rt-thread/bsp/gd32103c-eval/Libraries/GD32F1xx_standard_peripheral/Source/gd32f10x_timer.c

2361 lines
77 KiB
C

/**
******************************************************************************
* @brief TIMER functions of the firmware library.
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "gd32f10x_timer.h"
#include "gd32f10x_rcc.h"
/** @addtogroup GD32F10x_Firmware
* @{
*/
/** @defgroup TIMER
* @brief TIMER driver modules
* @{
*/
/** @defgroup TIMER_Private_Defines
* @{
*/
/* TIMER registers bit mask */
#define SMC_ETR_MASK ((uint16_t)0x00FF)
#define CHCTLR_OFFSET ((uint16_t)0x0018)
#define CHE_CHE_SET ((uint16_t)0x0001)
#define CHE_CHNE_SET ((uint16_t)0x0004)
/**
* @}
*/
/* Private function prototypes */
static void TI1_Config(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPolarity, uint16_t TIMER_ICSelection,
uint16_t TIMER_ICFilter);
static void TI2_Config(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPolarity, uint16_t TIMER_ICSelection,
uint16_t TIMER_ICFilter);
static void TI3_Config(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPolarity, uint16_t TIMER_ICSelection,
uint16_t TIMER_ICFilter);
static void TI4_Config(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPolarity, uint16_t TIMER_ICSelection,
uint16_t TIMER_ICFilter);
/** @defgroup TIMER_Private_Functions
* @{
*/
/**
* @brief Deinitialize the TIMER .
* @param TIMERx: x ={ 1-14 } .
* @retval None
*/
void TIMER_DeInit(TIMER_TypeDef *TIMERx)
{
if (TIMERx == TIMER1) {
RCC->APB2RCR |= RCC_APB2PERIPH_TIMER1RST;
RCC->APB2RCR &= ~RCC_APB2PERIPH_TIMER1;
} else if (TIMERx == TIMER2) {
RCC->APB1RCR |= RCC_APB1PERIPH_TIMER2RST;
RCC->APB1RCR &= ~RCC_APB1PERIPH_TIMER2;
} else if (TIMERx == TIMER3) {
RCC->APB1RCR |= RCC_APB1PERIPH_TIMER3RST;
RCC->APB1RCR &= ~RCC_APB1PERIPH_TIMER3;
} else if (TIMERx == TIMER4) {
RCC->APB1RCR |= RCC_APB1PERIPH_TIMER4RST;
RCC->APB1RCR &= ~RCC_APB1PERIPH_TIMER4;
} else if (TIMERx == TIMER5) {
RCC->APB1RCR |= RCC_APB1PERIPH_TIMER5RST;
RCC->APB1RCR &= ~RCC_APB1PERIPH_TIMER5;
} else if (TIMERx == TIMER6) {
RCC->APB1RCR |= RCC_APB1PERIPH_TIMER6RST;
RCC->APB1RCR &= ~RCC_APB1PERIPH_TIMER6;
} else if (TIMERx == TIMER7) {
RCC->APB1RCR |= RCC_APB1PERIPH_TIMER7RST;
RCC->APB1RCR &= ~RCC_APB1PERIPH_TIMER7;
} else if (TIMERx == TIMER8) {
RCC->APB2RCR |= RCC_APB2PERIPH_TIMER8RST;
RCC->APB2RCR &= ~RCC_APB2PERIPH_TIMER8;
} else if (TIMERx == TIMER9) {
RCC->APB2RCR |= RCC_APB2PERIPH_TIMER9RST;
RCC->APB2RCR &= ~RCC_APB2PERIPH_TIMER9;
} else if (TIMERx == TIMER10) {
RCC->APB2RCR |= RCC_APB2PERIPH_TIMER10RST;
RCC->APB2RCR &= ~RCC_APB2PERIPH_TIMER10;
} else if (TIMERx == TIMER11) {
RCC->APB2RCR |= RCC_APB2PERIPH_TIMER11RST;
RCC->APB2RCR &= ~RCC_APB2PERIPH_TIMER11;
} else if (TIMERx == TIMER12) {
RCC->APB1RCR |= RCC_APB1PERIPH_TIMER12RST;
RCC->APB1RCR &= ~RCC_APB1PERIPH_TIMER12;
} else if (TIMERx == TIMER13) {
RCC->APB1RCR |= RCC_APB1PERIPH_TIMER13RST;
RCC->APB1RCR &= ~RCC_APB1PERIPH_TIMER13;
} else if (TIMERx == TIMER14) {
RCC->APB1RCR |= RCC_APB1PERIPH_TIMER14RST;
RCC->APB1RCR &= ~RCC_APB1PERIPH_TIMER14;
}
}
/**
* @brief Initialize the specified Timer
* @param TIMERx: x ={ 1 -14 } .
* @param TIMER_Init: pointer to a TIMER_BaseInitPara structure.
* @retval None
*/
void TIMER_BaseInit(TIMER_TypeDef *TIMERx, TIMER_BaseInitPara *TIMER_Init)
{
uint16_t tmpctlr1 = 0;
tmpctlr1 = TIMERx->CTLR1;
if ((TIMERx == TIMER1) || (TIMERx == TIMER8) || (TIMERx == TIMER2) || (TIMERx == TIMER3) ||
(TIMERx == TIMER4) || (TIMERx == TIMER5) || (TIMERx == TIMER9) || (TIMERx == TIMER10)
|| (TIMERx == TIMER11) || (TIMERx == TIMER12) || (TIMERx == TIMER13) || (TIMERx == TIMER14)) {
/* Configure the Counter Mode */
tmpctlr1 &= (uint16_t)(~((uint16_t)(TIMER_CTLR1_DIR | TIMER_CTLR1_CAM)));
tmpctlr1 |= (uint32_t)TIMER_Init->TIMER_CounterMode;
}
if ((TIMERx != TIMER6) && (TIMERx != TIMER7)) {
/* Configure the clock division */
tmpctlr1 &= (uint16_t)(~((uint16_t)TIMER_CTLR1_CDIV));
tmpctlr1 |= (uint32_t)TIMER_Init->TIMER_ClockDivision;
}
TIMERx->CTLR1 = tmpctlr1;
/* Configure the Autoreload value */
TIMERx->CARL = TIMER_Init->TIMER_Period ;
/* Configure the Prescaler value */
TIMERx->PSC = TIMER_Init->TIMER_Prescaler;
if ((TIMERx == TIMER1) ||
(TIMERx == TIMER8)) {
/* Configure the Repetition Counter value */
TIMERx->CREP = TIMER_Init->TIMER_RepetitionCounter;
}
/* Generate an update event */
TIMERx->EVG = TIMER_PSC_RELOAD_NOW;
}
/**
* @brief Fill each TIMER_BaseInitPara Struct member with a default value.
* @param TIMER_Init: pointer to a TIMER_BaseInitPara structure.
* @retval None
*/
void TIMER_BaseStructInit(TIMER_BaseInitPara *TIMER_Init)
{
/* Fill the default value */
TIMER_Init->TIMER_Period = 0xFFFFFFFF;
TIMER_Init->TIMER_Prescaler = 0x0000;
TIMER_Init->TIMER_ClockDivision = TIMER_CDIV_DIV1;
TIMER_Init->TIMER_CounterMode = TIMER_COUNTER_UP;
TIMER_Init->TIMER_RepetitionCounter = 0x0000;
}
/**
* @brief Configure the TIMER Prescaler.
* @param TIMERx: x ={ 1-14 }
* @param Prescaler: Prescaler value
* @param TIMER_PSCReloadMode: Prescaler Reload mode
* This value will be :
* @arg TIMER_PSC_RELOAD_UPDATE : The Prescaler is loaded at the next update event.
* @arg TIMER_PSC_RELOAD_NOW : The Prescaler is loaded right now.
* @retval None
*/
void TIMER_PrescalerConfig(TIMER_TypeDef *TIMERx, uint16_t Prescaler, uint16_t TIMER_PSCReloadMode)
{
/* Set PSC */
TIMERx->PSC = Prescaler;
/* Choose reload mode */
TIMERx->EVG = TIMER_PSCReloadMode;
}
/**
* @brief Configure the TIMER Counter Mode
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_CounterMode: the Counter Mode
* This value will be :
* @arg TIMER_COUNTER_UP : Up Counting Mode
* @arg TIMER_COUNTER_DOWN : Down Counting Mode
* @arg TIMER_COUNTER_CENTER_ALIGNED1: Center Aligned Counting Mode1
* @arg TIMER_COUNTER_CENTER_ALIGNED2: Center Aligned Counting Mode2
* @arg TIMER_COUNTER_CENTER_ALIGNED3: Center Aligned Counting Mode3
* @retval None
*/
void TIMER_CounterMode(TIMER_TypeDef *TIMERx, uint16_t TIMER_CounterMode)
{
uint16_t tmpctlr1 = 0;
tmpctlr1 = TIMERx->CTLR1;
/* Reset the CAM and DIR Bits */
tmpctlr1 &= (uint16_t)(~((uint16_t)(TIMER_CTLR1_DIR | TIMER_CTLR1_CAM)));
/* Configures the Counter Mode */
tmpctlr1 |= TIMER_CounterMode;
/* Update the TIMER CTLR1 */
TIMERx->CTLR1 = tmpctlr1;
}
/**
* @brief Configure the TIMER Counter Register value
* @param TIMERx: x ={ 1-14 } .
* @param Counter: the Counter register new value.
* @retval None
*/
void TIMER_SetCounter(TIMER_TypeDef *TIMERx, uint32_t Counter)
{
TIMERx->CNT = Counter;
}
/**
* @brief Configure the Autoreload value
* @param TIMERx: x ={ 1-14 } .
* @param AutoReloadValue:
* @retval None
*/
void TIMER_SetAutoreload(TIMER_TypeDef *TIMERx, uint32_t AutoReloadValue)
{
TIMERx->CARL = AutoReloadValue;
}
/**
* @brief Get the Counter value.
* @param TIMERx: x ={ 1-14 } .
* @retval Counter Register value.
*/
uint32_t TIMER_GetCounter(TIMER_TypeDef *TIMERx)
{
return TIMERx->CNT;
}
/**
* @brief Get the Prescaler value.
* @param TIMERx: x ={ 1-14 } .
* @retval Prescaler Register value
*/
uint16_t TIMER_GetPrescaler(TIMER_TypeDef *TIMERx)
{
return TIMERx->PSC;
}
/**
* @brief Configure the TIMERx Update event.
* @param TIMERx: x ={ 1-14 } .
* @param NewValue: new value of the TIMERx UPDIS bit
* This value will be :
* @arg ENABLE : Update Enbale
* @arg DISABLE : Update Disable
* @retval None
*/
void TIMER_UpdateDisableConfig(TIMER_TypeDef *TIMERx, TypeState NewValue)
{
if (NewValue != DISABLE) {
TIMERx->CTLR1 |= TIMER_CTLR1_UPDIS;
} else {
TIMERx->CTLR1 &= (uint16_t)~((uint16_t)TIMER_CTLR1_UPDIS);
}
}
/**
* @brief Configure the TIMER Update Request source.
* @param TIMERx: x ={ 1-14 } .
* @param TIMER_UpdateSrc: Configures the Update source.
* This value will be :
* @arg TIMER_UPDATE_SRC_GLOBAL : Update generate by setting of UPG bit or the counter
* overflow/underflow , or the slave mode controller trigger.
* @arg TIMER_UPDATE_SRC_REGULAR : Update generate only by counter overflow/underflow.
* @retval None
*/
void TIMER_UpdateRequestConfig(TIMER_TypeDef *TIMERx, uint16_t TIMER_UpdateSrc)
{
if (TIMER_UpdateSrc != TIMER_UPDATE_SRC_GLOBAL) {
TIMERx->CTLR1 |= TIMER_CTLR1_UPS;
} else {
TIMERx->CTLR1 &= (uint16_t)~((uint16_t)TIMER_CTLR1_UPS);
}
}
/**
* @brief Configure the CARL Preload function
* @param TIMERx: x ={ 1-14 } .
* @param NewValue: the state of the Preload function on CARL.
