rt-thread/bsp/gd32303e-eval/Libraries/GD32F30x_standard_peripheral/Source/gd32f30x_can.c

847 lines
30 KiB
C

/*!
\file gd32f30x_can.c
\brief CAN driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_can.h"
/*!
\brief deinitialize CAN
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval none
*/
void can_deinit(uint32_t can_periph)
{
#ifdef GD32F30X_CL
if(CAN0 == can_periph){
rcu_periph_reset_enable(RCU_CAN0RST);
rcu_periph_reset_disable(RCU_CAN0RST);
}else{
rcu_periph_reset_enable(RCU_CAN1RST);
rcu_periph_reset_disable(RCU_CAN1RST);
}
#else
if(CAN0 == can_periph){
rcu_periph_reset_enable(RCU_CAN0RST);
rcu_periph_reset_disable(RCU_CAN0RST);
}
#endif
}
/*!
\brief initialize CAN
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] can_parameter_init: parameters for CAN initializtion
\arg working_mode: CAN_NORMAL_MODE, CAN_LOOPBACK_MODE, CAN_SILENT_MODE, CAN_SILENT_LOOPBACK_MODE
\arg resync_jump_width: CAN_BT_SJW_xTQ(x=1, 2, 3, 4)
\arg time_segment_1: CAN_BT_BS1_xTQ(1..16)
\arg time_segment_2: CAN_BT_BS2_xTQ(1..8)
\arg time_triggered: ENABLE or DISABLE
\arg auto_bus_off_recovery: ENABLE or DISABLE
\arg auto_wake_up: ENABLE or DISABLE
\arg auto_retrans: ENABLE or DISABLE
\arg rec_fifo_overwrite: ENABLE or DISABLE
\arg trans_fifo_order: ENABLE or DISABLE
\arg prescaler: 0x0001 - 0x03FF
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_init(uint32_t can_periph, can_parameter_struct* can_parameter_init)
{
uint32_t timeout = CAN_TIMEOUT;
ErrStatus flag = ERROR;
/* disable sleep mode */
CAN_CTL(can_periph) &= ~CAN_CTL_SLPWMOD;
/* enable initialize mode */
CAN_CTL(can_periph) |= CAN_CTL_IWMOD;
/* wait ACK */
while((CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (timeout)){
timeout--;
}
/* check initialize working success */
if(CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)){
flag = ERROR;
}else{
/* set the bit timing register */
CAN_BT(can_periph) = (BT_MODE((uint32_t)can_parameter_init->working_mode) | \
BT_SJW((uint32_t)can_parameter_init->resync_jump_width) | \
BT_BS1((uint32_t)can_parameter_init->time_segment_1) | \
BT_BS2((uint32_t)can_parameter_init->time_segment_2) | \
BT_BAUDPSC(((uint32_t)(can_parameter_init->prescaler) - 1U)));
/* time trigger communication mode */
if(ENABLE == can_parameter_init->time_triggered){
CAN_CTL(can_periph) |= CAN_CTL_TTC;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_TTC;
}
/* automatic bus-off managment */
if(ENABLE == can_parameter_init->auto_bus_off_recovery){
CAN_CTL(can_periph) |= CAN_CTL_ABOR;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_ABOR;
}
/* automatic wakeup mode */
if(ENABLE == can_parameter_init->auto_wake_up){
CAN_CTL(can_periph) |= CAN_CTL_AWU;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_AWU;
}
/* automatic retransmission mode */
if(ENABLE == can_parameter_init->auto_retrans){
CAN_CTL(can_periph) |= CAN_CTL_ARD;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_ARD;
}
/* receive fifo overwrite mode */
if(ENABLE == can_parameter_init->rec_fifo_overwrite){
CAN_CTL(can_periph) |= CAN_CTL_RFOD;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_RFOD;
}
/* transmit fifo order */
if(ENABLE == can_parameter_init->trans_fifo_order){
CAN_CTL(can_periph) |= CAN_CTL_TFO;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_TFO;
}
/* disable initialize mode */
CAN_CTL(can_periph) &= ~CAN_CTL_IWMOD;
timeout = CAN_TIMEOUT;
/* wait the ACK */
while((CAN_STAT_IWS == (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (timeout)){
timeout--;
}
/* check exit initialize mode */
if(CAN_STAT_IWS == (CAN_STAT(can_periph) & CAN_STAT_IWS)){
flag = SUCCESS;
}
}
return flag;
}
/*!
