rt-thread/bsp/essemi/es32vf2264/libraries/ALD/ES32VF2264/Source/ald_adc.c

1102 lines
38 KiB
C

/**
******************************************************************************
* @file ald_adc.c
* @brief This file provides firmware functions to manage the following
* functionalities of the Analog to Digital Convertor (ADC)
* peripheral:
* + Initialization functions
* ++ Initialization and Configuration of ADC
* + Operation functions
* ++ Start, stop, get result of conversions of normal
* group, using 3 possible modes: polling, interruption or DMA.
* + Control functions
* ++ Channels configuration on normal group
* ++ Channels configuration on insert group
* ++ Analog Watchdog configuration
* + State functions
* ++ ADC state machine management
* ++ Interrupts and flags management
*
* @version V1.0
* @date 06 Mar. 2023
* @author AE Team.
* @note
* Change Logs:
* Date Author Notes
* 06 Mar. 2023 Lisq The first version
*
* Copyright (C) Shanghai Eastsoft Microelectronics Co. Ltd. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
**********************************************************************************
*/
#include "ald_adc.h"
/** @addtogroup ES32VF2264_ALD
* @{
*/
/** @defgroup ADC ADC
* @brief ADC module driver
* @{
*/
/** @addtogroup ADC_Private_Functions
* @{
*/
static void adc_dma_normal_conv_cplt(void *arg);
/**
* @}
*/
/** @defgroup ADC_Public_Functions ADC Public Functions
* @{
*/
/** @defgroup ADC_Public_Functions_Group1 Initialization functions
* @brief Initialization and Configuration functions
* @{
*/
/**
* @brief Initializes the ADC peripheral and normal group according to
* parameters specified in structure "adc_handle_t".
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_init(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
assert_param(IS_ADC_DATA_ALIGN_TYPE(hperh->init.align));
assert_param(IS_FUNC_STATE(hperh->init.scan));
assert_param(IS_ADC_CLK_DIV_TYPE(hperh->init.div));
assert_param(IS_ADC_NEG_REF_VOLTAGE_TYPE(hperh->init.n_ref));
assert_param(IS_POS_REF_VOLTAGE_TYPE(hperh->init.p_ref));
assert_param(IS_ADC_CONV_BIT_TYPE(hperh->init.data_bit));
assert_param(IS_ADC_NCH_NR_TYPE(hperh->init.nch_nr));
assert_param(IS_ADC_DISC_NR_TYPE(hperh->init.disc_nr));
assert_param(IS_FUNC_STATE(hperh->init.cont));
assert_param(IS_ADC_NCHESEL_MODE_TYPE(hperh->init.nche_sel));
if (hperh->state == ALD_ADC_STATE_RESET ) {
hperh->error_code = ALD_ADC_ERROR_NONE;
hperh->lock = UNLOCK;
}
ALD_ADC_DISABLE(hperh);
ald_adc_reset(hperh);
hperh->state = ALD_ADC_STATE_BUSY;
MODIFY_REG(hperh->perh->CON1, ADC_CON1_ALIGN_MSK, hperh->init.align << ADC_CON1_ALIGN_POS);
MODIFY_REG(hperh->perh->CON0, ADC_CON0_RSEL_MSK, hperh->init.data_bit << ADC_CON0_RSEL_POSS);
/* Enable discontinuous mode only if continuous mode is disable */
if (hperh->init.disc == ALD_ADC_NCH_DISC_EN) {
hperh->init.scan = ENABLE;
hperh->init.cont = DISABLE;
SET_BIT(hperh->perh->CON0, ADC_CON0_NCHDCEN_MSK);
MODIFY_REG(hperh->perh->CON0, ADC_CON0_ETRGN_MSK, hperh->init.disc_nr << ADC_CON0_ETRGN_POSS);
}
else if (hperh->init.disc == ALD_ADC_ICH_DISC_EN) {
hperh->init.scan = ENABLE;
hperh->init.cont = DISABLE;
SET_BIT(hperh->perh->CON0, ADC_CON0_ICHDCEN_MSK);
MODIFY_REG(hperh->perh->CON0, ADC_CON0_ETRGN_MSK, hperh->init.disc_nr << ADC_CON0_ETRGN_POSS);
}
else {
CLEAR_BIT(hperh->perh->CON0, ADC_CON0_NCHDCEN_MSK);
CLEAR_BIT(hperh->perh->CON0, ADC_CON0_ICHDCEN_MSK);
}
if ((hperh->init.scan == ENABLE) || (hperh->init.disc == ALD_ADC_NCH_DISC_EN))
MODIFY_REG(hperh->perh->CHSL, ADC_CHSL_NSL_MSK, hperh->init.nch_nr << ADC_CHSL_NSL_POSS);
MODIFY_REG(hperh->perh->CON1, ADC_CON1_CM_MSK, hperh->init.cont << ADC_CON1_CM_POS);
MODIFY_REG(hperh->perh->CON0, ADC_CON0_SCANEN_MSK, hperh->init.scan << ADC_CON0_SCANEN_POS);
WRITE_REG(hperh->perh->CCR, 0x0);
MODIFY_REG(hperh->perh->CCR, ADC_CCR_PWRMODSEL_MSK, DISABLE << ADC_CCR_PWRMODSEL_POS);
MODIFY_REG(hperh->perh->CCR, ADC_CCR_VREFEN_MSK, ENABLE << ADC_CCR_VREFEN_POS);