* This value will be :
* @arg ENABLE
* @arg DISABLE
* @retval None
*/
void TIMER_CARLPreloadConfig(TIMER_TypeDef *TIMERx, TypeState NewValue)
{
if (NewValue != DISABLE) {
/* Set the CARL Preload Bit */
TIMERx->CTLR1 |= TIMER_CTLR1_ARSE;
} else {
/* Reset the CARL Preload Bit */
TIMERx->CTLR1 &= (uint16_t)~((uint16_t)TIMER_CTLR1_ARSE);
}
}
/**
* @brief Select the TIMER Single Pulse Mode.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_SPMode: specifies the SPM Mode to be used.
* This value will be :
* @arg TIMER_SP_MODE_SINGLE
* @arg TIMER_SP_MODE_REPETITIVE
* @retval None
*/
void TIMER_SinglePulseMode(TIMER_TypeDef *TIMERx, uint16_t TIMER_SPMode)
{
/* Reset the SPM Bit */
TIMERx->CTLR1 &= (uint16_t)~((uint16_t)TIMER_CTLR1_SPM);
/* Set the SPM Bit */
TIMERx->CTLR1 |= TIMER_SPMode;
}
/**
* @brief Configure the TIMERx Clock Division value.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_CDIV: the clock division value.
* This value will be :
* @arg TIMER_CDIV_DIV1: TDTS = Tck_tim
* @arg TIMER_CDIV_DIV2: TDTS = 2*Tck_tim
* @arg TIMER_CDIV_DIV4: TDTS = 4*Tck_tim
* @retval None
*/
void TIMER_SetClockDivision(TIMER_TypeDef *TIMERx, uint16_t TIMER_CDIV)
{
/* Reset the CDIV value*/
TIMERx->CTLR1 &= (uint16_t)~((uint16_t)TIMER_CTLR1_CDIV);
/* Set the CDIV value */
TIMERx->CTLR1 |= TIMER_CDIV;
}
/**
* @brief ENABLE or DISABLE the TIMER.
* @param TIMERx: x ={ 1-14 } .
* @param NewValue: ENABLE or DISABLE.
* @retval None
*/
void TIMER_Enable(TIMER_TypeDef *TIMERx, TypeState NewValue)
{
if (NewValue != DISABLE) {
/* Enable the TIMER */
TIMERx->CTLR1 |= TIMER_CTLR1_CNTE;
} else {
/* Disable the TIMER */
TIMERx->CTLR1 &= (uint16_t)(~((uint16_t)TIMER_CTLR1_CNTE));
}
}
/**
* @brief Configure the: Break feature, dead time, Lock level, ROS/IOS State and the OAE
* @param TIMERx: x ={ 1 , 8 } .
* @param TIMER_BKDTInit: pointer to a TIMER_BKDTInitPara structure that
* contains the BKDT Register configuration information for the TIMER.
* @retval None
*/
void TIMER_BKDTConfig(TIMER_TypeDef *TIMERx, TIMER_BKDTInitPara *TIMER_BKDTInit)
{
TIMERx->BKDT = (uint32_t)TIMER_BKDTInit->TIMER_ROSState |
TIMER_BKDTInit->TIMER_IOSState |
TIMER_BKDTInit->TIMER_LOCKLevel |
TIMER_BKDTInit->TIMER_DeadTime |
TIMER_BKDTInit->TIMER_Break |
TIMER_BKDTInit->TIMER_BreakPolarity |
TIMER_BKDTInit->TIMER_OutAuto;
}
/**
* @brief Fill TIMER_BKDTInit structure member with default value.
* @param TIMER_BKDTInit : pointer to a TIMER_BKDTInitPara structure which will be initialized.
* @retval None
*/
void TIMER_BKDTStructInit(TIMER_BKDTInitPara *TIMER_BKDTInit)
{
TIMER_BKDTInit->TIMER_ROSState = TIMER_ROS_STATE_DISABLE;
TIMER_BKDTInit->TIMER_IOSState = TIMER_IOS_STATE_DISABLE;
TIMER_BKDTInit->TIMER_LOCKLevel = TIMER_LOCK_LEVEL_OFF;
TIMER_BKDTInit->TIMER_DeadTime = 0x00;
TIMER_BKDTInit->TIMER_Break = TIMER_BREAK_DISABLE;
TIMER_BKDTInit->TIMER_BreakPolarity = TIMER_BREAK_POLARITY_LOW;
TIMER_BKDTInit->TIMER_OutAuto = TIMER_OUTAUTO_DISABLE;
}
/**
* @brief Enable or disable the TIMER ALL Outputs.
* @param TIMERx: x ={ 1 , 8 } .
* @param NewValue: ENABLE or DISABLE .
* @retval None
*/
void TIMER_CtrlPWMOutputs(TIMER_TypeDef *TIMERx, TypeState NewValue)
{
if (NewValue != DISABLE) {
/* Enable the TIMER ALL Output */
TIMERx->BKDT |= TIMER_BKDT_POE;
} else {
/* Disable the TIMER ALL Output */
TIMERx->BKDT &= (uint16_t)(~((uint16_t)TIMER_BKDT_POE));
}
}
/**
* @brief Initialize the TIMERx Channel1 with TIMER_OCInitPara .
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_OCInit : pointer to a TIMER_OCInitPara structure .
* @retval None
*/
void TIMER_OC1_Init(TIMER_TypeDef *TIMERx, TIMER_OCInitPara *TIMER_OCInit)
{
uint16_t tmpchctlrx = 0, tmpche = 0, tmpctlr2 = 0;
/* Disable the Channel 1: Reset the CH1E Bit */
TIMERx->CHE &= (uint16_t)(~(uint16_t)TIMER_CHE_CH1E);
/* Get the TIMERx CHE register value */
tmpche = TIMERx->CHE;
/* Get the TIMERx CTLR2 register value */
tmpctlr2 = TIMERx->CTLR2;
/* Get the TIMERx CHCTLR1 register value */
tmpchctlrx = TIMERx->CHCTLR1;
/* Reset the Output Compare Mode Bits */
tmpchctlrx &= (uint16_t)(~((uint16_t)TIMER_CHCTLR1_CH1OM));
tmpchctlrx &= (uint16_t)(~((uint16_t)TIMER_CHCTLR1_CH1M));
/* Select the Output Compare Mode */
tmpchctlrx |= TIMER_OCInit->TIMER_OCMode;
/* Reset the Output Polarity */
tmpche &= (uint16_t)(~((uint16_t)TIMER_CHE_CH1P));
/* Set the Output Compare Polarity */
tmpche |= TIMER_OCInit->TIMER_OCPolarity;
/* Set the Output State */
tmpche |= TIMER_OCInit->TIMER_OutputState;
if ((TIMERx == TIMER1) || (TIMERx == TIMER8)) {
/* Reset the Output complementary Polarity */
tmpche &= (uint16_t)(~((uint16_t)TIMER_CHE_CH1NP));
/* Set the Output complementary Polarity */
tmpche |= TIMER_OCInit->TIMER_OCNPolarity;
/* Reset the Output complementary State */
tmpche &= (uint16_t)(~((uint16_t)TIMER_CHE_CH1NE));
/* Set the Output complementary State */
tmpche |= TIMER_OCInit->TIMER_OutputNState;
/* Reset the Ouput Compare and Output Compare complementary IDLE State */
tmpctlr2 &= (uint16_t)(~((uint16_t)TIMER_CTLR2_ISO1));
tmpctlr2 &= (uint16_t)(~((uint16_t)TIMER_CTLR2_ISO1N));
/* Set the Output Idle state */
tmpctlr2 |= TIMER_OCInit->TIMER_OCIdleState;
/* Set the Output complementary Idle state */
tmpctlr2 |= TIMER_OCInit->TIMER_OCNIdleState;
}
/* Write to TIMERx CTLR2 */
TIMERx->CTLR2 = tmpctlr2;
/* Write to TIMERx CHCTLR1 */
TIMERx->CHCTLR1 = tmpchctlrx;
/* Set the Capture / Compare Register value */
TIMERx->CHCC1 = TIMER_OCInit->TIMER_Pulse;
/* Write to TIMERx CHE */
TIMERx->CHE = tmpche;
}
/**
* @brief Initialize the TIMERx Channel2 with TIMER_OCInitPara .
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_OCInit : pointer to a TIMER_OCInitPara structure .
* @retval None
*/
void TIMER_OC2_Init(TIMER_TypeDef *TIMERx, TIMER_OCInitPara *TIMER_OCInit)
{
uint16_t tmpchctlrx = 0, tmpche = 0, tmpctlr2 = 0;
/* Disable the Channel 2: Reset the CH2E Bit */
TIMERx->CHE &= (uint16_t)(~((uint16_t)TIMER_CHE_CH2E));
/* Get the TIMERx CHE register value */
tmpche = TIMERx->CHE;
/* Get the TIMERx CTLR2 register value */
tmpctlr2 = TIMERx->CTLR2;
/* Get the TIMERx CHCTLR1 register value */
tmpchctlrx = TIMERx->CHCTLR1;
/* Reset the Output Compare Mode Bits */
tmpchctlrx &= (uint16_t)(~((uint16_t)TIMER_CHCTLR1_CH2OM));
tmpchctlrx &= (uint16_t)(~((uint16_t)TIMER_CHCTLR1_CH2M));
/* Select the Output Compare Mode */
tmpchctlrx |= (uint16_t)(TIMER_OCInit->TIMER_OCMode << 8);
/* Reset the Output Polarity */
tmpche &= (uint16_t)(~((uint16_t)TIMER_CHE_CH2P));
/* Set the Output Compare Polarity */
tmpche |= (uint16_t)(TIMER_OCInit->TIMER_OCPolarity << 4);
/* Set the Output State */
tmpche |= (uint16_t)(TIMER_OCInit->TIMER_OutputState << 4);
if ((TIMERx == TIMER1) || (TIMERx == TIMER8)) {
/* Reset the Output complementary Polarity */
tmpche &= (uint16_t)(~((uint16_t)TIMER_CHE_CH2NP));
/* Set the Output complementary Polarity */
tmpche |= (uint16_t)(TIMER_OCInit->TIMER_OCNPolarity << 4);
/* Reset the Output complementary State */
tmpche &= (uint16_t)(~((uint16_t)TIMER_CHE_CH2NE));
/* Set the Output complementary State */
tmpche |= (uint16_t)(TIMER_OCInit->TIMER_OutputNState << 4);
/* Reset the Ouput Compare and Output Compare complementary IDLE State */
tmpctlr2 &= (uint16_t)(~((uint16_t)TIMER_CTLR2_ISO2));
tmpctlr2 &= (uint16_t)(~((uint16_t)TIMER_CTLR2_ISO2N));
/* Set the Output Idle state */
tmpctlr2 |= (uint16_t)(TIMER_OCInit->TIMER_OCIdleState << 2);
/* Set the Output complementary Idle state */
tmpctlr2 |= (uint16_t)(TIMER_OCInit->TIMER_OCNIdleState << 2);
}
/* Write to TIMERx CTLR2 */
TIMERx->CTLR2 = tmpctlr2;
/* Write to TIMERx CHCTLR1 */
TIMERx->CHCTLR1 = tmpchctlrx;
/* Set the Capture / Compare Register value */
TIMERx->CHCC2 = TIMER_OCInit->TIMER_Pulse;
/* Write to TIMERx CHE */
TIMERx->CHE = tmpche;
}
/**
* @brief Initialize the TIMERx Channel3 with TIMER_OCInitPara .
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8} .
* @param TIMER_OCInit : pointer to a TIMER_OCInitPara structure .