\brief initialize CAN filter
\param[in] can_filter_parameter_init: struct for CAN filter initialization
\arg filter_list_high: 0x0000 - 0xFFFF
\arg filter_list_low: 0x0000 - 0xFFFF
\arg filter_mask_high: 0x0000 - 0xFFFF
\arg filter_mask_low: 0x0000 - 0xFFFF
\arg filter_fifo_number: CAN_FIFO0, CAN_FIFO1
\arg filter_number: 0 - 27
\arg filter_mode: CAN_FILTERMODE_MASK, CAN_FILTERMODE_LIST
\arg filter_bits: CAN_FILTERBITS_32BIT, CAN_FILTERBITS_16BIT
\arg filter_enable: ENABLE or DISABLE
\param[out] none
\retval none
*/
void can_filter_init(can_filter_parameter_struct* can_filter_parameter_init)
{
uint32_t val = 0U;
val = ((uint32_t)1) << (can_filter_parameter_init->filter_number);
/* filter lock disable */
CAN_FCTL(CAN0) |= CAN_FCTL_FLD;
/* disable filter */
CAN_FW(CAN0) &= ~(uint32_t)val;
/* filter 16 bits */
if(CAN_FILTERBITS_16BIT == can_filter_parameter_init->filter_bits){
/* set filter 16 bits */
CAN_FSCFG(CAN0) &= ~(uint32_t)val;
/* first 16 bits list and first 16 bits mask or first 16 bits list and second 16 bits list */
CAN_FDATA0(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_low) & CAN_FILTER_MASK_16BITS) | \
FDATA_MASK_LOW((can_filter_parameter_init->filter_list_low) & CAN_FILTER_MASK_16BITS);
/* second 16 bits list and second 16 bits mask or third 16 bits list and fourth 16 bits list */
CAN_FDATA1(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_high) & CAN_FILTER_MASK_16BITS) | \
FDATA_MASK_LOW((can_filter_parameter_init->filter_list_high) & CAN_FILTER_MASK_16BITS);
}
/* filter 32 bits */
if(CAN_FILTERBITS_32BIT == can_filter_parameter_init->filter_bits){
/* set filter 32 bits */
CAN_FSCFG(CAN0) |= (uint32_t)val;
/* 32 bits list or first 32 bits list */
CAN_FDATA0(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_list_high) & CAN_FILTER_MASK_16BITS) |
FDATA_MASK_LOW((can_filter_parameter_init->filter_list_low) & CAN_FILTER_MASK_16BITS);
/* 32 bits mask or second 32 bits list */
CAN_FDATA1(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_high) & CAN_FILTER_MASK_16BITS) |
FDATA_MASK_LOW((can_filter_parameter_init->filter_mask_low) & CAN_FILTER_MASK_16BITS);
}
/* filter mode */
if(CAN_FILTERMODE_MASK == can_filter_parameter_init->filter_mode){
/* mask mode */
CAN_FMCFG(CAN0) &= ~(uint32_t)val;
}else{
/* list mode */
CAN_FMCFG(CAN0) |= (uint32_t)val;
}
/* filter FIFO */
if(CAN_FIFO0 == (can_filter_parameter_init->filter_fifo_number)){
/* FIFO0 */
CAN_FAFIFO(CAN0) &= ~(uint32_t)val;
}else{
/* FIFO1 */
CAN_FAFIFO(CAN0) |= (uint32_t)val;
}
/* filter working */
if(ENABLE == can_filter_parameter_init->filter_enable){
CAN_FW(CAN0) |= (uint32_t)val;
}
/* filter lock enable */
CAN_FCTL(CAN0) &= ~CAN_FCTL_FLD;
}
/*!