MODIFY_REG(hperh->perh->CCR, ADC_CCR_IREFEN_MSK, ENABLE << ADC_CCR_IREFEN_POS);
MODIFY_REG(hperh->perh->CCR, ADC_CCR_VRNSEL_MSK, hperh->init.n_ref << ADC_CCR_VRNSEL_POS);
MODIFY_REG(hperh->perh->CCR, ADC_CCR_VRPSEL_MSK, hperh->init.p_ref << ADC_CCR_VRPSEL_POS);
MODIFY_REG(hperh->perh->CCR, ADC_CCR_POSDIV_MSK, hperh->init.div << ADC_CCR_POSDIV_POSS);
MODIFY_REG(hperh->perh->CON1, ADC_CON1_NCHESEL_MSK, hperh->init.nche_sel << ADC_CON1_NCHESEL_POS);
ALD_ADC_ENABLE(hperh);
hperh->error_code = ALD_ADC_ERROR_NONE;
hperh->state = ALD_ADC_STATE_READY;
return ALD_OK;
}
/**
* @brief Deinitialize the ADC peripheral registers to their default reset
* values.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_reset(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
ALD_ADC_DISABLE(hperh);
WRITE_REG(hperh->perh->CLR, 0x30F);
WRITE_REG(hperh->perh->CON0, 0x0);
WRITE_REG(hperh->perh->CON1, 0x0);
WRITE_REG(hperh->perh->CCR, 0x0);
WRITE_REG(hperh->perh->WDTH, 0xFFF);
WRITE_REG(hperh->perh->WDTL, 0x0);
WRITE_REG(hperh->perh->NCHOFF, 0x0);
WRITE_REG(hperh->perh->ICHOFF1, 0x0);
WRITE_REG(hperh->perh->ICHOFF2, 0x0);
WRITE_REG(hperh->perh->ICHOFF3, 0x0);
WRITE_REG(hperh->perh->ICHOFF4, 0x0);
WRITE_REG(hperh->perh->ICHS, 0x0);
WRITE_REG(hperh->perh->NCHS1, 0x0);
WRITE_REG(hperh->perh->NCHS2, 0x0);
WRITE_REG(hperh->perh->NCHS3, 0x0);
WRITE_REG(hperh->perh->NCHS4, 0x0);
WRITE_REG(hperh->perh->SMPT1, 0x0);
WRITE_REG(hperh->perh->SMPT2, 0x0);
WRITE_REG(hperh->perh->SMPT3, 0x0);
WRITE_REG(hperh->perh->CHSL, 0x0);
hperh->state = ALD_ADC_STATE_RESET;
hperh->error_code = ALD_ADC_ERROR_NONE;
return ALD_OK;
}
/**
* @}
*/
/** @defgroup ADC_Public_Functions_Group2 IO operation functions
* @brief Input and Output operation functions
* @{
*/
/**
* @brief Enables ADC, starts conversion of normal group.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_normal_start(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
ALD_ADC_ENABLE(hperh);
WRITE_REG(hperh->perh->CLR, ALD_ADC_FLAG_NCH | ALD_ADC_FLAG_NCHS);
SET_BIT(hperh->perh->CON1, ADC_CON1_NCHTRG_MSK);
return ALD_OK;
}
/**
* @brief Stop ADC conversion of normal group (and insert channels in
* case of auto_injection mode), disable ADC peripheral.
* @note: ADC peripheral disable is forcing stop of potential
* conversion on insert group. If insert group is under use, it
* should be preliminarily stopped using ald_adc_insert_stop function.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_normal_stop(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
ALD_ADC_DISABLE(hperh);
hperh->state = ALD_ADC_STATE_READY;
return ALD_OK;
}
/**
* @brief Wait for normal group conversion to be completed.
* @note This function cannot be used in a particular setup: ADC configured in DMA mode.
* In this case, DMA resets the flag EOC and polling cannot be performed on each conversion.
* @note When use this function,you should be pay attention to the hperh->init.reocs_mode,
* if it is ADC_REOCS_MODE_ALL, it means the function will wait all normal rank conversion finished.
* if it is ADC_REOCS_MODE_ONE, it means the funcion will wait every normal rank conversion finished.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @param timeout: Timeout value in millisecond.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_normal_poll_for_conversion(ald_adc_handle_t *hperh, uint32_t timeout)
{
uint32_t _tick;
assert_param(IS_ADC_TYPE(hperh->perh));
_tick = ald_get_tick();
while (!(READ_BIT(hperh->perh->STAT, ADC_STAT_NCHE_MSK))) {
if (timeout != ALD_MAX_DELAY ) {
if ((timeout == 0) || ((ald_get_tick() - _tick) > timeout)) {
hperh->state = ALD_ADC_STATE_TIMEOUT;
return ALD_TIMEOUT;
}
}
}
WRITE_REG(hperh->perh->CLR, ALD_ADC_FLAG_NCHS | ALD_ADC_FLAG_NCH);
return ALD_OK;
}
/**
* @brief Poll for conversion event.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @param event_type: the ADC event type.
* This parameter can be one of the following values:
* ADC_awd_event: ADC Analog watchdog event.