* @retval None
*/
void TIMER_OC3_Init(TIMER_TypeDef *TIMERx, TIMER_OCInitPara *TIMER_OCInit)
{
uint16_t tmpchctlrx = 0, tmpche = 0, tmpctlr2 = 0;
/* Disable the Channel 3: Reset the CH3E Bit */
TIMERx->CHE &= (uint16_t)(~((uint16_t)TIMER_CHE_CH3E));
/* Get the TIMERx CHE register value */
tmpche = TIMERx->CHE;
/* Get the TIMERx CTLR2 register value */
tmpctlr2 = TIMERx->CTLR2;
/* Get the TIMERx CHCTLR2 register value */
tmpchctlrx = TIMERx->CHCTLR2;
/* Reset the Output Compare Mode Bits */
tmpchctlrx &= (uint16_t)(~((uint16_t)TIMER_CHCTLR2_CH3OM));
tmpchctlrx &= (uint16_t)(~((uint16_t)TIMER_CHCTLR2_CH3M));
/* Select the Output Compare Mode */
tmpchctlrx |= TIMER_OCInit->TIMER_OCMode;
/* Reset the Output Polarity */
tmpche &= (uint16_t)(~((uint16_t)TIMER_CHE_CH3P));
/* Set the Output Compare Polarity */
tmpche |= (uint16_t)(TIMER_OCInit->TIMER_OCPolarity << 8);
/* Set the Output State */
tmpche |= (uint16_t)(TIMER_OCInit->TIMER_OutputState << 8);
if ((TIMERx == TIMER1) || (TIMERx == TIMER8)) {
/* Reset the Output complementary Polarity */
tmpche &= (uint16_t)(~((uint16_t)TIMER_CHE_CH3NP));
/* Set the Output complementary Polarity */
tmpche |= (uint16_t)(TIMER_OCInit->TIMER_OCNPolarity << 8);
/* Reset the Output complementary State */
tmpche &= (uint16_t)(~((uint16_t)TIMER_CHE_CH3NE));
/* Set the Output complementary State */
tmpche |= (uint16_t)(TIMER_OCInit->TIMER_OutputNState << 8);
/* Reset the Ouput Compare and Output Compare complementary IDLE State */
tmpctlr2 &= (uint16_t)(~((uint16_t)TIMER_CTLR2_ISO3));
tmpctlr2 &= (uint16_t)(~((uint16_t)TIMER_CTLR2_ISO3N));
/* Set the Output Idle state */
tmpctlr2 |= (uint16_t)(TIMER_OCInit->TIMER_OCIdleState << 4);
/* Set the Output complementary Idle state */
tmpctlr2 |= (uint16_t)(TIMER_OCInit->TIMER_OCNIdleState << 4);
}
/* Write to TIMERx CTLR2 */
TIMERx->CTLR2 = tmpctlr2;
/* Write to TIMERx CHCTLR2 */
TIMERx->CHCTLR2 = tmpchctlrx;
/* Set the Capture / Compare Register value */
TIMERx->CHCC3 = TIMER_OCInit->TIMER_Pulse;
/* Write to TIMERx CHE */
TIMERx->CHE = tmpche;
}
/**
* @brief Initialize the TIMERx Channel4 with TIMER_OCInitPara .
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8} .
* @param TIMER_OCInit : pointer to a TIMER_OCInitPara structure .
* @retval None
*/
void TIMER_OC4_Init(TIMER_TypeDef *TIMERx, TIMER_OCInitPara *TIMER_OCInit)
{
uint16_t tmpchctlrx = 0, tmpche = 0, tmpctlr2 = 0;
/* Disable the Channel 4: Reset the CH4E Bit */
TIMERx->CHE &= (uint16_t)(~((uint16_t)TIMER_CHE_CH4E));
/* Get the TIMERx CHE register value */
tmpche = TIMERx->CHE;
/* Get the TIMERx CTLR2 register value */
tmpctlr2 = TIMERx->CTLR2;
/* Get the TIMERx CHCTLR2 register value */
tmpchctlrx = TIMERx->CHCTLR2;
/* Reset the Output Compare Mode Bits */
tmpchctlrx &= (uint16_t)(~((uint16_t)TIMER_CHCTLR2_CH4OM));
tmpchctlrx &= (uint16_t)(~((uint16_t)TIMER_CHCTLR2_CH4M));
/* Select the Output Compare Mode */
tmpchctlrx |= (uint16_t)(TIMER_OCInit->TIMER_OCMode << 8);
/* Reset the Output Polarity */
tmpche &= (uint16_t)(~((uint16_t)TIMER_CHE_CH4P));
/* Set the Output Compare Polarity */
tmpche |= (uint16_t)(TIMER_OCInit->TIMER_OCPolarity << 12);
/* Set the Output State */
tmpche |= (uint16_t)(TIMER_OCInit->TIMER_OutputState << 12);
if ((TIMERx == TIMER1) || (TIMERx == TIMER8)) {
/* Reset the Ouput Compare IDLE State */
tmpctlr2 &= (uint16_t)(~((uint16_t)TIMER_CTLR2_ISO4));
/* Set the Output Idle state */
tmpctlr2 |= (uint16_t)(TIMER_OCInit->TIMER_OCIdleState << 6);
}
/* Write to TIMERx CTLR2 */
TIMERx->CTLR2 = tmpctlr2;
/* Write to TIMERx CHCTLR2 */
TIMERx->CHCTLR2 = tmpchctlrx;
/* Set the Capture Compare Register value */
TIMERx->CHCC4 = TIMER_OCInit->TIMER_Pulse;
/* Write to TIMERx CHE */
TIMERx->CHE = tmpche;
}
/**
* @brief Fill TIMER_OCInitPara member with default value.
* @param TIMER_OCInit: pointer to a TIMER_OCInitPara structure.
* @retval None
*/
void TIMER_OCStructInit(TIMER_OCInitPara *TIMER_OCInit)
{
TIMER_OCInit->TIMER_OCMode = TIMER_OC_MODE_TIMING;
TIMER_OCInit->TIMER_OutputState = TIMER_OUTPUT_STATE_DISABLE;
TIMER_OCInit->TIMER_OutputNState = TIMER_OUTPUTN_STATE_DISABLE;
TIMER_OCInit->TIMER_Pulse = 0x0000000;
TIMER_OCInit->TIMER_OCPolarity = TIMER_OC_POLARITY_HIGH;
TIMER_OCInit->TIMER_OCNPolarity = TIMER_OC_POLARITY_HIGH;
TIMER_OCInit->TIMER_OCIdleState = TIMER_OC_IDLE_STATE_RESET;
TIMER_OCInit->TIMER_OCNIdleState = TIMER_OCN_IDLE_STATE_RESET;
}
/**
* @brief Configure the TIMER Output Compare Mode.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_Ch:
* This value will be :
* @arg TIMER_CH_1
* @arg TIMER_CH_2
* @arg TIMER_CH_3
* @arg TIMER_CH_4
* @param TIMER_OCMode: the TIMER Output Compare Mode.
* This value will be :
* @arg TIMER_OC_MODE_TIMING
* @arg TIMER_OC_MODE_ACTIVE
* @arg TIMER_OC_MODE_TOGGLE
* @arg TIMER_OC_MODE_PWM1
* @arg TIMER_OC_MODE_PWM2
* @arg TIMER_FORCED_HIGH
* @arg TIMER_FORCED_LOW
* @retval None
*/
void TIMER_OCxModeConfig(TIMER_TypeDef *TIMERx, uint16_t TIMER_Ch, uint16_t TIMER_OCMode)
{
uint32_t tmp = 0;
uint16_t tmp1 = 0;
tmp = (uint32_t) TIMERx;
tmp += CHCTLR_OFFSET;
tmp1 = CHE_CHE_SET << (uint16_t)TIMER_Ch;
/* Disable the Channel: Reset the CHxE Bit */
TIMERx->CHE &= (uint16_t) ~tmp1;
if ((TIMER_Ch == TIMER_CH_1) || (TIMER_Ch == TIMER_CH_3)) {
tmp += (TIMER_Ch >> 1);
/* Reset the CHxOM bits in the CHCTLRx register */
*(__IO uint32_t *) tmp &= (uint32_t)~((uint32_t)TIMER_CHCTLR1_CH1OM);
/* Configure the CHxOM bits in the CHCTLRx register */
*(__IO uint32_t *) tmp |= TIMER_OCMode;
} else {
tmp += (uint16_t)(TIMER_Ch - (uint16_t)4) >> (uint16_t)1;
/* Reset the CHxOM bits in the CHCTLRx register */
*(__IO uint32_t *) tmp &= (uint32_t)~((uint32_t)TIMER_CHCTLR1_CH2OM);
/* Configure the CHxOM bits in the CHCTLRx register */
*(__IO uint32_t *) tmp |= (uint16_t)(TIMER_OCMode << 8);
}
}
/**
* @brief Configure the TIMERx Capture or Compare Register value
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param CompValue1: the Capture / Compare1 register new value
* @retval None
*/
void TIMER_Compare1Config(TIMER_TypeDef *TIMERx, uint32_t CompValue1)
{
TIMERx->CHCC1 = CompValue1 ;
}
/**
* @brief Configure the TIMERx Capture or Compare Register value
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param CompValue2: the Capture / Compare1 register new value
* @retval None
*/
void TIMER_Compare2Config(TIMER_TypeDef *TIMERx, uint32_t CompValue2)
{
TIMERx->CHCC2 = CompValue2;
}
/**
* @brief Configure the TIMERx Capture or Compare Register value
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param CompValue3: the Capture / Compare1 register new value
* @retval None
*/
void TIMER_Compare3Config(TIMER_TypeDef *TIMERx, uint32_t CompValue3)
{
TIMERx->CHCC3 = CompValue3;
}
/**
* @brief Configure the TIMERx Capture or Compare Register value
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param CompValue4: the Capture / Compare1 register new value
* @retval None
*/
void TIMER_Compare4Config(TIMER_TypeDef *TIMERx, uint32_t CompValue4)
{
TIMERx->CHCC4 = CompValue4;
}
/**
* @brief Force the TIMERx output level to high or low
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_Forced: forced the output level.
* This value will be :
* @arg TIMER_FORCED_HIGH: Force output high level
* @arg TIMER_FORCED_LOW : Force output low level
* @retval None
*/
void TIMER_Forced_OC1(TIMER_TypeDef *TIMERx, uint16_t TIMER_Forced)
{
uint16_t tmpchctlr1 = 0;
tmpchctlr1 = TIMERx->CHCTLR1;
/* Reset the CH1OM Bits */
tmpchctlr1 &= (uint16_t)~((uint16_t)TIMER_CHCTLR1_CH1OM);
/* Configure The Forced output Mode */
tmpchctlr1 |= TIMER_Forced ;
TIMERx->CHCTLR1 = tmpchctlr1;
}
/**
* @brief Force the TIMERx output level to high or low
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_Forced: forced the output level.
* This value will be :
* @arg TIMER_FORCED_HIGH: Force output high level
* @arg TIMER_FORCED_LOW : Force output low level
* @retval None
*/
void TIMER_Forced_OC2(TIMER_TypeDef *TIMERx, uint16_t TIMER_Forced)
{
uint16_t tmpchctlr1 = 0;
tmpchctlr1 = TIMERx->CHCTLR1;
/* Reset the CH2OM Bits */
tmpchctlr1 &= (uint16_t)~((uint16_t)TIMER_CHCTLR1_CH2OM);
/* Configure The Forced output Mode */
tmpchctlr1 |= (uint16_t)(TIMER_Forced << 8);
TIMERx->CHCTLR1 = tmpchctlr1;
}
/**
* @brief Force the TIMERx output level to high or low
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_Forced: forced the output level.
* This value will be :
* @arg TIMER_FORCED_HIGH: Force output high level
* @arg TIMER_FORCED_LOW : Force output low level
* @retval None
*/
void TIMER_Forced_OC3(TIMER_TypeDef *TIMERx, uint16_t TIMER_Forced)
{
uint16_t tmpchctlr2 = 0;
tmpchctlr2 = TIMERx->CHCTLR2;
/* Reset the CH3OM Bits */
tmpchctlr2 &= (uint16_t)~((uint16_t)TIMER_CHCTLR2_CH3OM);
/* Configure The Forced output Mode */
tmpchctlr2 |= TIMER_Forced ;
TIMERx->CHCTLR2 = tmpchctlr2;
}
/**
* @brief Force the TIMERx output level to high or low
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_Forced: forced the output level.
