rt-thread/bsp/allwinner/libraries/sunxi-hal/hal/source/rtc/hal_rtc.c

760 lines
19 KiB
C

/*
* An RTC driver for Sunxi Platform of Allwinner SoC
*
* Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <hal_thread.h>
#include <hal_timer.h>
#include <stdlib.h>
#include <interrupt.h>
#include <rtc/rtc.h>
#include <sunxi_hal_rtc.h>
#include <hal_log.h>
#include <hal_interrupt.h>
//for debug
#define CONFIG_DRIVERS_RTC_DEBUG
#ifdef CONFIG_DRIVERS_RTC_DEBUG
#define RTC_INFO(fmt, arg...) hal_log_info(fmt, ##arg)
#else
#define RTC_INFO(fmt, arg...) do {}while(0)
#endif
#define RTC_ERR(fmt, arg...) hal_log_err(fmt, ##arg)
static struct hal_rtc_dev sunxi_hal_rtc;
static struct hal_rtc_data_year data_year_param =
{
.min = 1970,
.max = 2097,
.mask = 0x7f,
.yshift = 16,
.leap_shift = 23,
};
static hal_rtc_status_t hal_rtc_clk_init(struct hal_rtc_dev *rtc)
{
#if defined(CONFIG_SOC_SUN20IW1)
hal_clk_type_t clk_r_type = HAL_SUNXI_R_CCU;
hal_clk_id_t rtc_clk_r_id = CLK_R_AHB_BUS_RTC;
hal_clk_type_t clk_rtc1k_type = HAL_SUNXI_RTC_CCU;
hal_clk_id_t rtc_clk_rtc1k_id = CLK_RTC_1K;
hal_clk_type_t clk_rtcspi_type = HAL_SUNXI_RTC_CCU;
hal_clk_id_t rtc_clk_rtcspi_id = CLK_RTC_SPI;
hal_reset_type_t reset_type = HAL_SUNXI_RESET;
hal_reset_id_t rtc_reset_id = RST_R_AHB_BUS_RTC;
rtc->bus_clk = hal_clock_get(clk_r_type, rtc_clk_r_id);
if(hal_clock_enable(rtc->bus_clk))
{
RTC_ERR("rtc bus clk enable failed!\n");
return RTC_ERROR;
}
rtc->rtc1k_clk = hal_clock_get(clk_rtc1k_type, rtc_clk_rtc1k_id);
if(hal_clock_enable(rtc->rtc1k_clk))
{
RTC_ERR("rtc 1k clk enable failed!\n");
return RTC_ERROR;
}
rtc->rtcspi_clk = hal_clock_get(clk_rtcspi_type, rtc_clk_rtcspi_id);
if(hal_clock_enable(rtc->rtcspi_clk))
{
RTC_ERR("rtc spi clk enable failed!\n");
return RTC_ERROR;
}
rtc->reset = hal_reset_control_get(reset_type, rtc_reset_id);
if(hal_reset_control_deassert(rtc->reset))
{
RTC_ERR("rtc reset deassert failed!\n");
return RTC_ERROR;
}
#endif
return RTC_OK;
}
void hal_rtc_write_data(int index, u32 val)
{
hal_writel(val, (unsigned long)SUNXI_RTC_DATA_BASE + index * 4);
}
u32 hal_rtc_read_data(int index)
{
return hal_readl((unsigned long)SUNXI_RTC_DATA_BASE + index * 4);
}
void hal_rtc_set_fel_flag(void)
{
do
{
hal_rtc_write_data(RTC_FEL_INDEX, EFEX_FLAG);
isb();
} while (hal_rtc_read_data(RTC_FEL_INDEX) != EFEX_FLAG);
}
u32 hal_rtc_probe_fel_flag(void)
{
return hal_rtc_read_data(RTC_FEL_INDEX) == EFEX_FLAG ? 1 : 0;
}
void hal_rtc_clear_fel_flag(void)
{
do
{
hal_rtc_write_data(RTC_FEL_INDEX, 0);
isb();
} while (hal_rtc_read_data(RTC_FEL_INDEX) != 0);
}
int hal_rtc_set_bootmode_flag(u8 flag)
{
do
{
hal_rtc_write_data(RTC_BOOT_INDEX, flag);
isb();
} while (hal_rtc_read_data(RTC_BOOT_INDEX) != flag);
return 0;
}
int hal_rtc_get_bootmode_flag(void)
{