* @param timeout: Timeout value in millisecond.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_poll_for_event(ald_adc_handle_t *hperh, ald_adc_event_type_t event_type, uint32_t timeout)
{
uint32_t _tick;
assert_param(IS_ADC_TYPE(hperh->perh));
assert_param(IS_ADC_EVENT_TYPE(event_type));
_tick = ald_get_tick();
while (ald_adc_get_flag_status(hperh, (ald_adc_flag_t)event_type) == RESET) {
if (timeout != ALD_MAX_DELAY ) {
if ((timeout == 0) || ((ald_get_tick() - _tick) > timeout)) {
hperh->state = ALD_ADC_STATE_TIMEOUT;
return ALD_TIMEOUT;
}
}
}
CLEAR_BIT(hperh->state, ALD_ADC_STATE_BUSY_WDG);
return ALD_OK;
}
/**
* @brief Enables ADC, starts conversion of normal group with interruption.
* Interruptions enabled in this function:
* - REOC (end of conversion of normal group)
* Each of these interruptions has its dedicated callback function.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_normal_start_by_it(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
SET_BIT(hperh->state, ALD_ADC_STATE_BUSY_N);
ALD_ADC_ENABLE(hperh);
WRITE_REG(hperh->perh->CLR, ALD_ADC_FLAG_NCH);
ald_adc_interrupt_config(hperh, ALD_ADC_IT_NCH, ENABLE);
SET_BIT(hperh->perh->CON1, ADC_CON1_NCHTRG_MSK);
return ALD_OK;
}
/**
* @brief Stop ADC conversion of normal group (and insert group in
* case of auto_injection mode), disable interrution of
* end-of-conversion, disable ADC peripheral.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_normal_stop_by_it(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
ALD_ADC_DISABLE(hperh);
ald_adc_interrupt_config(hperh, ALD_ADC_IT_NCH, DISABLE);
CLEAR_BIT(hperh->state, ALD_ADC_STATE_BUSY_N);
return ALD_OK;
}
/**
* @brief Enables ADC, starts conversion of normal group and transfers result
* through DMA.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @param buf: The destination Buffer address.
* @param size: The length of data to be transferred from ADC peripheral to memory.
* @param channel: The DMA channel
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_start_by_dma(ald_adc_handle_t *hperh, uint16_t *buf, uint16_t size, uint8_t channel)
{
if ((buf == NULL) || (size == 0))
return ALD_ERROR;
assert_param(IS_ADC_TYPE(hperh->perh));
SET_BIT(hperh->state, ALD_ADC_STATE_BUSY_N);
if (hperh->hdma.perh == NULL)
hperh->hdma.perh = DMA;
SET_BIT(hperh->perh->CON1, ADC_CON1_DMA_MSK);
ald_dma_interrupt_config(channel, ALD_DMA_IT_FLAG_TC, ENABLE);
hperh->hdma.cplt_tc_cbk = adc_dma_normal_conv_cplt;
hperh->hdma.cplt_tc_arg = hperh;
ald_dma_config_struct(&hperh->hdma.config);
hperh->hdma.config.src = (void *)&hperh->perh->NCHDR;
hperh->hdma.config.dst = (void *)buf;
hperh->hdma.config.size = size;
hperh->hdma.config.src_data_width = ALD_DMA_DATA_SIZE_HALFWORD;
hperh->hdma.config.dst_data_width = ALD_DMA_DATA_SIZE_HALFWORD;
hperh->hdma.config.src_inc = ALD_DMA_DATA_INC_DISABLE;
hperh->hdma.config.dst_inc = ALD_DMA_DATA_INC_ENABLE;
hperh->hdma.config.msel = ALD_DMA_MSEL_ADC;
hperh->hdma.config.msigsel = ALD_DMA_MSIGSEL_ADC;
hperh->hdma.config.circle_mode = ENABLE;
hperh->hdma.config.channel = channel;
ald_dma_config_basic(&hperh->hdma);
ALD_ADC_ENABLE(hperh);
SET_BIT(hperh->perh->CON1, ADC_CON1_NCHTRG_MSK);
return ALD_OK;
}
/**
* @brief Stop ADC conversion of normal group (and insert group in
* case of auto_insert mode), disable ADC DMA transfer, disable
* ADC peripheral.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @param channel: The DMA channel
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_stop_by_dma(ald_adc_handle_t *hperh, uint8_t channel)
{
assert_param(IS_ADC_TYPE(hperh->perh));
ALD_ADC_DISABLE(hperh);
CLEAR_BIT(hperh->perh->CON1, ADC_CON1_DMA_MSK);
ald_dma_channel_config(channel, DISABLE);
CLEAR_BIT(hperh->state, ALD_ADC_STATE_BUSY_N);
return ALD_OK;
}
/**
* @brief DMA transfer complete callback.
* @param arg: argument of the call back.
* @retval None
*/
static void adc_dma_timer_trigger_cplt(void *arg)
{
ald_adc_timer_config_t *hperh = (ald_adc_timer_config_t *)arg;
ald_timer_base_stop(&hperh->h_timer);
CLEAR_BIT(hperh->h_adc.perh->CON1, ADC_CON1_DMA_MSK);
ALD_ADC_DISABLE(&hperh->h_adc);
ald_dma_channel_config(hperh->dma_ch, DISABLE);
CLEAR_BIT(hperh->h_adc.state, ALD_ADC_STATE_BUSY_N);
if (hperh->h_adc.normal_cplt_cbk)
hperh->h_adc.normal_cplt_cbk(&hperh->h_adc);
return;
}
/**
* @brief Config timer trigger adc insert channel conversion.
