rt-thread/bsp/hpmicro/libraries/drivers/drv_sdio.c

528 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (c) 2022-2023 HPMicro
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Change Logs:
* Date Author Notes
* 2022-02-23 HPMicro First version
* 2022-07-19 HPMicro Fixed the multi-block read/write issue
* 2023-07-27 HPMicro Fixed clock setting issue
* 2023-08-02 HPMicro Add speed mode setting
*/
#include <rtthread.h>
#ifdef BSP_USING_SDXC
#include <rthw.h>
#include <rtdevice.h>
#include <rtdbg.h>
#include "board.h"
#include "hpm_sdxc_drv.h"
#include "hpm_l1c_drv.h"
#define CACHE_LINESIZE HPM_L1C_CACHELINE_SIZE
#define SDXC_ADMA_TABLE_WORDS (2U)
#define SDXC_AMDA2_ADDR_ALIGN (4U)
#define SDXC_DATA_TIMEOUT (0xFU)
#define SDXC_CACHELINE_ALIGN_DOWN(x) HPM_L1C_CACHELINE_ALIGN_DOWN(x)
#define SDXC_CACHELINE_ALIGN_UP(x) HPM_L1C_CACHELINE_ALIGN_UP(x)
#define SDXC_IS_CACHELINE_ALIGNED(n) ((uint32_t)(n) % (uint32_t)(CACHE_LINESIZE) == 0U)
struct hpm_mmcsd
{
struct rt_mmcsd_host *host;
struct rt_mmcsd_req *req;
struct rt_mmcsd_cmd *cmd;
struct rt_timer *timer;
rt_uint32_t *buf;
SDXC_Type *sdxc_base;
int32_t irq_num;
uint32_t *sdxc_adma2_table;
uint8_t power_mode;
uint8_t bus_width;
uint8_t timing;
uint8_t bus_mode;
uint32_t freq;
};
static void hpm_sdmmc_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req);
static void hpm_sdmmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg);
static void hpm_sdmmc_enable_sdio_irq(struct rt_mmcsd_host *host, rt_int32_t en);
static void hpm_sdmmc_host_recovery(SDXC_Type *base);
static int hpm_sdmmc_transfer(SDXC_Type *base, sdxc_adma_config_t *dma_config, sdxc_xfer_t *xfer);
static const struct rt_mmcsd_host_ops hpm_mmcsd_host_ops =
{
.request = hpm_sdmmc_request,
.set_iocfg = hpm_sdmmc_set_iocfg,
.get_card_status = NULL,
.enable_sdio_irq = NULL, // Do not use the interrupt mode, use DMA instead
};
/* Place the ADMA2 table to non-cacheable region */
ATTR_PLACE_AT_NONCACHEABLE static uint32_t s_sdxc_adma2_table[SDXC_ADMA_TABLE_WORDS];
static int hpm_sdmmc_transfer(SDXC_Type *base, sdxc_adma_config_t *dma_config, sdxc_xfer_t *xfer)
{
hpm_stat_t status;
sdxc_command_t *cmd = xfer->command;
sdxc_data_t *data = xfer->data;
status = sdxc_transfer_nonblocking(base, dma_config, xfer);
if (status != status_success)
{
return -RT_ERROR;
}
/* Wait until idle */
volatile uint32_t interrupt_status = sdxc_get_interrupt_status(base);
while (!IS_HPM_BITMASK_SET(interrupt_status, SDXC_INT_STAT_CMD_COMPLETE_MASK))
{
interrupt_status = sdxc_get_interrupt_status(base);
status = sdxc_parse_interrupt_status(base);
HPM_BREAK_IF(status != status_success);
}
sdxc_clear_interrupt_status(base, SDXC_INT_STAT_CMD_COMPLETE_MASK);
if (status == status_success)
{
status = sdxc_receive_cmd_response(base, cmd);
}
if ((status == status_success) && (data != RT_NULL))
{
interrupt_status = sdxc_get_interrupt_status(base);
while (!IS_HPM_BITMASK_SET(interrupt_status, SDXC_INT_STAT_XFER_COMPLETE_MASK | SDXC_STS_ERROR))
{
interrupt_status = sdxc_get_interrupt_status(base);
status = sdxc_parse_interrupt_status(base);
HPM_BREAK_IF(status != status_success);
}
}
return (status == status_success) ? RT_EOK : -RT_ERROR;
}
/**
* !@brief SDMMC request implementation based on HPMicro SDXC Host
*/