* This value will be :
* @arg TIMER_FORCED_HIGH: Force output high level
* @arg TIMER_FORCED_LOW : Force output low level
* @retval None
*/
void TIMER_Forced_OC4(TIMER_TypeDef *TIMERx, uint16_t TIMER_Forced)
{
uint16_t tmpchctlr2 = 0;
tmpchctlr2 = TIMERx->CHCTLR2;
/* Reset the CH4OM Bits */
tmpchctlr2 &= (uint16_t)~((uint16_t)TIMER_CHCTLR2_CH4OM);
/* Configure The Forced output Mode */
tmpchctlr2 |= (uint16_t)(TIMER_Forced << 8);
TIMERx->CHCTLR2 = tmpchctlr2;
}
/**
* @brief Configure the TIMER Capture or Compare Preload Control bit
* @param TIMERx: x ={ 1 , 8 } .
* @param NewValue: ENABLE or DISABLE.
* @retval None
*/
void TIMER_CC_PreloadControl(TIMER_TypeDef *TIMERx, TypeState NewValue)
{
if (NewValue != DISABLE) {
/* Set the CCSE Bit */
TIMERx->CTLR2 |= TIMER_CTLR2_CCSE;
} else {
/* Reset the CCSE Bit */
TIMERx->CTLR2 &= (uint16_t)~((uint16_t)TIMER_CTLR2_CCSE);
}
}
/**
* @brief Configure the TIMER channel 1 Capture or Compare Preload register
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_OCPreload : state of the TIMERx Preload register
* This value will be :
* @arg TIMER_OC_PRELOAD_ENABLE
* @arg TIMER_OC_PRELOAD_DISABLE
* @retval None
*/
void TIMER_OC1_Preload(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCPreload)
{
uint16_t tmpchctlr1 = 0;
tmpchctlr1 = TIMERx->CHCTLR1;
/* Reset the CH1OSE Bit */
tmpchctlr1 &= (uint16_t)~((uint16_t)TIMER_CHCTLR1_CH1OSE);
/* Enable or Disable the Output Compare Preload */
tmpchctlr1 |= TIMER_OCPreload;
TIMERx->CHCTLR1 = tmpchctlr1;
}
/**
* @brief Configure the TIMER channel 2 Capture or Compare Preload register
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_OCPreload : state of the TIMERx Preload register
* This value will be :
* @arg TIMER_OC_PRELOAD_ENABLE
* @arg TIMER_OC_PRELOAD_DISABLE
* @retval None
*/
void TIMER_OC2_Preload(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCPreload)
{
uint16_t tmpchctlr1 = 0;
tmpchctlr1 = TIMERx->CHCTLR1;
/* Reset the CH2OSE Bit */
tmpchctlr1 &= (uint16_t)~((uint16_t)TIMER_CHCTLR1_CH2OSE);
/* Enable or Disable the Output Compare Preload */
tmpchctlr1 |= (uint16_t)(TIMER_OCPreload << 8);
TIMERx->CHCTLR1 = tmpchctlr1;
}
/**
* @brief Configure the TIMER channel 3 Capture or Compare Preload register
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_OCPreload : state of the TIMERx Preload register
* This value will be :
* @arg TIMER_OC_PRELOAD_ENABLE
* @arg TIMER_OC_PRELOAD_DISABLE
* @retval None
*/
void TIMER_OC3_Preload(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCPreload)
{
uint16_t tmpchctlr2 = 0;
tmpchctlr2 = TIMERx->CHCTLR2;
/* Reset the CH3OSE Bit */
tmpchctlr2 &= (uint16_t)~((uint16_t)TIMER_CHCTLR2_CH3OSE);
/* Enable or Disable the Output Compare Preload */
tmpchctlr2 |= TIMER_OCPreload;
TIMERx->CHCTLR2 = tmpchctlr2;
}
/**
* @brief Configure the TIMER channel 4 Capture or Compare Preload register
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_OCPreload : state of the TIMERx Preload register
* This value will be :
* @arg TIMER_OC_PRELOAD_ENABLE
* @arg TIMER_OC_PRELOAD_DISABLE
* @retval None
*/
void TIMER_OC4_Preload(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCPreload)
{
uint16_t tmpchctlr2 = 0;
tmpchctlr2 = TIMERx->CHCTLR2;
/* Reset the CH4OSE Bit */
tmpchctlr2 &= (uint16_t)~((uint16_t)TIMER_CHCTLR2_CH4OSE);
/* Enable or Disable the Output Compare Preload */
tmpchctlr2 |= (uint16_t)(TIMER_OCPreload << 8);
TIMERx->CHCTLR2 = tmpchctlr2;
}
/**
* @brief Configure the TIMER channel 1 Compare output Fast mode
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_OCFast: state of the Compare Output Fast Enable Bit.
* This value will be :
* @arg TIMER_OC_FAST_ENABLE : output fast enable
* @arg TIMER_OC_FAST_DISABLE: output fast disable
* @retval None
*/
void TIMER_OC1_FastConfig(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCFast)
{
uint16_t tmpchctlr1 = 0;
tmpchctlr1 = TIMERx->CHCTLR1;
/* Reset the CH1OFE Bit */
tmpchctlr1 &= (uint16_t)~((uint16_t)TIMER_CHCTLR1_CH1OFE);
/* Enable or Disable the Output Compare Fast Bit */
tmpchctlr1 |= TIMER_OCFast;
TIMERx->CHCTLR1 = tmpchctlr1;
}
/**
* @brief Configure the TIMER channel 2 Compare output Fast mode
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_OCFast: state of the Compare Output Fast Enable Bit.
* This value will be :
* @arg TIMER_OC_FAST_ENABLE : output fast enable
* @arg TIMER_OC_FAST_DISABLE: output fast disable
* @retval None
*/
void TIMER_OC2_FastConfig(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCFast)
{
uint16_t tmpchctlr1 = 0;
tmpchctlr1 = TIMERx->CHCTLR1;
/* Reset the CH2OFE Bit */
tmpchctlr1 &= (uint16_t)~((uint16_t)TIMER_CHCTLR1_CH2OFE);
/* Enable or Disable the Output Compare Fast Bit */
tmpchctlr1 |= (uint16_t)(TIMER_OCFast << 8);
TIMERx->CHCTLR1 = tmpchctlr1;
}
/**
* @brief Configure the TIMER channel 3 Compare output Fast mode
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_OCFast: state of the Compare Output Fast Enable Bit.
* This value will be :
* @arg TIMER_OC_FAST_ENABLE : output fast enable
* @arg TIMER_OC_FAST_DISABLE: output fast disable
* @retval None
*/
void TIMER_OC3_FastConfig(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCFast)
{
uint16_t tmpchctlr2 = 0;
tmpchctlr2 = TIMERx->CHCTLR2;
/* Reset the CH3OFE Bit */
tmpchctlr2 &= (uint16_t)~((uint16_t)TIMER_CHCTLR2_CH3OFE);
/* Enable or Disable the Output Compare Fast Bit */
tmpchctlr2 |= TIMER_OCFast;
TIMERx->CHCTLR2 = tmpchctlr2;
}
/**
* @brief Configure the TIMER channel 4 Compare output Fast mode
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_OCFast: state of the Compare Output Fast Enable Bit.
* This value will be :
* @arg TIMER_OC_FAST_ENABLE : output fast enable
* @arg TIMER_OC_FAST_DISABLE: output fast disable
* @retval None
*/
void TIMER_OC4_FastConfig(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCFast)
{
uint16_t tmpchctlr2 = 0;
tmpchctlr2 = TIMERx->CHCTLR2;
/* Reset the CH4OFE Bit */
tmpchctlr2 &= (uint16_t)~((uint16_t)TIMER_CHCTLR2_CH4OFE);
/* Enable or Disable the Output Compare Fast Bit */
tmpchctlr2 |= (uint16_t)(TIMER_OCFast << 8);
TIMERx->CHCTLR2 = tmpchctlr2;
}
/**
* @brief If Clear the OCREF signal on an external event
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_OCClear: new state of the Output Compare Clear Enable Bit.
* This value will be :
* @arg TIMER_OC_CLEAR_ENABLE : Output clear enable
* @arg TIMER_OC_CLEAR_DISABLE: Output clear disable
* @retval None
*/
void TIMER_OC1_RefClear(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCClear)
{
uint16_t tmpchctlr1 = 0;
tmpchctlr1 = TIMERx->CHCTLR1;
/* Reset the CH1OCE Bit */
tmpchctlr1 &= (uint16_t)~((uint16_t)TIMER_CHCTLR1_CH1OCE);
/* Enable or Disable the Output Compare Clear Bit */
tmpchctlr1 |= TIMER_OCClear;
TIMERx->CHCTLR1 = tmpchctlr1;
}
/**
* @brief If Clear the OCREF signal on an external event
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_OCClear: new state the Output Compare Clear Enable Bit.
* This value will be :
* @arg TIMER_OC_CLEAR_ENABLE : Output clear enable
* @arg TIMER_OC_CLEAR_DISABLE: Output clear disable
* @retval None
*/
void TIMER_OC2_RefClear(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCClear)
{
uint16_t tmpchctlr1 = 0;
tmpchctlr1 = TIMERx->CHCTLR1;
/* Reset the OC2CE Bit */
tmpchctlr1 &= (uint16_t)~((uint16_t)TIMER_CHCTLR1_CH2OCE);
/* Enable or Disable the Output Compare Clear Bit */
tmpchctlr1 |= (uint16_t)(TIMER_OCClear << 8);
TIMERx->CHCTLR1 = tmpchctlr1;
}
/**
* @brief If Clear the OCREF signal on an external event
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_OCClear: new state the Output Compare Clear Enable Bit.
* This value will be :
* @arg TIMER_OC_CLEAR_ENABLE : Output clear enable
* @arg TIMER_OC_CLEAR_DISABLE: Output clear disable
* @retval None
*/
void TIMER_OC3_RefClear(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCClear)
{
uint16_t tmpchctlr2 = 0;
tmpchctlr2 = TIMERx->CHCTLR2;
/* Reset the CH3OCE Bit */
tmpchctlr2 &= (uint16_t)~((uint16_t)TIMER_CHCTLR2_CH3OCE);
/* Enable or Disable the Output Compare Clear Bit */
tmpchctlr2 |= TIMER_OCClear;
TIMERx->CHCTLR2 = tmpchctlr2;
}
/**
* @brief If Clear the OCREF signal on an external event
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_OCClear: new state the Output Compare Clear Enable Bit.
* This value will be :
* @arg TIMER_OC_CLEAR_ENABLE : Output clear enable
* @arg TIMER_OC_CLEAR_DISABLE: Output clear disable
* @retval None
*/
void TIMER_OC4_RefClear(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCClear)
{
uint16_t tmpchctlr2 = 0;
tmpchctlr2 = TIMERx->CHCTLR2;
/* Reset the OC4CE Bit */
tmpchctlr2 &= (uint16_t)~((uint16_t)TIMER_CHCTLR2_CH4OCE);
/* Enable or Disable the Output Compare Clear Bit */
tmpchctlr2 |= (uint16_t)(TIMER_OCClear << 8);
TIMERx->CHCTLR2 = tmpchctlr2;
}
/**
* @brief Configure the TIMERx channel 1 polarity.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_OCPolarity :
* This value will be :
* @arg TIMER_OC_POLARITY_HIGH: active high
* @arg TIMER_OC_POLARITY_LOW : active low
* @retval None
*/
void TIMER_OC1_Polarity(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCPolarity)
{
uint16_t tmpche = 0;
tmpche = TIMERx->CHE;
/* Configures the CH1P Bit */
tmpche &= (uint16_t)~((uint16_t)TIMER_CHE_CH1P);
tmpche |= TIMER_OCPolarity;
TIMERx->CHE = tmpche;
}
/**
* @brief Configure the TIMERx Channel 1 complementary polarity.
* @param TIMERx: x ={ 1 , 8 } .
