instance == ADC1)
{
name_buf[3] = '1';
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE );
}
#endif
#if defined(ADC2)
if (air32_adc_obj[i].ADC_Handler.Instance == ADC2)
{
name_buf[3] = '2';
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC2, ENABLE );
}
#endif
{
ADC_Init(air32_adc_obj[i].ADC_Handler.Instance,&air32_adc_obj[i].ADC_Handler.Init );
/* register ADC device */
if (rt_hw_adc_register(&air32_adc_obj[i].air32_adc_device, name_buf, &air32_adc_ops, &air32_adc_obj[i].ADC_Handler) == RT_EOK)
{
LOG_D("%s init success", name_buf);
}
else
{
LOG_E("%s register failed", name_buf);
result = -RT_ERROR;
}
}
}
return result;
}
INIT_DEVICE_EXPORT(air32_adc_init);
#endif /* BSP_USING_ADC */