* @param config: Pointer to a adc_timer_config_t structure that
* contains the configuration information for the specified function.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_timer_trigger_insert(ald_adc_timer_config_t *config)
{
config->h_pis.perh = PIS;
config->h_pis.init.producer_clk = ALD_PIS_CLK_PCLK;
config->h_pis.init.producer_edge = ALD_PIS_EDGE_NONE;
config->h_pis.init.consumer_clk = ALD_PIS_CLK_PCLK;
if (config->p_timer == AD16C4T)
config->h_pis.init.producer_src = ALD_PIS_TIMER0_UPDATA;
else if (config->p_timer == GP16C4T0)
config->h_pis.init.producer_src = ALD_PIS_TIMER5_UPDATA;
else if (config->p_timer == GP16C4T1)
config->h_pis.init.producer_src = ALD_PIS_TIMER6_UPDATA;
else if (config->p_timer == GP16C4T2)
config->h_pis.init.producer_src = ALD_PIS_TIMER7_UPDATA;
else
return ALD_ERROR;
config->h_pis.init.consumer_trig = ALD_PIS_CH5_ADC0_INSERT;
ald_pis_create(&config->h_pis);
/* Initialize TIMER */
config->h_timer.perh = config->p_timer;
config->h_timer.init.prescaler = 0;
config->h_timer.init.mode = ALD_TIMER_CNT_MODE_UP;
config->h_timer.init.period = ((ald_cmu_get_pclk_clock() / 1000000) * config->time);
config->h_timer.init.clk_div = ALD_TIMER_CLOCK_DIV1;
config->h_timer.init.re_cnt = 0;
ald_timer_base_init(&config->h_timer);
config->h_adc.perh = config->p_adc;
config->h_adc.init.align = ALD_ADC_DATAALIGN_RIGHT;
config->h_adc.init.scan = DISABLE;
config->h_adc.init.cont = DISABLE;
config->h_adc.init.ich_nr = ALD_ADC_ICH_NR_1;
config->h_adc.init.disc = ALD_ADC_ALL_DISABLE;
config->h_adc.init.disc_nr = ALD_ADC_DISC_NR_1;
config->h_adc.init.data_bit = ALD_ADC_CONV_BIT_12;
config->h_adc.init.div = ALD_ADC_CKDIV_128;
config->h_adc.init.nche_sel = ALD_ADC_NCHESEL_MODE_ONE;
config->h_adc.init.n_ref = config->n_ref;
config->h_adc.init.p_ref = config->p_ref;
config->h_adc.normal_cplt_cbk = config->cplt_cbk;
config->h_adc.insert_cplt_cbk = NULL;
config->h_adc.wdg_cbk = NULL;
config->h_adc.error_cbk = NULL;
config->h_adc.ovr_cbk = NULL;
ald_adc_init(&config->h_adc);
config->h_adc.perh->CON1 |= 0x00100000; /* rising edge trigger insert channel convert */
config->i_config.ch = config->adc_ch;
config->i_config.idx = ALD_ADC_ICH_IDX_1;
config->i_config.samp = ALD_ADC_SAMPLETIME_4;
config->i_config.nr = ALD_ADC_ICH_NR_1;
config->i_config.auto_m = DISABLE;
ald_adc_insert_channel_config(&config->h_adc, &config->i_config);
ALD_ADC_ENABLE(&config->h_adc);
ald_timer_base_start(&config->h_timer);
return ALD_OK;
}
/**
* @brief Config Timer trigger adc function
* @param config: Pointer to a adc_timer_config_t structure that
* contains the configuration information for the specified function.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_timer_trigger_adc_by_dma(ald_adc_timer_config_t *config)
{
config->h_pis.perh = PIS;
config->h_pis.init.producer_clk = ALD_PIS_CLK_PCLK;
config->h_pis.init.producer_edge = ALD_PIS_EDGE_NONE;
config->h_pis.init.consumer_clk = ALD_PIS_CLK_PCLK;
if (config->p_timer == AD16C4T)
config->h_pis.init.producer_src = ALD_PIS_TIMER0_UPDATA;
else if (config->p_timer == GP16C4T0)
config->h_pis.init.producer_src = ALD_PIS_TIMER5_UPDATA;
else if (config->p_timer == GP16C4T1)
config->h_pis.init.producer_src = ALD_PIS_TIMER6_UPDATA;
else if (config->p_timer == GP16C4T2)
config->h_pis.init.producer_src = ALD_PIS_TIMER7_UPDATA;
else
return ALD_ERROR;
config->h_pis.init.consumer_trig = ALD_PIS_CH4_ADC0_NORMAL;
ald_pis_create(&config->h_pis);
/* Initialize TIMER */
config->h_timer.perh = config->p_timer;
config->h_timer.init.prescaler = 0;
config->h_timer.init.mode = ALD_TIMER_CNT_MODE_UP;
config->h_timer.init.period = ((ald_cmu_get_pclk_clock() / 1000000) * config->time);
config->h_timer.init.clk_div = ALD_TIMER_CLOCK_DIV1;
config->h_timer.init.re_cnt = 0;
ald_timer_base_init(&config->h_timer);
config->h_adc.perh = config->p_adc;
config->h_adc.init.align = ALD_ADC_DATAALIGN_RIGHT;
config->h_adc.init.scan = DISABLE;
config->h_adc.init.cont = DISABLE;