\brief set CAN1 fliter start bank number
\param[in] start_bank: CAN1 start bank number
\arg (1..27)
\param[out] none
\retval none
*/
void can1_filter_start_bank(uint8_t start_bank)
{
/* filter lock disable */
CAN_FCTL(CAN0) |= CAN_FCTL_FLD;
/* set CAN1 filter start number */
CAN_FCTL(CAN0) &= ~(uint32_t)CAN_FCTL_HBC1F;
CAN_FCTL(CAN0) |= FCTL_HBC1F(start_bank);
/* filter lock enaable */
CAN_FCTL(CAN0) &= ~CAN_FCTL_FLD;
}
/*!
\brief enable CAN debug freeze
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval none
*/
void can_debug_freeze_enable(uint32_t can_periph)
{
CAN_CTL(can_periph) |= CAN_CTL_DFZ;
#ifdef GD32F30X_CL
if(CAN0 == can_periph){
dbg_periph_enable(DBG_CAN0_HOLD);
}else{
dbg_periph_enable(DBG_CAN1_HOLD);
}
#else
if(CAN0 == can_periph){
dbg_periph_enable(DBG_CAN0_HOLD);
}
#endif
}
/*!
\brief disable CAN debug freeze
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval none
*/
void can_debug_freeze_disable(uint32_t can_periph)
{
CAN_CTL(can_periph) |= CAN_CTL_DFZ;
#ifdef GD32F30X_CL
if(CAN0 == can_periph){
dbg_periph_disable(DBG_CAN0_HOLD);
}else{
dbg_periph_disable(DBG_CAN1_HOLD);
}
#else
if(CAN0 == can_periph){
dbg_periph_enable(DBG_CAN0_HOLD);
}
#endif
}
/*!
\brief enable CAN time trigger mode
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval none
*/
void can_time_trigger_mode_enable(uint32_t can_periph)
{
uint8_t mailbox_number;
/* enable the tcc mode */
CAN_CTL(can_periph) |= CAN_CTL_TTC;
/* enable time stamp */
for(mailbox_number=0U; mailbox_number<3U; mailbox_number++){
CAN_TMP(can_periph, mailbox_number) |= CAN_TMP_TSEN;
}
}
/*!
\brief disable CAN time trigger mode
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval none
*/
void can_time_trigger_mode_disable(uint32_t can_periph)
{
uint8_t mailbox_number;
/* disable the TCC mode */
CAN_CTL(can_periph) &= ~CAN_CTL_TTC;
/* reset TSEN bits */
for(mailbox_number=0U; mailbox_number<3U; mailbox_number++){
CAN_TMP(can_periph, mailbox_number) &= ~CAN_TMP_TSEN;
}
}
/*!