static void hpm_sdmmc_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
RT_ASSERT(host != RT_NULL);
RT_ASSERT(host->private_data != RT_NULL);
RT_ASSERT(req != RT_NULL);
RT_ASSERT(req->cmd != RT_NULL);
sdxc_adma_config_t adma_config = { 0 };
sdxc_xfer_t xfer = { 0 };
sdxc_command_t sdxc_cmd = { 0 };
sdxc_data_t sdxc_data = { 0 };
uint32_t *aligned_buf = NULL;
hpm_stat_t err = status_invalid_argument;
struct hpm_mmcsd *mmcsd = (struct hpm_mmcsd *) host->private_data;
struct rt_mmcsd_cmd *cmd = req->cmd;
struct rt_mmcsd_data *data = cmd->data;
/* configure command */
sdxc_cmd.cmd_index = cmd->cmd_code;
sdxc_cmd.cmd_argument = cmd->arg;
sdxc_cmd.cmd_type = (cmd->cmd_code == STOP_TRANSMISSION) ? sdxc_cmd_type_abort_cmd : sdxc_cmd_type_normal_cmd;
switch (cmd->flags & RESP_MASK)
{
case RESP_NONE:
sdxc_cmd.resp_type = sdxc_dev_resp_none;
break;
case RESP_R1:
sdxc_cmd.resp_type = sdxc_dev_resp_r1;
break;
case RESP_R1B:
sdxc_cmd.resp_type = sdxc_dev_resp_r1b;
break;
case RESP_R2:
sdxc_cmd.resp_type = sdxc_dev_resp_r2;
break;
case RESP_R3:
sdxc_cmd.resp_type = sdxc_dev_resp_r3;
break;
case RESP_R4:
sdxc_cmd.resp_type = sdxc_dev_resp_r4;
break;
case RESP_R6:
sdxc_cmd.resp_type = sdxc_dev_resp_r6;
break;
case RESP_R7:
sdxc_cmd.resp_type = sdxc_dev_resp_r7;
break;
case RESP_R5:
sdxc_cmd.resp_type = sdxc_dev_resp_r5;
break;
default:
RT_ASSERT(NULL);
break;
}
sdxc_cmd.cmd_flags = 0UL;
xfer.command = &sdxc_cmd;
if (data != NULL)
{
sdxc_data.enable_auto_cmd12 = false;
sdxc_data.enable_auto_cmd23 = false;
sdxc_data.enable_ignore_error = false;
sdxc_data.data_type = sdxc_xfer_data_normal;
sdxc_data.block_size = data->blksize;
sdxc_data.block_cnt = data->blks;
/* configure adma2 */
adma_config.dma_type = sdxc_dmasel_adma2;
adma_config.adma_table = (uint32_t*) core_local_mem_to_sys_address(BOARD_RUNNING_CORE,
(uint32_t) mmcsd->sdxc_adma2_table);
adma_config.adma_table_words = SDXC_ADMA_TABLE_WORDS;
if ((req->data->flags & DATA_DIR_WRITE) != 0U)
{
uint32_t write_size = data->blks * data->blksize;
if (!SDXC_IS_CACHELINE_ALIGNED(data->buf) || !SDXC_IS_CACHELINE_ALIGNED(write_size))
{
write_size = SDXC_CACHELINE_ALIGN_UP(write_size);
aligned_buf = (uint32_t *) rt_malloc_align(write_size, CACHE_LINESIZE);
rt_memcpy(aligned_buf, data->buf, write_size);
sdxc_data.tx_data = aligned_buf;
rt_enter_critical();
l1c_dc_flush((uint32_t) sdxc_data.tx_data, write_size);
rt_exit_critical();
}
else
{
sdxc_data.tx_data = (uint32_t const *) core_local_mem_to_sys_address(BOARD_RUNNING_CORE,
(uint32_t) data->buf);
rt_enter_critical();
l1c_dc_flush((uint32_t) data->buf, write_size);
rt_exit_critical();
}
sdxc_data.rx_data = NULL;
}
else
{
uint32_t read_size = data->blks * data->blksize;
if (!SDXC_IS_CACHELINE_ALIGNED(data->buf) || !SDXC_IS_CACHELINE_ALIGNED(read_size))
{
uint32_t aligned_read_size = SDXC_CACHELINE_ALIGN_UP(read_size);
aligned_buf = (uint32_t *) rt_malloc_align(aligned_read_size, CACHE_LINESIZE);
sdxc_data.rx_data = aligned_buf;
}
else
{
sdxc_data.rx_data = (uint32_t*) core_local_mem_to_sys_address(BOARD_RUNNING_CORE, (uint32_t) data->buf);
}
sdxc_data.tx_data = NULL;
}
xfer.data = &sdxc_data;
}
else
{
xfer.data = NULL;
}
if ((req->data->blks > 1) && ((cmd->cmd_code == READ_MULTIPLE_BLOCK) || ((cmd->cmd_code == WRITE_MULTIPLE_BLOCK))))
{
xfer.data->enable_auto_cmd12 = true;