* @param TIMER_OCNPolarity:
* This value will be :
* @arg TIMER_OCN_POLARITY_HIGH: active high
* @arg TIMER_OCN_POLARITY_LOW: active low
* @retval None
*/
void TIMER_OC1N_Polarity(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCNPolarity)
{
uint16_t tmpche = 0;
tmpche = TIMERx->CHE;
/* Configures the CH1NP Bit */
tmpche &= (uint16_t)~((uint16_t)TIMER_CHE_CH1NP);
tmpche |= TIMER_OCNPolarity;
TIMERx->CHE = tmpche;
}
/**
* @brief Configure the TIMERx channel 2 polarity.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_OCPolarity :
* This value will be :
* @arg TIMER_OC_POLARITY_HIGH: active high
* @arg TIMER_OC_POLARITY_LOW : active low
* @retval None
*/
void TIMER_OC2_Polarity(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCPolarity)
{
uint16_t tmpche = 0;
tmpche = TIMERx->CHE;
/* Configure the CH2P Bit */
tmpche &= (uint16_t)~((uint16_t)TIMER_CHE_CH2P);
tmpche |= (uint16_t)(TIMER_OCPolarity << 4);
TIMERx->CHE = tmpche;
}
/**
* @brief Configure the TIMERx Channel 2 complementary polarity.
* @param TIMERx: x ={ 1 , 8 } .
* @param TIMER_OCNPolarity:
* This value will be :
* @arg TIMER_OCN_POLARITY_HIGH: active high
* @arg TIMER_OCN_POLARITY_LOW: active low
* @retval None
*/
void TIMER_OC2N_Polarity(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCNPolarity)
{
uint16_t tmpche = 0;
tmpche = TIMERx->CHE;
/* Configure the CH2NP Bit */
tmpche &= (uint16_t)~((uint16_t)TIMER_CHE_CH2NP);
tmpche |= (uint16_t)(TIMER_OCNPolarity << 4);
TIMERx->CHE = tmpche;
}
/**
* @brief Configure the TIMERx channel 3 polarity.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_OCPolarity :
* This value will be :
* @arg TIMER_OC_POLARITY_HIGH: active high
* @arg TIMER_OC_POLARITY_LOW : active low
* @retval None
*/
void TIMER_OC3_Polarity(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCPolarity)
{
uint16_t tmpche = 0;
tmpche = TIMERx->CHE;
/* Configure the CH3P Bit */
tmpche &= (uint16_t)~((uint16_t)TIMER_CHE_CH3P);
tmpche |= (uint16_t)(TIMER_OCPolarity << 8);
TIMERx->CHE = tmpche;
}
/**
* @brief Configure the TIMERx Channel 3 complementary polarity.
* @param TIMERx: x ={ 1 , 8 } .
* @param TIMER_OCNPolarity:
* This value will be :
* @arg TIMER_OCN_POLARITY_HIGH: active high
* @arg TIMER_OCN_POLARITY_LOW : active low
* @retval None
*/
void TIMER_OC3N_Polarity(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCNPolarity)
{
uint16_t tmpche = 0;
tmpche = TIMERx->CHE;
/* Configure the CH3NP Bit */
tmpche &= (uint16_t)~((uint16_t)TIMER_CHE_CH3NP);
tmpche |= (uint16_t)(TIMER_OCNPolarity << 8);
TIMERx->CHE = tmpche;
}
/**
* @brief Configure the TIMERx channel 4 polarity.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_OCPolarity :
* This value will be :
* @arg TIMER_OC_POLARITY_HIGH: active high
* @arg TIMER_OC_POLARITY_LOW : active low
* @retval None
*/
void TIMER_OC4_Polarity(TIMER_TypeDef *TIMERx, uint16_t TIMER_OCPolarity)
{
uint16_t tmpche = 0;
tmpche = TIMERx->CHE;
/* Configure the CH4P Bit */
tmpche &= (uint16_t)~((uint16_t)TIMER_CHE_CH4P);
tmpche |= (uint16_t)(TIMER_OCPolarity << 12);
TIMERx->CHE = tmpche;
}
/**
* @brief Turn-on or off the Channel x Capture or Compare .
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_Ch:
* This value will be :
* @arg TIMER_CH_1:
* @arg TIMER_CH_2:
* @arg TIMER_CH_3:
* @arg TIMER_CH_4:
* @param TIMER_CCx: the TIMER Channel CCxE bit new value.
* This value will be:
* @arg TIMER_CCX_ENABLE
* @arg TIMER_CCX_DISABLE
* @retval None
*/
void TIMER_CCxCmd(TIMER_TypeDef *TIMERx, uint16_t TIMER_Ch, uint16_t TIMER_CCx)
{
uint16_t tmp = 0;
tmp = CHE_CHE_SET << TIMER_Ch;
/* Reset the CCx Bit */
TIMERx->CHE &= (uint16_t)~ tmp;
/* Configure the CCx Bit */
TIMERx->CHE |= (uint16_t)(TIMER_CCx << TIMER_Ch);
}
/**
* @brief Turn-on or off the Channel x complementary Capture or Compare
* @param TIMERx: x ={ 1 , 8 } .
* @param TIMER_Ch:
* This value will be :
* @arg TIMER_CH_1:
* @arg TIMER_CH_2:
* @arg TIMER_CH_3:
* @param TIMER_CCxN: the Channel CCxN bit new value.
* This value will be:
* @arg TIMER_CCXN_ENABLE
* @arg TIMER_CCXN_DISABLE
* @retval None
*/
void TIMER_CCxNCmd(TIMER_TypeDef *TIMERx, uint16_t TIMER_Ch, uint16_t TIMER_CCxN)
{
uint16_t tmp = 0;
tmp = CHE_CHNE_SET << TIMER_Ch;
/* Reset the CCxN Bit */
TIMERx->CHE &= (uint16_t) ~tmp;
/* Configure the CCxN Bit */
TIMERx->CHE |= (uint16_t)(TIMER_CCxN << TIMER_Ch);
}
/**
* @brief Select control shadow register update control.
* @param TIMERx: x ={ 1, 8 } .
* @param NewState: ENABLE or DISABLE.
* @retval None
*/
void TIMER_SelectCOM(TIMER_TypeDef *TIMERx, TypeState NewValue)
{
if (NewValue != DISABLE) {
/* Set the CCUC Bit */
TIMERx->CTLR2 |= TIMER_CTLR2_CCUC;
} else {
/* Reset the CCUC Bit */
TIMERx->CTLR2 &= (uint16_t)~((uint16_t)TIMER_CTLR2_CCUC);
}
}
/**
* @brief Initialize the Input Capture parameters of the timer
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_ICInit: pointer to a TIMER_ICInitPara structure
* @retval None
*/
void TIMER_ICInit(TIMER_TypeDef *TIMERx, TIMER_ICInitPara *TIMER_ICInit)
{
if (TIMER_ICInit->TIMER_CH == TIMER_CH_1) {
TI1_Config(TIMERx, TIMER_ICInit->TIMER_ICPolarity,
TIMER_ICInit->TIMER_ICSelection,
TIMER_ICInit->TIMER_ICFilter);
/* Set the Input Capture Prescaler value */
TIMER_Set_IC1_Prescaler(TIMERx, TIMER_ICInit->TIMER_ICPrescaler);
} else if (TIMER_ICInit->TIMER_CH == TIMER_CH_2) {
TI2_Config(TIMERx, TIMER_ICInit->TIMER_ICPolarity,
TIMER_ICInit->TIMER_ICSelection,
TIMER_ICInit->TIMER_ICFilter);
/* Set the Input Capture Prescaler value */
TIMER_Set_IC2_Prescaler(TIMERx, TIMER_ICInit->TIMER_ICPrescaler);
} else if (TIMER_ICInit->TIMER_CH == TIMER_CH_3) {
TI3_Config(TIMERx, TIMER_ICInit->TIMER_ICPolarity,
TIMER_ICInit->TIMER_ICSelection,
TIMER_ICInit->TIMER_ICFilter);
/* Set the Input Capture Prescaler value */
TIMER_Set_IC3_Prescaler(TIMERx, TIMER_ICInit->TIMER_ICPrescaler);
} else {
TI4_Config(TIMERx, TIMER_ICInit->TIMER_ICPolarity,
TIMER_ICInit->TIMER_ICSelection,
TIMER_ICInit->TIMER_ICFilter);
/* Set the Input Capture Prescaler value */
TIMER_Set_IC4_Prescaler(TIMERx, TIMER_ICInit->TIMER_ICPrescaler);
}
}
/**
* @brief Fill TIMER_ICInitPara member with default value.
* @param TIMER_ICInit : pointer to a TIMER_ICInitPara structure
* @retval None
*/
void TIMER_ICStructInit(TIMER_ICInitPara *TIMER_ICInit)
{
TIMER_ICInit->TIMER_CH = TIMER_CH_1;
TIMER_ICInit->TIMER_ICPolarity = TIMER_IC_POLARITY_RISING;
TIMER_ICInit->TIMER_ICSelection = TIMER_IC_SELECTION_DIRECTTI;
TIMER_ICInit->TIMER_ICPrescaler = TIMER_IC_PSC_DIV1;
TIMER_ICInit->TIMER_ICFilter = 0x00;
}
/**
* @brief Configure the TIMER PWM input Capture mode parameters
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_ICInit: pointer to a TIMER_ICInitPara structure
* @retval None
*/
void TIMER_PWMCaptureConfig(TIMER_TypeDef *TIMERx, TIMER_ICInitPara *TIMER_ICInit)
{
uint16_t icoppositepolarity = TIMER_IC_POLARITY_RISING;
uint16_t icoppositeselection = TIMER_IC_SELECTION_DIRECTTI;
/* Select the Opposite Input Polarity */
if (TIMER_ICInit->TIMER_ICPolarity == TIMER_IC_POLARITY_RISING) {
icoppositepolarity = TIMER_IC_POLARITY_FALLING;
} else {
icoppositepolarity = TIMER_IC_POLARITY_RISING;
}
/* Select the Opposite Input */
if (TIMER_ICInit->TIMER_ICSelection == TIMER_IC_SELECTION_DIRECTTI) {
icoppositeselection = TIMER_IC_SELECTION_INDIRECTTI;
} else {
icoppositeselection = TIMER_IC_SELECTION_DIRECTTI;
}
if (TIMER_ICInit->TIMER_CH == TIMER_CH_1) {
TI1_Config(TIMERx, TIMER_ICInit->TIMER_ICPolarity,
TIMER_ICInit->TIMER_ICSelection,
TIMER_ICInit->TIMER_ICFilter);
TIMER_Set_IC1_Prescaler(TIMERx, TIMER_ICInit->TIMER_ICPrescaler);
TI2_Config(TIMERx, icoppositepolarity, icoppositeselection, TIMER_ICInit->TIMER_ICFilter);
TIMER_Set_IC2_Prescaler(TIMERx, TIMER_ICInit->TIMER_ICPrescaler);
} else {
TI2_Config(TIMERx, TIMER_ICInit->TIMER_ICPolarity,
TIMER_ICInit->TIMER_ICSelection,
TIMER_ICInit->TIMER_ICFilter);
TIMER_Set_IC2_Prescaler(TIMERx, TIMER_ICInit->TIMER_ICPrescaler);
TI1_Config(TIMERx, icoppositepolarity, icoppositeselection, TIMER_ICInit->TIMER_ICFilter);
TIMER_Set_IC1_Prescaler(TIMERx, TIMER_ICInit->TIMER_ICPrescaler);
}
}
/**
* @brief Read the TIMERx Input Capture value.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @retval None
*/
uint32_t TIMER_GetCapture1(TIMER_TypeDef *TIMERx)
{
return TIMERx->CHCC1;
}
/**
* @brief Read the TIMERx Input Capture value.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @retval None
*/
uint32_t TIMER_GetCapture2(TIMER_TypeDef *TIMERx)
{
return TIMERx->CHCC2;
}
/**
* @brief Read the TIMERx Input Capture value.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @retval None
*/
uint32_t TIMER_GetCapture3(TIMER_TypeDef *TIMERx)
{
return TIMERx->CHCC3;
}
/**
* @brief Read the TIMERx Input Capture value.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @retval None
*/
uint32_t TIMER_GetCapture4(TIMER_TypeDef *TIMERx)
{
return TIMERx->CHCC4;
}
/**
* @brief Configure the TIMERx Input Capture prescaler.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_ICPSC: the Input Capture1 prescaler value.