\brief transmit CAN message
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] transmit_message: struct for CAN transmit message
\arg tx_sfid: 0x00000000 - 0x000007FF
\arg tx_efid: 0x00000000 - 0x1FFFFFFF
\arg tx_ff: CAN_FF_STANDARD, CAN_FF_EXTENDED
\arg tx_ft: CAN_FT_DATA, CAN_FT_REMOTE
\arg tx_dlenc: 1 - 7
\arg tx_data[]: 0x00 - 0xFF
\param[out] none
\retval mailbox_number
*/
uint8_t can_message_transmit(uint32_t can_periph, can_trasnmit_message_struct* transmit_message)
{
uint8_t mailbox_number = CAN_MAILBOX0;
/* select one empty mailbox */
if(CAN_TSTAT_TME0 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME0)){
mailbox_number = CAN_MAILBOX0;
}else if(CAN_TSTAT_TME1 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME1)){
mailbox_number = CAN_MAILBOX1;
}else if(CAN_TSTAT_TME2 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME2)){
mailbox_number = CAN_MAILBOX2;
}else{
mailbox_number = CAN_NOMAILBOX;
}
if(CAN_NOMAILBOX == mailbox_number){
return CAN_NOMAILBOX;
}
CAN_TMI(can_periph, mailbox_number) &= CAN_TMI_TEN;
if(CAN_FF_STANDARD == transmit_message->tx_ff){
/* set transmit mailbox standard identifier */
CAN_TMI(can_periph, mailbox_number) |= (uint32_t)(TMI_SFID(transmit_message->tx_sfid) | \
transmit_message->tx_ft);
}else{
/* set transmit mailbox extended identifier */
CAN_TMI(can_periph, mailbox_number) |= (uint32_t)(TMI_EFID(transmit_message->tx_efid) | \
transmit_message->tx_ff | \
transmit_message->tx_ft);
}
/* set the data length */
CAN_TMP(can_periph, mailbox_number) &= ((uint32_t)~CAN_TMP_DLENC);
CAN_TMP(can_periph, mailbox_number) |= transmit_message->tx_dlen;
/* set the data */
CAN_TMDATA0(can_periph, mailbox_number) = TMDATA0_DB3(transmit_message->tx_data[3]) | \
TMDATA0_DB2(transmit_message->tx_data[2]) | \
TMDATA0_DB1(transmit_message->tx_data[1]) | \
TMDATA0_DB0(transmit_message->tx_data[0]);
CAN_TMDATA1(can_periph, mailbox_number) = TMDATA1_DB7(transmit_message->tx_data[7]) | \
TMDATA1_DB6(transmit_message->tx_data[6]) | \
TMDATA1_DB5(transmit_message->tx_data[5]) | \
TMDATA1_DB4(transmit_message->tx_data[4]);
/* enable transmission */
CAN_TMI(can_periph, mailbox_number) |= CAN_TMI_TEN;
return mailbox_number;
}
/*!
\brief get CAN transmit state
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] mailbox_number
\arg CAN_MAILBOX(x=0,1,2)
\param[out] none
\retval can_transmit_state_enum
*/
can_transmit_state_enum can_transmit_states(uint32_t can_periph, uint8_t mailbox_number)
{
can_transmit_state_enum state = CAN_TRANSMIT_FAILED;
uint32_t val = 0U;
switch(mailbox_number){
case CAN_MAILBOX0:
val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF0 | CAN_TSTAT_MTFNERR0 | CAN_TSTAT_TME0);
break;
case CAN_MAILBOX1:
val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF1 | CAN_TSTAT_MTFNERR1 | CAN_TSTAT_TME1);
break;
case CAN_MAILBOX2:
val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF2 | CAN_TSTAT_MTFNERR2 | CAN_TSTAT_TME2);
break;
default:
val = CAN_TRANSMIT_FAILED;
break;
}
switch(val){
/* transmit pending */
case (CAN_STATE_PENDING):
state = CAN_TRANSMIT_PENDING;
break;
/* transmit succeeded */
case (CAN_TSTAT_MTF0 | CAN_TSTAT_MTFNERR0 | CAN_TSTAT_TME0):
state = CAN_TRANSMIT_OK;
break;
case (CAN_TSTAT_MTF1 | CAN_TSTAT_MTFNERR1 | CAN_TSTAT_TME1):
state = CAN_TRANSMIT_OK;
break;
case (CAN_TSTAT_MTF2 | CAN_TSTAT_MTFNERR2 | CAN_TSTAT_TME2):
state = CAN_TRANSMIT_OK;
break;
default:
state = CAN_TRANSMIT_FAILED;
break;
}
return state;
}
/*!