}
err = hpm_sdmmc_transfer(mmcsd->sdxc_base, &adma_config, &xfer);
LOG_I("cmd=%d, arg=%x\n", cmd->cmd_code, cmd->arg);
if (err != status_success)
{
hpm_sdmmc_host_recovery(mmcsd->sdxc_base);
LOG_E(" ***hpm_sdmmc_transfer error: %d*** -->\n", err);
cmd->err = -RT_ERROR;
}
else
{
LOG_I(" ***hpm_sdmmc_transfer passed: %d*** -->\n", err);
if (sdxc_cmd.resp_type == sdxc_dev_resp_r2)
{
LOG_I("resp:0x%08x 0x%08x 0x%08x 0x%08x\n", sdxc_cmd.response[0],
sdxc_cmd.response[1], sdxc_cmd.response[2], sdxc_cmd.response[3]);
}
else
{
LOG_I("resp:0x%08x\n", sdxc_cmd.response[0]);
}
}
if ((sdxc_data.rx_data != NULL) && (cmd->err == RT_EOK))
{
uint32_t read_size = data->blks * data->blksize;
if (aligned_buf != NULL)
{
uint32_t aligned_read_size = SDXC_CACHELINE_ALIGN_UP(read_size);
rt_enter_critical();
l1c_dc_invalidate((uint32_t) aligned_buf, aligned_read_size);
rt_exit_critical();
rt_memcpy(data->buf, aligned_buf, read_size);
}
else
{
rt_enter_critical();
l1c_dc_invalidate((uint32_t) data->buf, read_size);
rt_exit_critical();
}
}
if (aligned_buf != NULL)
{
rt_free_align(aligned_buf);
aligned_buf = NULL;
}
if ((cmd->flags & RESP_MASK) == RESP_R2)
{
cmd->resp[3] = sdxc_cmd.response[0];
cmd->resp[2] = sdxc_cmd.response[1];
cmd->resp[1] = sdxc_cmd.response[2];
cmd->resp[0] = sdxc_cmd.response[3];
}
else
{
cmd->resp[0] = sdxc_cmd.response[0];
}
mmcsd_req_complete(host);
}
/**
* !@brief Set IO Configuration for HPMicro IO and SDXC Host
*/
static void hpm_sdmmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
RT_ASSERT(host != RT_NULL);
RT_ASSERT(host->private_data != RT_NULL);
RT_ASSERT(io_cfg != RT_NULL);
struct hpm_mmcsd *mmcsd = (struct hpm_mmcsd *) host->private_data;
uint32_t vdd = io_cfg->vdd;
if (io_cfg->power_mode != mmcsd->power_mode)
{
switch(io_cfg->power_mode)
{
case MMCSD_POWER_OFF:
board_sd_power_switch(mmcsd->sdxc_base, false);
break;
case MMCSD_POWER_ON:
board_sd_power_switch(mmcsd->sdxc_base, true);
break;
case MMCSD_POWER_UP:
board_sd_power_switch(mmcsd->sdxc_base, false);
rt_thread_mdelay(10);
board_sd_power_switch(mmcsd->sdxc_base, true);
break;
default:
/* Do nothing */
break;
}
mmcsd->power_mode = io_cfg->power_mode;
}
if (mmcsd->bus_width != io_cfg->bus_width)
{
switch (io_cfg->bus_width)
{
case MMCSD_BUS_WIDTH_4:
sdxc_set_data_bus_width(mmcsd->sdxc_base, sdxc_bus_width_4bit);
break;
case MMCSD_BUS_WIDTH_8:
sdxc_set_data_bus_width(mmcsd->sdxc_base, sdxc_bus_width_8bit);
break;
default:
sdxc_set_data_bus_width(mmcsd->sdxc_base, sdxc_bus_width_1bit);
break;
}
mmcsd->bus_width = io_cfg->bus_width;
}
if (mmcsd->timing != io_cfg->timing)
{
switch (io_cfg->timing)
{
case MMCSD_TIMING_LEGACY:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_normal);
break;
case MMCSD_TIMING_SD_HS:
case MMCSD_TIMING_MMC_HS:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_high);
break;
case MMCSD_TIMING_UHS_SDR12:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_sdr12);
break;
case MMCSD_TIMING_UHS_SDR25:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_sdr25);
break;
case MMCSD_TIMING_UHS_SDR50:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_sdr50);
break;
case MMCSD_TIMING_UHS_SDR104:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_sdr104);
break;
case MMCSD_TIMING_UHS_DDR50:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_sd_speed_ddr50);