* This value will be :
* @arg TIMER_IC_PSC_DIV1: no prescaler
* @arg TIMER_IC_PSC_DIV2: divided by 2
* @arg TIMER_IC_PSC_DIV4: divided by 4
* @arg TIMER_IC_PSC_DIV8: divided by 8
* @retval None
*/
void TIMER_Set_IC1_Prescaler(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPSC)
{
TIMERx->CHCTLR1 &= (uint16_t)~((uint16_t)TIMER_CHCTLR1_CH1ICP);
TIMERx->CHCTLR1 |= TIMER_ICPSC;
}
/**
* @brief Configure the TIMERx Input Capture prescaler.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_ICPSC: the Input Capture1 prescaler value.
* This value will be :
* @arg TIMER_IC_PSC_DIV1: no prescaler
* @arg TIMER_IC_PSC_DIV2: divided by 2
* @arg TIMER_IC_PSC_DIV4: divided by 4
* @arg TIMER_IC_PSC_DIV8: divided by 8
* @retval None
*/
void TIMER_Set_IC2_Prescaler(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPSC)
{
TIMERx->CHCTLR1 &= (uint16_t)~((uint16_t)TIMER_CHCTLR1_CH2ICP);
TIMERx->CHCTLR1 |= (uint16_t)(TIMER_ICPSC << 8);
}
/**
* @brief Configure the TIMERx Input Capture prescaler.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_ICPSC: the Input Capture1 prescaler value.
* This value will be :
* @arg TIMER_IC_PSC_DIV1: no prescaler
* @arg TIMER_IC_PSC_DIV2: divided by 2
* @arg TIMER_IC_PSC_DIV4: divided by 4
* @arg TIMER_IC_PSC_DIV8: divided by 8
* @retval None
*/
void TIMER_Set_IC3_Prescaler(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPSC)
{
TIMERx->CHCTLR2 &= (uint16_t)~((uint16_t)TIMER_CHCTLR2_CH3ICP);
TIMERx->CHCTLR2 |= TIMER_ICPSC;
}
/**
* @brief Configure the TIMERx Input Capture prescaler.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_ICPSC: the Input Capture1 prescaler value.
* This value will be :
* @arg TIMER_IC_PSC_DIV1: no prescaler
* @arg TIMER_IC_PSC_DIV2: divided by 2
* @arg TIMER_IC_PSC_DIV4: divided by 4
* @arg TIMER_IC_PSC_DIV8: divided by 8
* @retval None
*/
void TIMER_Set_IC4_Prescaler(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPSC)
{
TIMERx->CHCTLR2 &= (uint16_t)~((uint16_t)TIMER_CHCTLR2_CH4ICP);
TIMERx->CHCTLR2 |= (uint16_t)(TIMER_ICPSC << 8);
}
/**
* @brief Configure interrupts Enables
* @param TIMERx: x ={ 1-14 } .
* @param TIMER_INT: the interrupts sources to Configure.
* This value will be :
* @arg TIMER_INT_UPDATE : update Interrupt
* @arg TIMER_INT_CH1 : Channel 1 Capture or Compare Interrupt
* @arg TIMER_INT_CH2 : Channel 2 Capture or Compare Interrupt
* @arg TIMER_INT_CH3 : Channel 3 Capture or Compare Interrupt
* @arg TIMER_INT_CH4 : Channel 4 Capture or Compare Interrupt
* @arg TIMER_INT_CCUG : Commutation Interrupt
* @arg TIMER_INT_TRIGGER : Trigger Interrupt
* @arg TIMER_INT_BREAK : Break Interrupt
* @param NewValue: ENABLE or DISABLE.
* @retval None
*/
void TIMER_INTConfig(TIMER_TypeDef *TIMERx, uint16_t TIMER_INT, TypeState NewValue)
{
if (NewValue != DISABLE) {
TIMERx->DIE |= TIMER_INT;
} else {
TIMERx->DIE &= (uint16_t)~TIMER_INT;
}
}
/**
* @brief Generate the software event
* @param TIMERx: x ={ 1-14 } .
* @param TIMER_EventSrc:
* This value will be :
* @arg TIMER_EVENT_SRC_UPDATE : update Event
* @arg TIMER_EVENT_SRC_CH1 : Channel 1 Capture or Compare Event
* @arg TIMER_EVENT_SRC_CH2 : Channel 2 Capture or Compare Event
* @arg TIMER_EVENT_SRC_CH3 : Channel 3 Capture or Compare Event
* @arg TIMER_EVENT_SRC_CH4 : Channel 4 Capture or Compare Event
* @arg TIMER_EVENT_SRC_COM : COM event
* @arg TIMER_EVENT_SRC_TRIGGER : Trigger Event
* @arg TIMER_EVENT_SRC_BREAK : Break event
* @retval None
*/
void TIMER_GenerateEvent(TIMER_TypeDef *TIMERx, uint16_t TIMER_EventSrc)
{
TIMERx->EVG = TIMER_EventSrc;
}
/**
* @brief Get current flag status
* @param TIMERx: x ={ 1-14 } .
* @param TIMER_FLAG:
* This value will be :
* @arg TIMER_FLAG_UPDATE : update Flag
* @arg TIMER_FLAG_CH1 : Channel 1 Capture or Compare Flag
* @arg TIMER_FLAG_CH2 : Channel 2 Capture or Compare Flag
* @arg TIMER_FLAG_CH3 : Channel 3 Capture or Compare Flag
* @arg TIMER_FLAG_CH4 : Channel 4 Capture or Compare Flag
* @arg TIMER_FLAG_COM : Commutation Flag
* @arg TIMER_FLAG_TRIGGER : Trigger Flag
* @arg TIMER_FLAG_BREAK : Break Flag
* @arg TIMER_FLAG_CH1OF : Channel 1 Capture or Compare overcapture Flag
* @arg TIMER_FLAG_CH2OF : Channel 2 Capture or Compare overcapture Flag
* @arg TIMER_FLAG_CH3OF : Channel 3 Capture or Compare overcapture Flag
* @arg TIMER_FLAG_CH4OF : Channel 4 Capture or Compare overcapture Flag
* @retval The state of TIMER_FLAG ( SET or RESET ).
*/
TypeState TIMER_GetBitState(TIMER_TypeDef *TIMERx, uint16_t TIMER_FLAG)
{
if ((TIMERx->STR & TIMER_FLAG) != (uint16_t)RESET) {
return SET;
} else {
return RESET;
}
}
/**
* @brief Clear the flags
* @param TIMERx: x ={ 1-14 } .
* @param TIMER_FLAG: the flag bit to clear.
* This value will be :
* @arg TIMER_FLAG_UPDATE : update Flag
* @arg TIMER_FLAG_CH1 : Channel 1 Capture or Compare Flag
* @arg TIMER_FLAG_CH2 : Channel 2 Capture or Compare Flag
* @arg TIMER_FLAG_CH3 : Channel 3 Capture or Compare Flag
* @arg TIMER_FLAG_CH4 : Channel 4 Capture or Compare Flag
* @arg TIMER_FLAG_COM : Commutation Flag
* @arg TIMER_FLAG_TRIGGER : Trigger Flag
* @arg TIMER_FLAG_BREAK : Break Flag
* @arg TIMER_FLAG_CH1OF : Channel 1 Capture or Compare overcapture Flag
* @arg TIMER_FLAG_CH2OF : Channel 2 Capture or Compare overcapture Flag
* @arg TIMER_FLAG_CH3OF : Channel 3 Capture or Compare overcapture Flag
* @arg TIMER_FLAG_CH4OF : Channel 4 Capture or Compare overcapture Flag
* @retval None
*/
void TIMER_ClearBitState(TIMER_TypeDef *TIMERx, uint16_t TIMER_FLAG)
{
TIMERx->STR = (uint16_t)~TIMER_FLAG;
}
/**
* @brief Get interrupt state
* @param TIMERx: x ={ 1-14 } .
* @param TIMER_INT:
* This value will be :
* @arg TIMER_INT_UPDATE: update Interrupt
* @arg TIMER_INT_CH1 : Channel 1 Capture or Compare Interrupt
* @arg TIMER_INT_CH2 : Channel 2 Capture or Compare Interrupt
* @arg TIMER_INT_CH3 : Channel 3 Capture or Compare Interrupt
* @arg TIMER_INT_CH4 : Channel 4 Capture or Compare Interrupt
* @arg TIMER_INT_CCUG : Commutation Interrupt
* @arg TIMER_INT_TRIGGER : Trigger Interrupt
* @arg TIMER_INT_BREAK : Break Interrupt
* @retval The new state of the TIMER_INT(SET or RESET).
*/
TypeState TIMER_GetIntBitState(TIMER_TypeDef *TIMERx, uint16_t TIMER_INT)
{
uint16_t TypeState = 0x0, itenable = 0x0;
TypeState = TIMERx->STR & TIMER_INT;
itenable = TIMERx->DIE & TIMER_INT;
if ((TypeState != (uint16_t)RESET) && (itenable != (uint16_t)RESET)) {
return SET;
} else {
return RESET;
}
}
/**
* @brief Clear the interrupt pending bits
* @param TIMERx: x ={ 1-14 } .
* @param TIMER_INT:
* This value will be :
* @arg TIMER_INT_UPDATE: update Interrupt
* @arg TIMER_INT_CH1 : Channel 1 Capture or Compare Interrupt
* @arg TIMER_INT_CH2 : Channel 2 Capture or Compare Interrupt
* @arg TIMER_INT_CH3 : Channel 3 Capture or Compare Interrupt
* @arg TIMER_INT_CH4 : Channel 4 Capture or Compare Interrupt
* @arg TIMER_INT_CCUG : Commutation Interrupt
* @arg TIMER_INT_TRIGGER : Trigger Interrupt
* @arg TIMER_INT_BREAK : Break Interrupt
* @retval None
*/
void TIMER_ClearIntBitState(TIMER_TypeDef *TIMERx, uint16_t TIMER_INT)
{
TIMERx->STR = (uint16_t)~TIMER_INT;
}
/**
* @brief Configure the DMA .
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_DMABase: DMA Base address.
* This value will be :
* @arg TIMER_DMA_BASE_ADDR_CTLR1
* @arg TIMER_DMA_BASE_ADDR_CTLR2
* @arg TIMER_DMA_BASE_ADDR_SMC
* @arg TIMER_DMA_BASE_ADDR_DIE
* @arg TIMER_DMA_BASE_ADDR_STR
* @arg TIMER_DMA_BASE_ADDR_EVG
* @arg TIMER_DMA_BASE_ADDR_CHCTLR1
* @arg TIMER_DMA_BASE_ADDR_CHCTLR2
* @arg TIMER_DMA_BASE_ADDR_CHE
* @arg TIMER_DMA_BASE_ADDR_CNT
* @arg TIMER_DMA_BASE_ADDR_PSC
* @arg TIMER_DMA_BASE_ADDR_CARL
* @arg TIMER_DMA_BASE_ADDR_CREP
* @arg TIMER_DMA_BASE_ADDR_CHCC1
* @arg TIMER_DMA_BASE_ADDR_CHCC2
* @arg TIMER_DMA_BASE_ADDR_CHCC3
* @arg TIMER_DMA_BASE_ADDR_CHCC4
* @arg TIMER_DMA_BASE_ADDR_BKDT
* @arg TIMER_DMA_BASE_ADDR_DCTLR
* @arg TIMER_DMA_BASE_ADDR_DTRSF
* @param TIMER_DMABurstLength: DMA Burst length.
* This value will be :
* [ TIMER_DMA_BURST_1TRANSFER , TIMER_DMA_BURST_18TRANSFERS ]
* @retval None
*/
void TIMER_DMAConfig(TIMER_TypeDef *TIMERx, uint16_t TIMER_DMABase, uint16_t TIMER_DMABurstLength)
{
TIMERx->DCTLR = TIMER_DMABase | TIMER_DMABurstLength;
}
/**
* @brief Configure the TIMERx's DMA Requests
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 } .
* @param TIMER_DMASrc: the DMA Request sources.