config->h_adc.init.nch_nr = ALD_ADC_NCH_NR_1;
config->h_adc.init.disc = ALD_ADC_ALL_DISABLE;
config->h_adc.init.disc_nr = ALD_ADC_DISC_NR_1;
config->h_adc.init.data_bit = ALD_ADC_CONV_BIT_12;
config->h_adc.init.div = ALD_ADC_CKDIV_128;
config->h_adc.init.nche_sel = ALD_ADC_NCHESEL_MODE_ONE;
config->h_adc.init.n_ref = config->n_ref;
config->h_adc.init.p_ref = config->p_ref;
config->h_adc.normal_cplt_cbk = config->cplt_cbk;
config->h_adc.insert_cplt_cbk = NULL;
config->h_adc.wdg_cbk = NULL;
config->h_adc.error_cbk = NULL;
config->h_adc.ovr_cbk = NULL;
ald_adc_init(&config->h_adc);
config->h_adc.perh->CON1 |= 0x10000000;
config->config.ch = config->adc_ch;
config->config.idx = ALD_ADC_NCH_IDX_1;
config->config.samp = ALD_ADC_SAMPLETIME_4;
ald_adc_normal_channel_config(&config->h_adc, &config->config);
config->h_dma.cplt_tc_cbk = adc_dma_timer_trigger_cplt;
config->h_dma.cplt_tc_arg = config;
ald_dma_config_struct(&config->h_dma.config);
config->h_dma.perh = DMA;
config->h_dma.config.src = (void *)&config->h_adc.perh->NCHDR;
config->h_dma.config.dst = (void *)config->buf;
config->h_dma.config.size = config->size;
config->h_dma.config.src_data_width = ALD_DMA_DATA_SIZE_HALFWORD;
config->h_dma.config.dst_data_width = ALD_DMA_DATA_SIZE_HALFWORD;
config->h_dma.config.src_inc = ALD_DMA_DATA_INC_DISABLE;
config->h_dma.config.dst_inc = ALD_DMA_DATA_INC_ENABLE;
config->h_dma.config.msel = ALD_DMA_MSEL_ADC;
config->h_dma.config.msigsel = ALD_DMA_MSIGSEL_ADC;
config->h_dma.config.channel = config->dma_ch;
ald_dma_config_basic(&config->h_dma);
ald_dma_interrupt_config(config->dma_ch, ALD_DMA_IT_FLAG_TC, ENABLE);
SET_BIT(config->h_adc.perh->CON1, ADC_CON1_DMA_MSK);
ALD_ADC_ENABLE(&config->h_adc);
ald_timer_base_start(&config->h_timer);
return ALD_OK;
}
/**
* @brief Get ADC normal group conversion result.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval ADC group normal conversion data
*/
uint32_t ald_adc_normal_get_value(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
return hperh->perh->NCHDR;
}
/**
* @brief Enables ADC, starts conversion of insert group.
* Interruptions enabled in this function: None.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_insert_start(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
ALD_ADC_ENABLE(hperh);
WRITE_REG(hperh->perh->CLR, ALD_ADC_FLAG_ICH);
if (!(READ_BIT(hperh->perh->CON0, ADC_CON0_IAUTO_MSK)))
SET_BIT(hperh->perh->CON1, ADC_CON1_ICHTRG_MSK);
return ALD_OK;
}
/**
* @brief Stop conversion of insert channels. Disable ADC peripheral if
* no normal conversion is on going.
* @note If ADC must be disabled and if conversion is on going on
* normal group, function ald_adc_normal_stop must be used to stop both
* insert and normal groups, and disable the ADC.
* @note If insert group mode auto-injection is enabled,
* function ald_adc_normal_stop must be used.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_insert_stop(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
ALD_ADC_DISABLE(hperh);
hperh->state = ALD_ADC_STATE_READY;
return ALD_OK;
}
/**
* @brief Wait for insert group conversion to be completed.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @param timeout: Timeout value in millisecond.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_insert_poll_for_conversion(ald_adc_handle_t *hperh, uint32_t timeout)
{
uint32_t _tick;
assert_param(IS_ADC_TYPE(hperh->perh));
_tick = ald_get_tick();
while (!(READ_BIT(hperh->perh->STAT, ADC_STAT_ICHE_MSK))) {
if (timeout != ALD_MAX_DELAY) {
if ((timeout == 0) || ((ald_get_tick() - _tick) > timeout)) {
hperh->state |= ALD_ADC_STATE_TIMEOUT;
return ALD_TIMEOUT;
}
}
}
WRITE_REG(hperh->perh->CLR, ALD_ADC_FLAG_ICHS | ALD_ADC_FLAG_ICH);
return ALD_OK;
}
/**
* @brief Enables ADC, starts conversion of insert group with interruption.
* - JEOC (end of conversion of insert group)
* Each of these interruptions has its dedicated callback function.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval Status, see @ref ald_status_t..