int boot_flag;
boot_flag = hal_rtc_read_data(RTC_BOOT_INDEX);
return boot_flag;
}
int hal_rtc_register_callback(rtc_callback_t user_callback)
{
struct hal_rtc_dev *rtc_dev = &sunxi_hal_rtc;
if (user_callback == NULL)
{
return -1;
}
rtc_dev->user_callback = user_callback;
return 0;
}
static irqreturn_t hal_rtc_alarmirq(int irq, void *dev)
{
struct hal_rtc_dev *rtc_dev = (struct hal_rtc_dev *)dev;
u32 val;
val = hal_readl(rtc_dev->base + SUNXI_ALRM_IRQ_STA);
if (val & SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND)
{
val |= SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND;
hal_writel(val, rtc_dev->base + SUNXI_ALRM_IRQ_STA);
if (rtc_dev->user_callback)
{
rtc_dev->user_callback();
}
return 0;
}
return -1;
}
static void hal_rtc_setaie(int to, struct hal_rtc_dev *rtc_dev)
{
u32 alrm_val = 0;
u32 alrm_irq_val = 0;
if (to)
{
alrm_val = hal_readl(rtc_dev->base + SUNXI_ALRM_EN);
alrm_val |= SUNXI_ALRM_EN_CNT_EN;
alrm_irq_val = hal_readl(rtc_dev->base + SUNXI_ALRM_IRQ_EN);
alrm_irq_val |= SUNXI_ALRM_IRQ_EN_CNT_IRQ_EN;
}
else
{
hal_writel(SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND,
rtc_dev->base + SUNXI_ALRM_IRQ_STA);
}
hal_writel(alrm_val, rtc_dev->base + SUNXI_ALRM_EN);
hal_writel(alrm_irq_val, rtc_dev->base + SUNXI_ALRM_IRQ_EN);
}
static int hal_rtc_wait(int offset, unsigned int mask, unsigned int ms_timeout)
{
struct hal_rtc_dev *rtc_dev = &sunxi_hal_rtc;
u32 reg;
hal_msleep(ms_timeout);
reg = hal_readl(rtc_dev->base + offset);
reg &= mask;
if (reg != mask)
{
return 0;
}
return -1;
}
#ifdef SUNXI_SIMPLIFIED_TIMER
static short month_days[2][13] =
{
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
};
static int hal_rtc_day_to_ymd(struct rtc_time *rtc_tm, u32 min_year,
u32 udate)
{
static u32 last_date;
static int last_year, last_mon, last_mday;
int year = 0, leap, i;
int date = (int)udate;
if (date == last_date)
{
rtc_tm->tm_mday = last_mday;
rtc_tm->tm_mon = last_mon;
rtc_tm->tm_year = last_year;
return 0;
}
year = min_year;
while (1)
{
if (is_leap_year(year))
{
if (date > 366)
{
year++;
date -= 366;
}
else
{
break;
}
}
else
{
if (date > 365)
{
year++;
date -= 365;
}
else
{
break;
}
}
}
rtc_tm->tm_year = year - 1900;
last_year = rtc_tm->tm_year;
leap = is_leap_year(rtc_tm->tm_year);
for (i = 1; date > month_days[leap][i]; i++)
{
date -= month_days[leap][i];
}
rtc_tm->tm_mon = i;
last_mon = rtc_tm->tm_mon;
rtc_tm->tm_mday = date;
last_mday = rtc_tm->tm_mday;
return 0;
}
#endif
int hal_rtc_gettime(struct rtc_time *rtc_tm)
{
struct hal_rtc_dev *rtc_dev = &sunxi_hal_rtc;
u32 date, time;
/*
* read again in case it changes
*/
do
{
date = hal_readl(rtc_dev->base + SUNXI_RTC_YMD);
time = hal_readl(rtc_dev->base + SUNXI_RTC_HMS);
} while ((date != hal_readl(rtc_dev->base + SUNXI_RTC_YMD)) ||