* This value will be :
* @arg TIMER_DMA_UPDATE : update start DMA
* @arg TIMER_DMA_CH1 : Channel 1 Capture or Compare start DMA
* @arg TIMER_DMA_CH2 : Channel 2 Capture or Compare start DMA
* @arg TIMER_DMA_CH3 : Channel 3 Capture or Compare start DMA
* @arg TIMER_DMA_CH4 : Channel 4 Capture or Compare start DMA
* @arg TIMER_DMA_COM : Commutation DMA
* @arg TIMER_DMA_TRIGGER : Trigger DMA
* @param NewValue: ENABLE or DISABLE.
* @retval None
*/
void TIMER_DMACmd(TIMER_TypeDef *TIMERx, uint16_t TIMER_DMASrc, TypeState NewValue)
{
if (NewValue != DISABLE) {
/* Enable the DMA */
TIMERx->DIE |= TIMER_DMASrc;
} else {
/* Disable the DMA */
TIMERx->DIE &= (uint16_t)~TIMER_DMASrc;
}
}
/**
* @brief Select the Capture or Compare DMA source
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param NewValue: ENABLE or DISABLE
* @retval None
*/
void TIMER_CC_DMA(TIMER_TypeDef *TIMERx, TypeState NewValue)
{
if (NewValue != DISABLE) {
TIMERx->CTLR2 |= TIMER_CTLR2_DMAS;
} else {
TIMERx->CTLR2 &= (uint16_t)~((uint16_t)TIMER_CTLR2_DMAS);
}
}
/**
* @brief Configure the internal Clock
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 }
* @retval None
*/
void TIMER_InternalClockConfig(TIMER_TypeDef *TIMERx)
{
TIMERx->SMC &= (uint16_t)(~((uint16_t)TIMER_SMC_SMC));
}
/**
* @brief Configure the Internal Trigger as External Input Clock
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_InputTriSrc:
* This value will be :
* @arg TIMER_TS_ITR0 : Internal Trigger 0
* @arg TIMER_TS_ITR1 : Internal Trigger 1
* @arg TIMER_TS_ITR2 : Internal Trigger 2
* @arg TIMER_TS_ITR3 : Internal Trigger 3
* @retval None
*/
void TIMER_ITRxExtClock(TIMER_TypeDef *TIMERx, uint16_t TIMER_InputTriSrc)
{
/* Select the Internal Trigger */
TIMER_SelectInputTrigger(TIMERx, TIMER_InputTriSrc);
/* Select the External clock mode1 */
TIMERx->SMC |= TIMER_SLAVE_MODE_EXTERNAL1;
}
/**
* @brief Configure the External Trigger as External Input Clock
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_TIxExCLKSrc: Trigger source.
* This value will be :
* @arg TIMER_TIX_EXCLK1_SRC_TI1ED : TI1 Edge Detector
* @arg TIMER_TIX_EXCLK1_SRC_TI1 : Filtered Timer Input 1
* @arg TIMER_TIX_EXCLK1_SRC_TI2 : Filtered Timer Input 2
* @param TIMER_ICPolarity:
* This value will be :
* @arg TIMER_IC_POLARITY_RISING
* @arg TIMER_IC_POLARITY_FALLING
* @param ICFilter: specifies the filter value.
* This parameter must be a value between 0x0 and 0xF.
* @retval None
*/
void TIMER_TIxExtCLkConfig(TIMER_TypeDef *TIMERx, uint16_t TIMER_TIxExCLKSrc,
uint16_t TIMER_ICPolarity, uint16_t ICFilter)
{
/* Select the Input Clock Source */
if (TIMER_TIxExCLKSrc == TIMER_TIX_EXCLK1_SRC_TI2) {
TI2_Config(TIMERx, TIMER_ICPolarity, TIMER_IC_SELECTION_DIRECTTI, ICFilter);
} else {
TI1_Config(TIMERx, TIMER_ICPolarity, TIMER_IC_SELECTION_DIRECTTI, ICFilter);
}
/* Select the Trigger source */
TIMER_SelectInputTrigger(TIMERx, TIMER_TIxExCLKSrc);
/* Enter the External clock mode1 */
TIMERx->SMC |= TIMER_SLAVE_MODE_EXTERNAL1;
}
/**
* @brief Configure the External clock Mode1
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_ExtTriPrescaler: The external Trigger Prescaler.
* This value will be :
* @arg TIMER_EXT_TRI_PSC_OFF: no divided.
* @arg TIMER_EXT_TRI_PSC_DIV2: divided by 2.
* @arg TIMER_EXT_TRI_PSC_DIV4: divided by 4.
* @arg TIMER_EXT_TRI_PSC_DIV8: divided by 8.
* @param TIMER_ExtTriPolarity: Trigger Polarity.
* This value will be :
* @arg TIMER_EXT_TRI_POLARITY_INVERTED : active low or falling edge active.
* @arg TIMER_EXT_TRI_POLARITY_NONINVERTED: active high or rising edge active.
* @param ExtTriFilter: External Trigger Filter.
* This parameter must be a value between 0x00 and 0x0F
* @retval None
*/
void TIMER_ETRClockMode1Config(TIMER_TypeDef *TIMERx, uint16_t TIMER_ExTriPrescaler, uint16_t TIMER_ExTriPolarity,
uint16_t ExtTriFilter)
{
uint16_t tmpsmc = 0;
/* Configure the external Trigger Clock source */
TIMER_ETRConfig(TIMERx, TIMER_ExTriPrescaler, TIMER_ExTriPolarity, ExtTriFilter);
/* Get the TIMERx SMC register value */
tmpsmc = TIMERx->SMC;
tmpsmc &= (uint16_t)(~((uint16_t)TIMER_SMC_SMC));
/* Select the External clock mode1 */
tmpsmc |= TIMER_SLAVE_MODE_EXTERNAL1;
/* Select the Trigger selection : ETRF */
tmpsmc &= (uint16_t)(~((uint16_t)TIMER_SMC_TRGS));
tmpsmc |= TIMER_TS_ETRF;
TIMERx->SMC = tmpsmc;
}
/**
* @brief Configure the External clock Mode2
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_ExtTriPrescaler: The external Trigger Prescaler.
* This value will be :
* @arg TIMER_EXT_TRI_PSC_OFF: no divided.
* @arg TIMER_EXT_TRI_PSC_DIV2: divided by 2.
* @arg TIMER_EXT_TRI_PSC_DIV4: divided by 4.
* @arg TIMER_EXT_TRI_PSC_DIV8: divided by 8.
* @param TIMER_ExtTriPolarity: Trigger Polarity.
* This value will be :
* @arg TIMER_EXT_TRI_POLARITY_INVERTED : active low or falling edge active.
* @arg TIMER_EXT_TRI_POLARITY_NONINVERTED: active high or rising edge active.
* @param ExtTriFilter: External Trigger Filter.
* This parameter must be a value between 0x00 and 0x0F
* @retval None
*/
void TIMER_ETRClockMode2Config(TIMER_TypeDef *TIMERx, uint16_t TIMER_ExTriPrescaler,
uint16_t TIMER_ExTriPolarity, uint16_t ExtTriFilter)
{
/* Configure the ETR Clock source */
TIMER_ETRConfig(TIMERx, TIMER_ExTriPrescaler, TIMER_ExTriPolarity, ExtTriFilter);
/* Select the External clock mode2 */
TIMERx->SMC |= TIMER_SMC_ECM2E;
}
/**
* @brief Select the Input Trigger source
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_InputTriSrc: The Input Trigger source.
* This value will be :
* @arg TIMER_TS_ITR0 : Internal Trigger 0
* @arg TIMER_TS_ITR1 : Internal Trigger 1
* @arg TIMER_TS_ITR2 : Internal Trigger 2
* @arg TIMER_TS_ITR3 : Internal Trigger 3
* @arg TIMER_TS_TI1F_ED : TI1 Edge Detector
* @arg TIMER_TS_TI1FP1 : Filtered Timer Input 1
* @arg TIMER_TS_TI2FP2 : Filtered Timer Input 2
* @arg TIMER_TS_ETRF : External Trigger input
* @retval None
*/
void TIMER_SelectInputTrigger(TIMER_TypeDef *TIMERx, uint16_t TIMER_InputTriSrc)
{
uint16_t tmpsmc = 0;
tmpsmc = TIMERx->SMC;
/* Reset the TS Bits */
tmpsmc &= (uint16_t)(~((uint16_t)TIMER_SMC_TRGS));
/* Set the Input Trigger source */
tmpsmc |= TIMER_InputTriSrc ;
TIMERx->SMC = tmpsmc;
}
/**
* @brief Configure the TIMERx Trigger Output Mode.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,10 , 11 , 13 , 14} .
* @param TIMER_TriOutSrc:
* This value will be :
* @arg TIMER_TRI_OUT_SRC_RESET : The UPG bit in the TIMERx_EVG register as TriO.
* @arg TIMER_TRI_OUT_SRC_ENABLE : The CEN bit in TIMERx_CTLR1 as TriO.
* @arg TIMER_TRI_OUT_SRC_UPDATE : Update event as TriO.
* @arg TIMER_TRI_OUT_SRC_OC1 : capture or compare match ( CC1IF bit set ) as TriO.
* @arg TIMER_TRI_OUT_SRC_OC1REF : OC1REF as TriO.
* @arg TIMER_TRI_OUT_SRC_OC2REF : OC2REF as TriO.
* @arg TIMER_TRI_OUT_SRC_OC3REF : OC3REF as TriO.
* @arg TIMER_TRI_OUT_SRC_OC4REF : OC4REF as TriO.
* @retval None
*/
void TIMER_SelectOutputTrigger(TIMER_TypeDef *TIMERx, uint16_t TIMER_TriOutSrc)
{
/* Reset the MMC Bits */
TIMERx->CTLR2 &= (uint16_t)~((uint16_t)TIMER_CTLR2_MMC);
/* Configures the TriO source */
TIMERx->CTLR2 |= TIMER_TriOutSrc;
}
/**
* @brief Configure the TIMERx Slave Mode
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_SlaveMode:
* This value will be :
* @arg TIMER_SLAVE_MODE_RESET : The trigger signal reset the timer
* @arg TIMER_SLAVE_MODE_GATED : The trigger signal enable the counter when high.
* @arg TIMER_SLAVE_MODE_TRIGGER : The trigger signal starts the counter.
* @arg TIMER_SLAVE_MODE_EXTERNAL1 : The trigger signal as a counter clock.
* @retval None
*/
void TIMER_SelectSlaveMode(TIMER_TypeDef *TIMERx, uint16_t TIMER_SlaveMode)
{
/* Reset the SMC Bits */
TIMERx->SMC &= (uint16_t)~((uint16_t)TIMER_SMC_SMC);
/* Configure the Slave Mode */
TIMERx->SMC |= TIMER_SlaveMode;
}
/**
* @brief Configure the TIMERx Master or Slave Mode
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 10 , 11 , 13 , 14} .
* @param TIMER_MasterSlaveMode:
* This value will be :
* @arg TIMER_MASTER_SLAVE_MODE_ENABLE : synchronize master and slave by TriO
* @arg TIMER_MASTER_SLAVE_MODE_DISABLE : Don't synchronize
* @retval None
*/
void TIMER_SelectMasterSlaveMode(TIMER_TypeDef *TIMERx, uint16_t TIMER_MasterSlaveMode)
{
/* Reset the MSM Bit */
TIMERx->SMC &= (uint16_t)~((uint16_t)TIMER_SMC_MSM);
/* Configure the MSM Bit */
TIMERx->SMC |= TIMER_MasterSlaveMode;
}
/**
* @brief Configure the External Trigger (ETR)
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_ExTriPrescaler: external Trigger Prescaler.
* This value will be :
* @arg TIMER_EXT_TRI_PSC_OFF : no divided.
* @arg TIMER_EXT_TRI_PSC_DIV2: divided by 2.
* @arg TIMER_EXT_TRI_PSC_DIV4: divided by 4.
* @arg TIMER_EXT_TRI_PSC_DIV8: divided by 8.
* @param TIMER_ExtTriPolarity: Trigger Polarity.
* This value will be :
* @arg TIMER_EXT_TRI_POLARITY_INVERTED : active low or falling edge active.
* @arg TIMER_EXT_TRI_POLARITY_NONINVERTED: active high or rising edge active.