*/
ald_status_t ald_adc_insert_start_by_it(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
SET_BIT(hperh->state, ALD_ADC_STATE_BUSY_I);
ALD_ADC_ENABLE(hperh);
WRITE_REG(hperh->perh->CLR, ALD_ADC_FLAG_ICHS | ALD_ADC_FLAG_ICH);
ald_adc_interrupt_config(hperh, ALD_ADC_IT_ICH, ENABLE);
if (!(READ_BIT(hperh->perh->CON0, ADC_CON0_IAUTO_MSK)))
SET_BIT(hperh->perh->CON1, ADC_CON1_ICHTRG_MSK);
return ALD_OK;
}
/**
* @brief Stop conversion of insert channels, disable interruption of
* end-of-conversion. Disable ADC peripheral if no normal conversion
* is on going.
* @note If ADC must be disabled and if conversion is on going on
* normal group, function ald_adc_normal_stop must be used to stop both
* insert and normal groups, and disable the ADC.
* @note If insert group mode auto-injection is enabled,
* function ald_adc_normal_stop must be used.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval None
*/
ald_status_t ald_adc_insert_stop_by_it(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
CLEAR_BIT(hperh->state, ALD_ADC_STATE_BUSY_I);
ALD_ADC_DISABLE(hperh);
ald_adc_interrupt_config(hperh, ALD_ADC_IT_ICH, DISABLE);
return ALD_OK;
}
/**
* @brief Get ADC insert group conversion result.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @param idx: Index of converted ADC insert channel.
* @retval ADC group insert conversion data
*/
uint32_t ald_adc_insert_get_value(ald_adc_handle_t *hperh, ald_adc_ich_idx_t idx)
{
uint32_t tmp;
assert_param(IS_ADC_TYPE(hperh->perh));
assert_param(IS_ADC_ICH_IDX_TYPE(idx));
switch (idx) {
case ALD_ADC_ICH_IDX_1:
tmp = hperh->perh->ICHDR1;
break;
case ALD_ADC_ICH_IDX_2:
tmp = hperh->perh->ICHDR2;
break;
case ALD_ADC_ICH_IDX_3:
tmp = hperh->perh->ICHDR3;
break;
case ALD_ADC_ICH_IDX_4:
tmp = hperh->perh->ICHDR4;
break;
default:
tmp = hperh->perh->ICHDR1;
break;
}
return tmp;
}
/**
* @brief Handles ADC interrupt request
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval None
*/
void ald_adc_irq_handler(ald_adc_handle_t *hperh)
{
assert_param(IS_ADC_TYPE(hperh->perh));
if (ald_adc_get_it_status(hperh, ALD_ADC_IT_NCH) && ald_adc_get_flag_status(hperh, ALD_ADC_FLAG_NCH)) {
WRITE_REG(hperh->perh->CLR, ALD_ADC_FLAG_NCH | ALD_ADC_FLAG_NCHS);
CLEAR_BIT(hperh->state, ALD_ADC_STATE_BUSY_N);
if (hperh->normal_cplt_cbk)
hperh->normal_cplt_cbk(hperh);
}
if (ald_adc_get_it_status(hperh, ALD_ADC_IT_ICH) && ald_adc_get_flag_status(hperh, ALD_ADC_FLAG_ICH)) {
WRITE_REG(hperh->perh->CLR, ALD_ADC_FLAG_ICH | ALD_ADC_FLAG_ICHS);
CLEAR_BIT(hperh->state, ALD_ADC_STATE_BUSY_I);
if (hperh->insert_cplt_cbk)
hperh->insert_cplt_cbk(hperh);
}
if (ald_adc_get_it_status(hperh, ALD_ADC_IT_AWD) && ald_adc_get_flag_status(hperh, ALD_ADC_FLAG_AWD)) {
CLEAR_BIT(hperh->state, ALD_ADC_STATE_BUSY_WDG);
WRITE_REG(hperh->perh->CLR, ALD_ADC_FLAG_AWD);
if (hperh->wdg_cbk)
hperh->wdg_cbk(hperh);
}
if (ald_adc_get_it_status(hperh, ALD_ADC_IT_OVR) && ald_adc_get_flag_status(hperh, ALD_ADC_FLAG_OVR)) {
WRITE_REG(hperh->perh->CLR, ALD_ADC_FLAG_OVR);
hperh->error_code |= ALD_ADC_ERROR_OVR;
hperh->state |= ALD_ADC_STATE_ERROR;
if (hperh->ovr_cbk)
hperh->ovr_cbk(hperh);
}
}
/**
* @}
*/
/** @defgroup ADC_Public_Functions_Group3 Peripheral Control functions
* @brief Peripheral Control functions
* @{
*/
/**
* @brief Configures the the selected channel to be linked to the normal
* group.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @param config: Structure of ADC channel for normal group.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_normal_channel_config(ald_adc_handle_t *hperh, ald_adc_nch_conf_t *config)
{
assert_param(IS_ADC_TYPE(hperh->perh));