(time != hal_readl(rtc_dev->base + SUNXI_RTC_HMS)));
rtc_tm->tm_sec = SUNXI_TIME_GET_SEC_VALUE(time);
rtc_tm->tm_min = SUNXI_TIME_GET_MIN_VALUE(time);
rtc_tm->tm_hour = SUNXI_TIME_GET_HOUR_VALUE(time);
#ifndef SUNXI_SIMPLIFIED_TIMER
rtc_tm->tm_mday = SUNXI_DATE_GET_DAY_VALUE(date);
rtc_tm->tm_mon = SUNXI_DATE_GET_MON_VALUE(date);
rtc_tm->tm_year = SUNXI_DATE_GET_YEAR_VALUE(date, rtc_dev->data_year);
/*
* switch from (data_year->min)-relative offset to
* a (1900)-relative one
*/
rtc_tm->tm_year += SUNXI_YEAR_OFF(rtc_dev->data_year);
#else
hal_rtc_day_to_ymd(rtc_tm, rtc_dev->data_year->min, date);
#endif
rtc_tm->tm_mon -= 1;
RTC_INFO("Read hardware RTC time %04d-%02d-%02d %02d:%02d:%02d",
rtc_tm->tm_year + 1900, rtc_tm->tm_mon + 1, rtc_tm->tm_mday,
rtc_tm->tm_hour, rtc_tm->tm_min, rtc_tm->tm_sec);
return 0;
}
int hal_rtc_settime(struct rtc_time *rtc_tm)
{
struct hal_rtc_dev *rtc_dev = &sunxi_hal_rtc;
u32 date = 0;
u32 time = 0;
int year;
#ifdef SUNXI_SIMPLIFIED_TIMER
int i, leap;
#endif
/*
* the input rtc_tm->tm_year is the offset relative to 1900. We use
* the SUNXI_YEAR_OFF macro to rebase it with respect to the min year
* allowed by the hardware
*/
year = rtc_tm->tm_year + 1900;
if (year < rtc_dev->data_year->min
|| year > rtc_dev->data_year->max)
{
RTC_ERR("rtc only supports year in range %d - %d",
rtc_dev->data_year->min, rtc_dev->data_year->max);
return -1;
}
#ifndef SUNXI_SIMPLIFIED_TIMER
rtc_tm->tm_year -= SUNXI_YEAR_OFF(rtc_dev->data_year);
rtc_tm->tm_mon += 1;
RTC_INFO("Will set hardware RTC time %04d-%02d-%02d %02d:%02d:%02d",
rtc_tm->tm_year, rtc_tm->tm_mon, rtc_tm->tm_mday,
rtc_tm->tm_hour, rtc_tm->tm_min, rtc_tm->tm_sec);
date = SUNXI_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
SUNXI_DATE_SET_MON_VALUE(rtc_tm->tm_mon) |
SUNXI_DATE_SET_YEAR_VALUE(rtc_tm->tm_year, rtc_dev->data_year);
if (is_leap_year(year))
{
date |= SUNXI_LEAP_SET_VALUE(1, rtc_dev->data_year->leap_shift);
}
#else
date = rtc_tm->tm_mday;
rtc_tm->tm_mon += 1;
leap = is_leap_year(year);
for (i = 1; i < rtc_tm->tm_mon; i++)
{
date += month_days[leap][i];
}
for (i = year - 1; i >= rtc_dev->data_year->min; i--)
{
if (is_leap_year(i))
{
date += 366;
}
else
{
date += 365;
}
}
#endif
time = SUNXI_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) |
SUNXI_TIME_SET_MIN_VALUE(rtc_tm->tm_min) |
SUNXI_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
/*
* before we write the RTC HH-MM-SS register,we
* should check the SUNXI_LOSC_CTRL_RTC_HMS_ACC bit
*/
if (hal_rtc_wait(SUNXI_LOSC_CTRL,
SUNXI_LOSC_CTRL_RTC_HMS_ACC, 50))
{
RTC_ERR("Failed to set rtc time.");
return -1;
}
hal_writel(0, rtc_dev->base + SUNXI_RTC_HMS);
/*
* After writing the RTC HH-MM-SS register, the
* SUNXI_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