\brief stop CAN transmission
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] mailbox_number
only one parameter can be selected which is shown as below:
\arg CAN_MAILBOXx(x=0,1,2)
\param[out] none
\retval none
*/
void can_transmission_stop(uint32_t can_periph, uint8_t mailbox_number)
{
if(CAN_MAILBOX0 == mailbox_number){
CAN_TSTAT(can_periph) |= CAN_TSTAT_MST0;
}else if(CAN_MAILBOX1 == mailbox_number){
CAN_TSTAT(can_periph) |= CAN_TSTAT_MST1;
}else if(CAN_MAILBOX2 == mailbox_number){
CAN_TSTAT(can_periph) |= CAN_TSTAT_MST2;
}else{
/* illegal parameters */
}
}
/*!
\brief CAN receive message
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] fifo_number
\arg CAN_FIFOx(x=0,1)
\param[out] receive_message: struct for CAN receive message
\arg rx_sfid: 0x00000000 - 0x000007FF
\arg rx_efid: 0x00000000 - 0x1FFFFFFF
\arg rx_ff: CAN_FF_STANDARD, CAN_FF_EXTENDED
\arg rx_ft: CAN_FT_DATA, CAN_FT_REMOTE
\arg rx_dlenc: 1 - 7
\arg rx_data[]: 0x00 - 0xFF
\arg rx_fi: 0 - 27
\retval none
*/
void can_message_receive(uint32_t can_periph, uint8_t fifo_number, can_receive_message_struct* receive_message)
{
/* get the frame format */
receive_message->rx_ff = (uint8_t)(CAN_RFIFOMI_FF & CAN_RFIFOMI(can_periph, fifo_number));
if(CAN_FF_STANDARD == receive_message->rx_ff){
/* get standard identifier */
receive_message -> rx_sfid = (uint32_t)(RFIFOMI_SFID(CAN_RFIFOMI(can_periph, fifo_number)));
}else{
/* get extended identifier */
receive_message -> rx_efid = (uint32_t)(RFIFOMI_EFID(CAN_RFIFOMI(can_periph, fifo_number)));
}
/* get frame type */
receive_message -> rx_ft = (uint8_t)(CAN_RFIFOMI_FT & CAN_RFIFOMI(can_periph, fifo_number));
/* get recevie data length */
receive_message -> rx_dlen = (uint8_t)(RFIFOMP_DLENC(CAN_RFIFOMP(can_periph, fifo_number)));
/* filtering index */
receive_message -> rx_fi = (uint8_t)(RFIFOMP_FI(CAN_RFIFOMP(can_periph, fifo_number)));
/* receive data */
receive_message -> rx_data[0] = (uint8_t)(RFIFOMDATA0_DB0(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[1] = (uint8_t)(RFIFOMDATA0_DB1(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[2] = (uint8_t)(RFIFOMDATA0_DB2(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[3] = (uint8_t)(RFIFOMDATA0_DB3(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[4] = (uint8_t)(RFIFOMDATA1_DB4(CAN_RFIFOMDATA1(can_periph, fifo_number)));
receive_message -> rx_data[5] = (uint8_t)(RFIFOMDATA1_DB5(CAN_RFIFOMDATA1(can_periph, fifo_number)));
receive_message -> rx_data[6] = (uint8_t)(RFIFOMDATA1_DB6(CAN_RFIFOMDATA1(can_periph, fifo_number)));
receive_message -> rx_data[7] = (uint8_t)(RFIFOMDATA1_DB7(CAN_RFIFOMDATA1(can_periph, fifo_number)));
/* release FIFO */
if(CAN_FIFO0 == fifo_number){
CAN_RFIFO0(can_periph) |= CAN_RFIFO0_RFD0;
}else{
CAN_RFIFO1(can_periph) |= CAN_RFIFO1_RFD1;
}
}
/*!
\brief release FIFO0
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] fifo_number
\arg CAN_FIFOx(x=0,1)
\param[out] none
\retval none
*/
void can_fifo_release(uint32_t can_periph, uint8_t fifo_number)
{
if(CAN_FIFO0 == fifo_number){
CAN_RFIFO0(can_periph) |= CAN_RFIFO0_RFD0;
}else if(CAN_FIFO1 == fifo_number){
CAN_RFIFO1(can_periph) |= CAN_RFIFO1_RFD1;
}else{
/* illegal parameters */
}
}
/*!