assert_param(IS_ADC_CHANNELS_TYPE(config->ch));
assert_param(IS_ADC_NCH_IDX_TYPE(config->idx));
assert_param(IS_ADC_SAMPLING_TIMES_TYPE(config->samp));
if (config->idx <= ALD_ADC_NCH_IDX_4 ) {
hperh->perh->NCHS1 &= ~(0x1f << (uint32_t)((config->idx - 1) << 3));
hperh->perh->NCHS1 |= (config->ch << (uint32_t)((config->idx - 1) << 3));
}
else if (config->idx <= ALD_ADC_NCH_IDX_8) {
hperh->perh->NCHS2 &= ~(0x1f << (uint32_t)((config->idx - 5) << 3));
hperh->perh->NCHS2 |= (config->ch << (uint32_t)((config->idx - 5) << 3));
}
else if (config->idx <= ALD_ADC_NCH_IDX_12) {
hperh->perh->NCHS3 &= ~(0x1f << (uint32_t)((config->idx - 9) << 3));
hperh->perh->NCHS3 |= (config->ch << (uint32_t)((config->idx - 9) << 3));
}
else {
hperh->perh->NCHS4 &= ~(0x1f << (uint32_t)((config->idx - 13) << 3));
hperh->perh->NCHS4 |= (config->ch << (uint32_t)((config->idx - 13) << 3));
}
if (config->ch < ALD_ADC_CHANNEL_8) {
hperh->perh->SMPT1 &= ~(0xf << (uint32_t)(config->ch << 2));
hperh->perh->SMPT1 |= config->samp << (uint32_t)(config->ch << 2);
}
else if (config->ch < ALD_ADC_CHANNEL_16) {
hperh->perh->SMPT2 &= ~(0xf << (uint32_t)((config->ch - ALD_ADC_CHANNEL_8) << 2));
hperh->perh->SMPT2 |= config->samp << (uint32_t)((config->ch - ALD_ADC_CHANNEL_8) << 2);
}
else {
hperh->perh->SMPT3 &= ~(0xf << (uint32_t)((config->ch - ALD_ADC_CHANNEL_16) << 2));
hperh->perh->SMPT3 |= config->samp << (uint32_t)((config->ch - ALD_ADC_CHANNEL_16) << 2);
}
return ALD_OK;
}
/**
* @brief Configures the the selected channel to be linked to the insert
* group.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @param config: Structure of ADC channel for insert group.
* @retval Status, see @ref ald_status_t.
*/
ald_status_t ald_adc_insert_channel_config(ald_adc_handle_t *hperh, ald_adc_ich_conf_t *config)
{
ald_status_t tmp_status = ALD_OK;
assert_param(IS_ADC_TYPE(hperh->perh));
assert_param(IS_ADC_CHANNELS_TYPE(config->ch));
assert_param(IS_ADC_ICH_IDX_TYPE(config->idx));
assert_param(IS_ADC_SAMPLING_TIMES_TYPE(config->samp));
assert_param(IS_ADC_IST_OFFSET_TYPE(config->offset));
assert_param(IS_ADC_ICH_NR_TYPE(config->nr));
assert_param(IS_FUNC_STATE(config->auto_m));
MODIFY_REG(hperh->perh->CHSL, ADC_CHSL_ISL_MSK, config->nr << ADC_CHSL_ISL_POSS);
hperh->perh->ICHS &= ~(0x1f << (uint32_t)((config->idx - 1) << 3));
hperh->perh->ICHS |= config->ch << (uint32_t)((config->idx - 1) << 3);
if (config->auto_m == ENABLE)
SET_BIT(hperh->perh->CON0, ADC_CON0_IAUTO_MSK);
else
CLEAR_BIT(hperh->perh->CON0, ADC_CON0_IAUTO_MSK);
if (hperh->init.disc == ALD_ADC_ICH_DISC_EN) {
if (config->auto_m == DISABLE) {
SET_BIT(hperh->perh->CON0, ADC_CON0_ICHDCEN_MSK);
}
else {
hperh->state |= ALD_ADC_STATE_ERROR;
hperh->error_code |= ALD_ADC_ERROR_INTERNAL;
tmp_status = ALD_ERROR;
}
}
if (config->ch < 8) {
hperh->perh->SMPT1 &= ~(0x0f << (uint32_t)(config->ch << 2));
hperh->perh->SMPT1 |= config->samp << (uint32_t)(config->ch << 2);
}
else if (config->ch < 16) {
hperh->perh->SMPT2 &= ~(0x0f << (uint32_t)((config->ch - 8) << 2));
hperh->perh->SMPT2 |= config->samp << (uint32_t)((config->ch - 8) << 2);
}
else {
hperh->perh->SMPT3 &= ~(0x0f << (uint32_t)((config->ch - 16) << 2));
hperh->perh->SMPT3 |= config->samp << (uint32_t)((config->ch - 16) << 2);
}
switch (config->idx) {
case ALD_ADC_ICH_IDX_1:
hperh->perh->ICHOFF1 = config->offset;
break;
case ALD_ADC_ICH_IDX_2:
hperh->perh->ICHOFF2 = config->offset;
break;
case ALD_ADC_ICH_IDX_3:
hperh->perh->ICHOFF3 = config->offset;
break;
case ALD_ADC_ICH_IDX_4:
hperh->perh->ICHOFF4 = config->offset;
break;
default:
break;
}
return tmp_status;
}
/**
* @brief Configures the analog watchdog.