* @param ExtTRGFilter: The External Trigger signal Filter.
* This parameter must be a value between 0x00 and 0x0F
* @retval None
*/
void TIMER_ETRConfig(TIMER_TypeDef *TIMERx, uint16_t TIMER_ExTriPrescaler, uint16_t TIMER_ExTriPolarity,
uint16_t ExtTriFilter)
{
uint16_t tmpsmc = 0;
tmpsmc = TIMERx->SMC;
/*Reset the ETR Bits */
tmpsmc &= SMC_ETR_MASK;
/* Configure the Prescaler, the Filter value and the Polarity */
tmpsmc |= (uint16_t)(TIMER_ExTriPrescaler | (uint16_t)(TIMER_ExTriPolarity | (uint16_t)(ExtTriFilter << (uint16_t)8)));
TIMERx->SMC = tmpsmc;
}
/**
* @brief Configure the Encoder Interface.
* @param TIMERx: x ={ 1 , 8 , 9 , 12 } .
* @param TIMER_EncoderMode:
* This value will be :
* @arg TIMER_ENCODER_MODE_TI1 : Counter counts on TI1FP1 edge depending on TI2FP2 level.
* @arg TIMER_ENCODER_MODE_TI2 : Counter counts on TI2FP2 edge depending on TI1FP1 level.
* @arg TIMER_ENCODER_MODE_TI12 : Counter counts on both TI1FP1 and TI2FP2 edges depending
* on the level of the other input.
* @param TIMER_IC1Polarity: input capture 1 Polarity
* This value will be :
* @arg TIMER_IC_POLARITY_FALLING : capture Falling edge.
* @arg TIMER_IC_POLARITY_RISING : capture Rising edge.
* @param TIMER_IC2Polarity: input capture 2 Polarity
* This value will be :
* @arg TIMER_IC_POLARITY_FALLING : capture Falling edge.
* @arg TIMER_IC_POLARITY_RISING : capture Rising edge.
* @retval None
*/
void TIMER_EncoderInterfaceConfig(TIMER_TypeDef *TIMERx, uint16_t TIMER_EncoderMode,
uint16_t TIMER_IC1Polarity, uint16_t TIMER_IC2Polarity)
{
uint16_t tmpsmc = 0;
uint16_t tmpchctlr1 = 0;
uint16_t tmpche = 0;
tmpsmc = TIMERx->SMC;
tmpchctlr1 = TIMERx->CHCTLR1;
tmpche = TIMERx->CHE;
/* select the encoder Mode */
tmpsmc &= (uint16_t)(~((uint16_t)TIMER_SMC_SMC));
tmpsmc |= TIMER_EncoderMode;
tmpchctlr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIMER_CHCTLR1_CH1M)) & (uint16_t)(~((uint16_t)TIMER_CHCTLR1_CH2M)));
tmpchctlr1 |= TIMER_CHCTLR1_CH1M_0 | TIMER_CHCTLR1_CH2M_0;
/* select the TI1 and the TI2 Polarities*/
tmpche &= (uint16_t)~((uint16_t)(TIMER_CHE_CH1P | TIMER_CHE_CH1NP)) & (uint16_t)~((uint16_t)(TIMER_CHE_CH2P | TIMER_CHE_CH2NP));
tmpche |= (uint16_t)(TIMER_IC1Polarity | (uint16_t)(TIMER_IC2Polarity << (uint16_t)4));
TIMERx->SMC = tmpsmc;
TIMERx->CHCTLR1 = tmpchctlr1;
TIMERx->CHE = tmpche;
}
/**
* @brief Configure the Hall sensor interface
* @param TIMERx: x ={ 1 , 8 } .
* @param NewValue: ENABLE or DISABLE.
* @retval None
*/
void TIMER_SelectHallSensor(TIMER_TypeDef *TIMERx, TypeState NewValue)
{
if (NewValue != DISABLE) {
TIMERx->CTLR2 |= TIMER_CTLR2_TI1S;
} else {
TIMERx->CTLR2 &= (uint16_t)~((uint16_t)TIMER_CTLR2_TI1S);
}
}
/* Private functions */
/**
* @brief Configure the TI1 as Capture Input.
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 10 , 11 , 12 , 13 , 14} .
* @param TIMER_ICPolarity: Input Capture Polarity.
* This value will be :
* @arg TIMER_IC_POLARITY_RISING : Capture rising edge
* @arg TIMER_IC_POLARITY_FALLING : Capture falling edge
* @param TIMER_ICSelection: Input Capture source.
* This value will be :
* @arg TIMER_IC_SELECTION_DIRECTTI : connected to IC1.
* @arg TIMER_IC_SELECTION_INDIRECTTI : connected to IC2.
* @arg TIMER_IC_SELECTION_TRC : connected to TRC.
* @param TIMER_ICFilter: Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TI1_Config(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPolarity, uint16_t TIMER_ICSelection,
uint16_t TIMER_ICFilter)
{
uint16_t tmpchctlr1 = 0, tmpche = 0;
/* Disable the Channel 1 */
TIMERx->CHE &= (uint16_t)~((uint16_t)TIMER_CHE_CH1E);
tmpchctlr1 = TIMERx->CHCTLR1;
tmpche = TIMERx->CHE;
/* Select the Input and Configure the filter */
tmpchctlr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIMER_CHCTLR1_CH1M)) & ((uint16_t)~((uint16_t)TIMER_CHCTLR1_CH1ICF)));
tmpchctlr1 |= (uint16_t)(TIMER_ICSelection | (uint16_t)(TIMER_ICFilter << (uint16_t)4));
/* Configure the Polarity and channel enable Bit */
tmpche &= (uint16_t)~((uint16_t)(TIMER_CHE_CH1P | TIMER_CHE_CH1NP));
tmpche |= (uint16_t)(TIMER_ICPolarity | (uint16_t)TIMER_CHE_CH1E);
TIMERx->CHCTLR1 = tmpchctlr1;
TIMERx->CHE = tmpche;
}
/**
* @brief Configure the TI2 as Capture Input.
* @note None
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 , 9 , 12 } .
* @param TIMER_ICPolarity: Input Capture Polarity.
* This value will be :
* @arg TIMER_IC_POLARITY_RISING : Capture rising edge
* @arg TIMER_IC_POLARITY_FALLING : Capture falling edge
* @param TIMER_ICSelection: Input Capture source.
* This value will be :
* @arg TIMER_IC_SELECTION_DIRECTTI : connected to IC2.
* @arg TIMER_IC_SELECTION_INDIRECTTI : connected to IC1.
* @arg TIMER_IC_SELECTION_TRC : connected to TRC.
* @param TIMER_ICFilter: Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TI2_Config(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPolarity, uint16_t TIMER_ICSelection,
uint16_t TIMER_ICFilter)
{
uint16_t tmpchctlr1 = 0, tmpche = 0, tmp = 0;
/* Disable the Channel 2 */
TIMERx->CHE &= (uint16_t)~((uint16_t)TIMER_CHE_CH2E);
tmpchctlr1 = TIMERx->CHCTLR1;
tmpche = TIMERx->CHE;
tmp = (uint16_t)(TIMER_ICPolarity << 4);
/* Select the Input and Configure the filter */
tmpchctlr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIMER_CHCTLR1_CH2M)) & ((uint16_t)~((uint16_t)TIMER_CHCTLR1_CH2ICF)));
tmpchctlr1 |= (uint16_t)(TIMER_ICFilter << 12);
tmpchctlr1 |= (uint16_t)(TIMER_ICSelection << 8);
/* Configure the Polarity and channel enable Bit */
tmpche &= (uint16_t)~((uint16_t)(TIMER_CHE_CH2P | TIMER_CHE_CH2NP));
tmpche |= (uint16_t)(tmp | (uint16_t)TIMER_CHE_CH2E);
TIMERx->CHCTLR1 = tmpchctlr1 ;
TIMERx->CHE = tmpche;
}
/**
* @brief Configure the TI3 as Capture Input
* @note None
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_ICPolarity: Input Capture Polarity.
* This value will be :
* @arg TIMER_IC_POLARITY_RISING : Capture rising edge
* @arg TIMER_IC_POLARITY_FALLING : Capture falling edge
* @param TIMER_ICSelection: Input Capture source.
* This value will be :
* @arg TIMER_IC_SELECTION_DIRECTTI : connected to IC3.
* @arg TIMER_IC_SELECTION_INDIRECTTI : connected to IC4.
* @arg TIMER_IC_SELECTION_TRC : connected to TRC.
* @param TIMER_ICFilter: Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TI3_Config(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPolarity, uint16_t TIMER_ICSelection,
uint16_t TIMER_ICFilter)
{
uint16_t tmpchctlr2 = 0, tmpche = 0, tmp = 0;
/* Disable the Channel 3 */
TIMERx->CHE &= (uint16_t)~((uint16_t)TIMER_CHE_CH3E);
tmpchctlr2 = TIMERx->CHCTLR2;
tmpche = TIMERx->CHE;
tmp = (uint16_t)(TIMER_ICPolarity << 8);
/* Select the Input and Configure the filter */
tmpchctlr2 &= (uint16_t)(((uint16_t)~((uint16_t)TIMER_CHCTLR2_CH3M)) & ((uint16_t)~((uint16_t)TIMER_CHCTLR2_CH3ICF)));
tmpchctlr2 |= (uint16_t)(TIMER_ICSelection | (uint16_t)(TIMER_ICFilter << (uint16_t)4));
/* Configure the Polarity and channel enable Bit */
tmpche &= (uint16_t)~((uint16_t)(TIMER_CHE_CH3P | TIMER_CHE_CH3NP));
tmpche |= (uint16_t)(tmp | (uint16_t)TIMER_CHE_CH3E);
TIMERx->CHCTLR2 = tmpchctlr2;
TIMERx->CHE = tmpche;
}
/**
* @brief Configure the TI4 as Capture Input
* @param TIMERx: x ={ 1 , 2 , 3 , 4 , 5 , 8 } .
* @param TIMER_ICPolarity: Input Capture Polarity.
* This value will be :
* @arg TIMER_IC_POLARITY_RISING : Capture rising edge
* @arg TIMER_IC_POLARITY_FALLING : Capture falling edge
* @param TIMER_ICSelection: Input Capture source.
* This value will be :
* @arg TIMER_IC_SELECTION_DIRECTTI : connected to IC4.
* @arg TIMER_IC_SELECTION_INDIRECTTI : connected to IC3.
* @arg TIMER_IC_SELECTION_TRC : connected to TRC.
* @param TIMER_ICFilter: Input Capture Filter.
* This parameter must be a value between 0x00 and 0x0F.
* @retval None
*/
static void TI4_Config(TIMER_TypeDef *TIMERx, uint16_t TIMER_ICPolarity, uint16_t TIMER_ICSelection,
uint16_t TIMER_ICFilter)
{
uint16_t tmpchctlr2 = 0, tmpche = 0, tmp = 0;
/* Disable the Channel 4 */
TIMERx->CHE &= (uint16_t)~((uint16_t)TIMER_CHE_CH4E);
tmpchctlr2 = TIMERx->CHCTLR2;
tmpche = TIMERx->CHE;
tmp = (uint16_t)(TIMER_ICPolarity << 12);
/* Select the Input and Configure the filter */
tmpchctlr2 &= (uint16_t)((uint16_t)(~(uint16_t)TIMER_CHCTLR2_CH4M) & ((uint16_t)~((uint16_t)TIMER_CHCTLR2_CH4ICF)));
tmpchctlr2 |= (uint16_t)(TIMER_ICSelection << 8);
tmpchctlr2 |= (uint16_t)(TIMER_ICFilter << 12);
/* Configure the Polarity and channel enable Bit */
tmpche &= (uint16_t)~((uint16_t)(TIMER_CHE_CH4P | TIMER_CHE_CH4NP));
tmpche &= (uint16_t)~((uint16_t)(TIMER_CHE_CH4P));
tmpche |= (uint16_t)(tmp | (uint16_t)TIMER_CHE_CH4E);
TIMERx->CHCTLR2 = tmpchctlr2;
TIMERx->CHE = tmpche;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/