\brief CAN receive message length
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] fifo_number
\arg CAN_FIFOx(x=0,1)
\param[out] none
\retval message length
*/
uint8_t can_receive_message_length_get(uint32_t can_periph, uint8_t fifo_number)
{
uint8_t val = 0U;
if(CAN_FIFO0 == fifo_number){
val = (uint8_t)(CAN_RFIFO0(can_periph) & CAN_RFIF_RFL_MASK);
}else if(CAN_FIFO1 == fifo_number){
val = (uint8_t)(CAN_RFIFO1(can_periph) & CAN_RFIF_RFL_MASK);
}else{
/* illegal parameters */
}
return val;
}
/*!
\brief set CAN working mode
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] can_working_mode
\arg CAN_MODE_INITIALIZE
\arg CAN_MODE_NORMAL
\arg CAN_MODE_SLEEP
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_working_mode_set(uint32_t can_periph, uint8_t working_mode)
{
ErrStatus flag = ERROR;
/* timeout for IWS or also for SLPWS bits */
uint32_t timeout = CAN_TIMEOUT;
if(CAN_MODE_INITIALIZE == working_mode){
/* disable sleep mode */
CAN_CTL(can_periph) &= (~(uint32_t)CAN_CTL_SLPWMOD);
/* set initialize mode */
CAN_CTL(can_periph) |= (uint8_t)CAN_CTL_IWMOD;
/* wait the acknowledge */
while((CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (0U != timeout)){
timeout--;
}
if(CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)){
flag = ERROR;
}else{
flag = SUCCESS;
}
}else if(CAN_MODE_NORMAL == working_mode){
/* enter normal mode */
CAN_CTL(can_periph) &= ~(uint32_t)(CAN_CTL_SLPWMOD | CAN_CTL_IWMOD);
/* wait the acknowledge */
while((0U != (CAN_STAT(can_periph) & (CAN_STAT_IWS | CAN_STAT_SLPWS))) && (0U != timeout)){
timeout--;
}
if(0U != (CAN_STAT(can_periph) & (CAN_STAT_IWS | CAN_STAT_SLPWS))){
flag = ERROR;
}else{
flag = SUCCESS;
}
}else if(CAN_MODE_SLEEP == working_mode){
/* disable initialize mode */
CAN_CTL(can_periph) &= (~(uint32_t)CAN_CTL_IWMOD);
/* set sleep mode */
CAN_CTL(can_periph) |= (uint8_t)CAN_CTL_SLPWMOD;
/* wait the acknowledge */
while((CAN_STAT_SLPWS != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)) && (0U != timeout)){
timeout--;
}
if(CAN_STAT_SLPWS != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)){
flag = ERROR;
}else{
flag = SUCCESS;
}
}else{
flag = ERROR;
}
return flag;
}
/*!
\brief wake up CAN
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_wakeup(uint32_t can_periph)
{
ErrStatus flag = ERROR;
uint32_t timeout = CAN_TIMEOUT;
/* wakeup */
CAN_CTL(can_periph) &= ~CAN_CTL_SLPWMOD;
while((0U != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)) && (0x00U != timeout)){
timeout--;
}
if(0U != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)){
flag = ERROR;
}else{
flag = SUCCESS;
}
return flag;
}
/*!
\brief get CAN error type
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval can_error_enum
*/
can_error_enum can_error_get(uint32_t can_periph)
{
can_error_enum error;
error = CAN_ERROR_NONE;
/* get error type */
error = (can_error_enum)((CAN_ERR(can_periph) & CAN_ERR_ERRN) >> 4U);
return error;
}
/*!
\brief get CAN receive error number
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval error number
*/
uint8_t can_receive_error_number_get(uint32_t can_periph)
{
uint8_t val;
val = (uint8_t)((CAN_ERR(can_periph) & CAN_ERR_RECNT) >> 24U);
return val;
}
/*!