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @param config: Structure of ADC analog watchdog configuration
* @retval ALD status
*/
ald_status_t ald_adc_analog_wdg_config(ald_adc_handle_t *hperh, ald_adc_analog_wdg_conf_t *config)
{
assert_param(IS_ADC_TYPE(hperh->perh));
assert_param(IS_ADC_ANALOG_WTD_MODE_TYPE(config->mode));
assert_param(IS_FUNC_STATE(config->interrupt));
assert_param(IS_HTR_TYPE(config->high_thrd));
assert_param(IS_LTR_TYPE(config->low_thrd));
if ((config->mode == ALD_ADC_ANAWTD_SING_NM)
|| (config->mode == ALD_ADC_ANAWTD_SING_IST)
|| (config->mode == ALD_ADC_ANAWTD_SING_NMIST))
assert_param(IS_ADC_CHANNELS_TYPE(config->ch));
if (config->interrupt == DISABLE)
ald_adc_interrupt_config(hperh, ALD_ADC_IT_AWD, DISABLE);
else
ald_adc_interrupt_config(hperh, ALD_ADC_IT_AWD, ENABLE);
CLEAR_BIT(hperh->perh->CON0, ADC_CON0_ICHWDTEN_MSK);
CLEAR_BIT(hperh->perh->CON0, ADC_CON0_NCHWDEN_MSK);
CLEAR_BIT(hperh->perh->CON0, ADC_CON0_AWDSGL_MSK);
hperh->perh->CON0 |= config->mode;
if (READ_BIT(hperh->perh->CON0, ADC_CON0_AWDSGL_MSK))
MODIFY_REG(hperh->perh->CON0, ADC_CON0_AWDCH_MSK, config->ch << ADC_CON0_AWDCH_POSS);
WRITE_REG(hperh->perh->WDTL, config->low_thrd);
WRITE_REG(hperh->perh->WDTH, config->high_thrd);
SET_BIT(hperh->state, ALD_ADC_STATE_BUSY_WDG);
return ALD_OK;
}
/**
* @brief Enables or disables the specified ADC interrupts.
* @param hperh: Pointer to a adc_handle_t structure.
* @param it: Specifies the ADC interrupt sources to be enabled or disabled.
* This parameter can be one of the @ref adc_it_t.
* @param state: New status
* - ENABLE
* - DISABLE
* @retval None
*/
void ald_adc_interrupt_config(ald_adc_handle_t *hperh, ald_adc_it_t it, type_func_t state)
{
assert_param(IS_ADC_TYPE(hperh->perh));
assert_param(IS_ADC_IT_TYPE(it));
assert_param(IS_FUNC_STATE(state));
if (state == ENABLE)
SET_BIT(hperh->perh->CON0, it);
else
CLEAR_BIT(hperh->perh->CON0, it);
return;
}
/**
* @brief Checks whether the specified ADC interrupt has occurred or not.
* @param hperh: Pointer to a adc_handle_t structure.
* @param it: Specifies the ADC interrupt source to check.
* This parameter can be one of the @ref adc_it_t.
* @retval Status
* - SET
* - RESET
*/
it_status_t ald_adc_get_it_status(ald_adc_handle_t *hperh, ald_adc_it_t it)
{
assert_param(IS_ADC_TYPE(hperh->perh));
assert_param(IS_ADC_IT_TYPE(it));
if (READ_BIT(hperh->perh->CON0, it))
return SET;
return RESET;
}
/** @brief Check whether the specified ADC flag is set or not.
* @param hperh: Pointer to a adc_handle_t structure.
* @param flag: specifies the flag to check.
* This parameter can be one of the @ref adc_flag_t.
* @retval Status
* - SET
* - RESET
*/
flag_status_t ald_adc_get_flag_status(ald_adc_handle_t *hperh, ald_adc_flag_t flag)
{
assert_param(IS_ADC_TYPE(hperh->perh));
assert_param(IS_ADC_FLAGS_TYPE(flag));
if (READ_BIT(hperh->perh->STAT, flag))
return SET;
return RESET;
}
/** @brief Clear the specified ADC pending flags.
* @param hperh: Pointer to a adc_handle_t structure.
* @param flag: specifies the flag to check.
* This parameter can be one of the @ref adc_flag_t.
* @retval None
*/
void ald_adc_clear_flag_status(ald_adc_handle_t *hperh, ald_adc_flag_t flag)
{
assert_param(IS_ADC_TYPE(hperh->perh));
assert_param(IS_ADC_FLAGS_TYPE(flag));
WRITE_REG(hperh->perh->CLR, flag);
return;
}
/**
* @}
*/
/** @defgroup ADC_Public_Functions_Group4 Peripheral State functions
* @brief Peripheral State functions
* @{
*/
/**
* @brief return the ADC state
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval state
*/
uint32_t ald_adc_get_state(ald_adc_handle_t *hperh)
{
return hperh->state;
}
/**
* @brief Return the ADC error code
* @param hperh: Pointer to a adc_handle_t structure that contains
* the configuration information for the specified ADC module.
* @retval ADC Error Code
*/
uint32_t ald_adc_get_error(ald_adc_handle_t *hperh)
{
return hperh->error_code;
}
/**
*@}
*/
/**
*@}
*/
/** @defgroup ADC_Private_Functions ADC Private Functions
* @{
*/
/**
* @brief DMA transfer complete callback.
* @param arg: argument of the call back.
* @retval None
*/
static void adc_dma_normal_conv_cplt(void *arg)
{
ald_adc_handle_t *hperh = (ald_adc_handle_t *)arg;
CLEAR_BIT(hperh->perh->CON1, ADC_CON1_DMA_MSK);
if (hperh->normal_cplt_cbk)
hperh->normal_cplt_cbk(hperh);
}
/**
*@}
*/
/**
*@}
*/
/**
*@}
*/