* be cleared until the real writing operation is finished
*/
if (hal_rtc_wait(SUNXI_LOSC_CTRL, SUNXI_LOSC_CTRL_RTC_HMS_ACC, 50))
{
RTC_ERR("Failed to set rtc time.");
return -1;
}
hal_writel(time, rtc_dev->base + SUNXI_RTC_HMS);
/*
* After writing the RTC HH-MM-SS register, the
* SUNXI_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
* be cleared until the real writing operation is finished
*/
if (hal_rtc_wait(SUNXI_LOSC_CTRL, SUNXI_LOSC_CTRL_RTC_HMS_ACC, 50))
{
RTC_ERR("Failed to set rtc time.");
return -1;
}
/*
* After writing the RTC YY-MM-DD register, the
* SUNXI_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
* be cleared until the real writing operation is finished
*/
if (hal_rtc_wait(SUNXI_LOSC_CTRL, SUNXI_LOSC_CTRL_RTC_YMD_ACC, 50))
{
RTC_ERR("Failed to set rtc time.");
return -1;
}
hal_msleep(2);
hal_writel(date, rtc_dev->base + SUNXI_RTC_YMD);
/*
* After writing the RTC YY-MM-DD register, the
* SUNXI_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
* be cleared until the real writing operation is finished
*/
if (hal_rtc_wait(SUNXI_LOSC_CTRL, SUNXI_LOSC_CTRL_RTC_YMD_ACC, 50))
{
RTC_ERR("Failed to set rtc time.");
return -1;
}
hal_msleep(2);
return 0;
}
int hal_rtc_getalarm(struct rtc_wkalrm *wkalrm)
{
struct hal_rtc_dev *rtc_dev = &sunxi_hal_rtc;
struct rtc_time *alrm_tm = &wkalrm->time;
u32 alrm_en;
unsigned int alarm_cur = 0, alarm_cnt = 0;
unsigned long alarm_seconds = 0;
int ret;
#ifdef SUNXI_ALARM1_USED
alrm = hal_readl(rtc_dev->base + SUNXI_ALRM_DHMS);
date = hal_readl(rtc_dev->base + SUNXI_RTC_YMD);
alrm_tm->tm_sec = SUNXI_ALRM_GET_SEC_VALUE(alrm);
alrm_tm->tm_min = SUNXI_ALRM_GET_MIN_VALUE(alrm);
alrm_tm->tm_hour = SUNXI_ALRM_GET_HOUR_VALUE(alrm);
alrm_tm->tm_mday = SUNXI_DATE_GET_DAY_VALUE(date);
alrm_tm->tm_mon = SUNXI_DATE_GET_MON_VALUE(date);
alrm_tm->tm_year = SUNXI_DATE_GET_YEAR_VALUE(date, rtc_dev->data_year);
alrm_tm->tm_mon -= 1;
/*
* switch from (data_year->min)-relative offset to
* a (1900)-relative one
*/
alrm_tm->tm_year += SUNXI_YEAR_OFF(rtc_dev->data_year);
#else
alarm_cnt = hal_readl(rtc_dev->base + SUNXI_ALRM_COUNTER);
alarm_cur = hal_readl(rtc_dev->base + SUNXI_ALRM_CURRENT);
RTC_INFO("alarm_cnt: %d, alarm_cur: %d", alarm_cnt, alarm_cur);
if (alarm_cur > alarm_cnt)
{
/* alarm is disabled. */
wkalrm->enabled = 0;
alrm_tm->tm_mon = -1;
alrm_tm->tm_mday = -1;
alrm_tm->tm_year = -1;
alrm_tm->tm_hour = -1;
alrm_tm->tm_min = -1;
alrm_tm->tm_sec = -1;
return 0;
}
ret = hal_rtc_gettime(alrm_tm);
if (ret)
{
return -1;
}
rtc_tm_to_time(alrm_tm, &alarm_seconds);
alarm_cnt = (alarm_cnt - alarm_cur);
alarm_cur = 0;
alarm_seconds += alarm_cnt;
rtc_time_to_tm(alarm_seconds, alrm_tm);
RTC_INFO("alarm_seconds: %ld", alarm_seconds);
#endif