\brief get CAN transmit error number
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval error number
*/
uint8_t can_transmit_error_number_get(uint32_t can_periph)
{
uint8_t val;
val = (uint8_t)((CAN_ERR(can_periph) & CAN_ERR_TECNT) >> 16U);
return val;
}
/*!
\brief enable CAN interrupt
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] interrupt
\arg CAN_INT_TME: transmit mailbox empty interrupt enable
\arg CAN_INT_RFNE0: receive FIFO0 not empty interrupt enable
\arg CAN_INT_RFF0: receive FIFO0 full interrupt enable
\arg CAN_INT_RFO0: receive FIFO0 overfull interrupt enable
\arg CAN_INT_RFNE1: receive FIFO1 not empty interrupt enable
\arg CAN_INT_RFF1: receive FIFO1 full interrupt enable
\arg CAN_INT_RFO1: receive FIFO1 overfull interrupt enable
\arg CAN_INT_WERR: warning error interrupt enable
\arg CAN_INT_PERR: passive error interrupt enable
\arg CAN_INT_BO: bus-off interrupt enable
\arg CAN_INT_ERRN: error number interrupt enable
\arg CAN_INT_ERR: error interrupt enable
\arg CAN_INT_WU: wakeup interrupt enable
\arg CAN_INT_SLPW: sleep working interrupt enable
\param[out] none
\retval none
*/
void can_interrupt_enable(uint32_t can_periph, uint32_t interrupt)
{
CAN_INTEN(can_periph) |= interrupt;
}
/*!
\brief disable CAN interrupt
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] interrupt
\arg CAN_INT_TME: transmit mailbox empty interrupt enable
\arg CAN_INT_RFNE0: receive FIFO0 not empty interrupt enable
\arg CAN_INT_RFF0: receive FIFO0 full interrupt enable
\arg CAN_INT_RFO0: receive FIFO0 overfull interrupt enable
\arg CAN_INT_RFNE1: receive FIFO1 not empty interrupt enable
\arg CAN_INT_RFF1: receive FIFO1 full interrupt enable
\arg CAN_INT_RFO1: receive FIFO1 overfull interrupt enable
\arg CAN_INT_WERR: warning error interrupt enable
\arg CAN_INT_PERR: passive error interrupt enable
\arg CAN_INT_BO: bus-off interrupt enable
\arg CAN_INT_ERRN: error number interrupt enable
\arg CAN_INT_ERR: error interrupt enable
\arg CAN_INT_WU: wakeup interrupt enable
\arg CAN_INT_SLPW: sleep working interrupt enable
\param[out] none
\retval none
*/
void can_interrupt_disable(uint32_t can_periph, uint32_t interrupt)
{
CAN_INTEN(can_periph) &= ~interrupt;
}
/*!