break;
case MMCSD_TIMING_MMC_DDR52:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_emmc_speed_high_speed_ddr);
break;
case MMCSD_TIMING_MMC_HS200:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_emmc_speed_hs200);
break;
case MMCSD_TIMING_MMC_HS400:
sdxc_set_speed_mode(mmcsd->sdxc_base, sdxc_emmc_speed_hs400);
break;
}
mmcsd->timing = io_cfg->timing;
}
board_init_sd_pins(mmcsd->sdxc_base);
uint32_t sdxc_clock = io_cfg->clock;
if (sdxc_clock != 0U)
{
if (mmcsd->freq != sdxc_clock)
{
/* Ensure request frequency from mmcsd stack level doesn't exceed maximum supported frequency by host */
uint32_t clock_freq = MIN(mmcsd->host->freq_max, sdxc_clock);
board_sd_configure_clock(mmcsd->sdxc_base, clock_freq);
mmcsd->freq = sdxc_clock;
}
}
}
static void hpm_sdmmc_enable_sdio_irq(struct rt_mmcsd_host *host, rt_int32_t en)
{
RT_ASSERT(host != RT_NULL);
RT_ASSERT(host->private_data != RT_NULL);
struct hpm_mmcsd *mmcsd = (struct hpm_mmcsd *) host->private_data;
if (en != 0)
{
intc_m_enable_irq_with_priority(mmcsd->irq_num, 1);
}
else
{
intc_m_disable_irq(mmcsd->irq_num);
}
}
static void hpm_sdmmc_host_recovery(SDXC_Type *base)
{
uint32_t pstate = sdxc_get_present_status(base);
bool need_reset_cmd_line = false;
bool need_reset_data_line = false;
if ((pstate & SDXC_PSTATE_CMD_INHIBIT_MASK) != 0U)
{
/* Reset command line */
need_reset_cmd_line = true;
}
if ((pstate & SDXC_PSTATE_DAT_INHIBIT_MASK) != 0U)
{
/* Reset data line */
need_reset_data_line = true;
}
uint32_t int_stat = sdxc_get_interrupt_status(base);
if ((int_stat & 0xF0000UL) != 0U)
{
need_reset_cmd_line = true;
}
if ((int_stat & 0x700000) != 0U)
{
need_reset_data_line = true;
}
if (need_reset_cmd_line)
{
sdxc_reset(base, sdxc_reset_cmd_line, 0xFFFFUL);
}
if (need_reset_data_line)
{
sdxc_reset(base, sdxc_reset_data_line, 0xFFFFUL);
}
if (need_reset_cmd_line || need_reset_data_line)
{
sdxc_clear_interrupt_status(base, ~0UL);
}
rt_thread_mdelay(10);
LOG_E("%s\n", __func__);
}
int rt_hw_sdio_init(void)
{
rt_err_t err = RT_EOK;
struct rt_mmcsd_host *host = NULL;
struct hpm_mmcsd *mmcsd = NULL;
do
{
host = mmcsd_alloc_host();
if (host == NULL)
{
err = -RT_ERROR;
break;
}
mmcsd = rt_malloc(sizeof(struct hpm_mmcsd));
if (mmcsd == NULL)
{
LOG_E("allocate hpm_mmcsd failed\n");
err = -RT_ERROR;
break;
}
rt_memset(mmcsd, 0, sizeof(struct hpm_mmcsd));
mmcsd->sdxc_base = BOARD_APP_SDCARD_SDXC_BASE;
mmcsd->sdxc_adma2_table = s_sdxc_adma2_table;
host->ops = &hpm_mmcsd_host_ops;
host->freq_min = 375000;
host->freq_max = 50000000;
host->valid_ocr = VDD_30_31 | VDD_31_32 | VDD_32_33 | VDD_33_34;
host->flags = MMCSD_MUTBLKWRITE | MMCSD_BUSWIDTH_4 | MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ;
host->max_seg_size = 65535;
host->max_dma_segs = 2;
host->max_blk_size = 512;
host->max_blk_count = 4096;
mmcsd->host = host;
/* Perform necessary initialization */
board_sd_configure_clock(mmcsd->sdxc_base, 375000);
sdxc_config_t sdxc_config = { 0 };
sdxc_config.data_timeout = SDXC_DATA_TIMEOUT;
sdxc_init(mmcsd->sdxc_base, &sdxc_config);
host->private_data = mmcsd;
mmcsd_change(host);
} while (false);
if (err != RT_EOK)
{
if (host != NULL)
{
mmcsd_free_host(host);
host = NULL;
}
}
return err;
}
INIT_DEVICE_EXPORT(rt_hw_sdio_init);
#endif