\brief get CAN flag state
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] flag: CAN flags, refer to can_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_FLAG_MTE2: mailbox 2 transmit error
\arg CAN_FLAG_MTE1: mailbox 1 transmit error
\arg CAN_FLAG_MTE0: mailbox 0 transmit error
\arg CAN_FLAG_MTF2: mailbox 2 transmit finished
\arg CAN_FLAG_MTF1: mailbox 1 transmit finished
\arg CAN_FLAG_MTF0: mailbox 0 transmit finished
\arg CAN_FLAG_RFO0: receive FIFO0 overfull
\arg CAN_FLAG_RFF0: receive FIFO0 full
\arg CAN_FLAG_RFO1: receive FIFO1 overfull
\arg CAN_FLAG_RFF1: receive FIFO1 full
\arg CAN_FLAG_BOERR: bus-off error
\arg CAN_FLAG_PERR: passive error
\arg CAN_FLAG_WERR: warning error
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus can_flag_get(uint32_t can_periph, can_flag_enum flag)
{
if(RESET != (CAN_REG_VAL(can_periph, flag) & BIT(CAN_BIT_POS(flag)))){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear CAN flag state
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] flag: CAN flags, refer to can_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_FLAG_MTE2: mailbox 2 transmit error
\arg CAN_FLAG_MTE1: mailbox 1 transmit error
\arg CAN_FLAG_MTE0: mailbox 0 transmit error
\arg CAN_FLAG_MTF2: mailbox 2 transmit finished
\arg CAN_FLAG_MTF1: mailbox 1 transmit finished
\arg CAN_FLAG_MTF0: mailbox 0 transmit finished
\arg CAN_FLAG_RFO0: receive FIFO0 overfull
\arg CAN_FLAG_RFF0: receive FIFO0 full
\arg CAN_FLAG_RFO1: receive FIFO1 overfull
\arg CAN_FLAG_RFF1: receive FIFO1 full
\param[out] none
\retval none
*/
void can_flag_clear(uint32_t can_periph, can_flag_enum flag)
{
CAN_REG_VAL(can_periph, flag) |= BIT(CAN_BIT_POS(flag));
}
/*!
\brief get CAN interrupt flag state
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] flag: CAN interrupt flags, refer to can_interrupt_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_INT_FLAG_SLPIF: status change interrupt flag of sleep working mode entering
\arg CAN_INT_FLAG_WUIF: status change interrupt flag of wakeup from sleep working mode
\arg CAN_INT_FLAG_ERRIF: error interrupt flag
\arg CAN_INT_FLAG_MTF2: mailbox 2 transmit finished interrupt flag
\arg CAN_INT_FLAG_MTF1: mailbox 1 transmit finished interrupt flag
\arg CAN_INT_FLAG_MTF0: mailbox 0 transmit finished interrupt flag
\arg CAN_INT_FLAG_RFO0: receive FIFO0 overfull interrupt flag
\arg CAN_INT_FLAG_RFF0: receive FIFO0 full interrupt flag
\arg CAN_INT_FLAG_RFO1: receive FIFO1 overfull interrupt flag
\arg CAN_INT_FLAG_RFF1: receive FIFO1 full interrupt flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus can_interrupt_flag_get(uint32_t can_periph, can_interrupt_flag_enum flag)
{
FlagStatus ret1 = RESET;
FlagStatus ret2 = RESET;
/* get the staus of interrupt flag */
ret1 = (FlagStatus)(CAN_REG_VALS(can_periph, flag) & BIT(CAN_BIT_POS0(flag)));
/* get the staus of interrupt enale bit */
ret2 = (FlagStatus)(CAN_INTEN(can_periph) & BIT(CAN_BIT_POS1(flag)));
if(ret1 && ret2){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear CAN interrupt flag state
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] flag: CAN interrupt flags, refer to can_interrupt_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_INT_FLAG_SLPIF: status change interrupt flag of sleep working mode entering
\arg CAN_INT_FLAG_WUIF: status change interrupt flag of wakeup from sleep working mode
\arg CAN_INT_FLAG_ERRIF: error interrupt flag
\arg CAN_INT_FLAG_MTF2: mailbox 2 transmit finished interrupt flag
\arg CAN_INT_FLAG_MTF1: mailbox 1 transmit finished interrupt flag
\arg CAN_INT_FLAG_MTF0: mailbox 0 transmit finished interrupt flag
\arg CAN_INT_FLAG_RFO0: receive FIFO0 overfull interrupt flag
\arg CAN_INT_FLAG_RFF0: receive FIFO0 full interrupt flag
\arg CAN_INT_FLAG_RFO1: receive FIFO1 overfull interrupt flag
\arg CAN_INT_FLAG_RFF1: receive FIFO1 full interrupt flag
\param[out] none
\retval none
*/
void can_interrupt_flag_clear(uint32_t can_periph, can_interrupt_flag_enum flag)
{
CAN_REG_VALS(can_periph, flag) |= BIT(CAN_BIT_POS0(flag));
}