alrm_en = hal_readl(rtc_dev->base + SUNXI_ALRM_IRQ_EN);
if (alrm_en & SUNXI_ALRM_EN_CNT_EN)
{
wkalrm->enabled = 1;
}
return 0;
}
int hal_rtc_setalarm(struct rtc_wkalrm *wkalrm)
{
struct hal_rtc_dev *rtc_dev = &sunxi_hal_rtc;
struct rtc_time *alrm_tm = &wkalrm->time;
struct rtc_time tm_now;
u32 alrm;
time64_t diff;
unsigned long time_gap;
unsigned long time_gap_day;
#if defined(SUNXI_ALARM1_USED)
unsigned long time_gap_hour = 0;
unsigned long time_gap_min = 0;
#endif
int ret;
ret = hal_rtc_gettime(&tm_now);
if (ret < 0)
{
RTC_ERR("Error in getting time");
return -1;
}
diff = rtc_tm_sub(alrm_tm, &tm_now);
if (diff <= 0)
{
RTC_ERR("Date to set in the past");
return -1;
}
if (diff > 255 * SEC_IN_DAY)
{
RTC_ERR("Day must be in the range 0 - 255");
return -1;
}
time_gap = diff;
time_gap_day = alrm_tm->tm_mday - tm_now.tm_mday;
#ifdef SUNXI_SIMPLIFIED_TIMER
hal_rtc_setaie(0, rtc_dev);
hal_writel(0, rtc_dev->base + SUNXI_ALRM_DAY);
hal_writel(0, rtc_dev->base + SUNXI_ALRM_HMS);
hal_writel(time_gap_day + hal_readl(rtc_dev->base + SUNXI_RTC_YMD),
rtc_dev->base + SUNXI_ALRM_DAY);
alrm = SUNXI_ALRM_SET_SEC_VALUE(alrm_tm->tm_sec) |
SUNXI_ALRM_SET_MIN_VALUE(alrm_tm->tm_min) |
SUNXI_ALRM_SET_HOUR_VALUE(alrm_tm->tm_hour);
hal_writel(alrm, rtc_dev->base + SUNXI_ALRM_HMS);
#else
#ifdef SUNXI_ALARM1_USED
time_gap -= time_gap_day * SEC_IN_DAY;
time_gap_hour = time_gap / SEC_IN_HOUR;
time_gap -= time_gap_hour * SEC_IN_HOUR;
time_gap_min = time_gap / SEC_IN_MIN;
time_gap -= time_gap_min * SEC_IN_MIN;
#endif
hal_rtc_setaie(0, rtc_dev);
#ifdef SUNXI_ALARM1_USED
if (hal_rtc_wait(SUNXI_LOSC_CTRL,
SUNXI_LOSC_CTRL_RTC_ALARM_ACC, 50))
{
RTC_ERR("Failed to set rtc alarm1.");
return -1;
}
hal_msleep(2);
hal_writel(0, rtc_dev->base + SUNXI_ALRM_DHMS);
if (hal_rtc_wait(SUNXI_LOSC_CTRL,
SUNXI_LOSC_CTRL_RTC_ALARM_ACC, 50))
{
RTC_ERR("Failed to set rtc alarm1.");
return -1;
}
hal_msleep(2);
alrm = SUNXI_ALRM_SET_SEC_VALUE(time_gap) |
SUNXI_ALRM_SET_MIN_VALUE(time_gap_min) |
SUNXI_ALRM_SET_HOUR_VALUE(time_gap_hour) |
SUNXI_ALRM_SET_DAY_VALUE(time_gap_day);
hal_writel(alrm, rtc_dev->base + SUNXI_ALRM_DHMS);
if (hal_rtc_wait(SUNXI_LOSC_CTRL,
SUNXI_LOSC_CTRL_RTC_ALARM_ACC, 50))
{
RTC_ERR("Failed to set rtc alarm1.");
return -1;
}
hal_msleep(2);
#else
hal_writel(0, rtc_dev->base + SUNXI_ALRM_COUNTER);
alrm = time_gap;
RTC_INFO("set alarm seconds:%d enable:%d", alrm, wkalrm->enabled);
hal_writel(alrm, rtc_dev->base + SUNXI_ALRM_COUNTER);
#endif
#endif
hal_writel(0, rtc_dev->base + SUNXI_ALRM_IRQ_EN);
hal_writel(SUNXI_ALRM_IRQ_EN_CNT_IRQ_EN, rtc_dev->base + SUNXI_ALRM_IRQ_EN);
hal_rtc_setaie(wkalrm->enabled, rtc_dev);
return 0;
}
int hal_rtc_alarm_irq_enable(unsigned int enabled)
{
struct hal_rtc_dev *rtc_dev = &sunxi_hal_rtc;
hal_rtc_setaie(enabled, rtc_dev);
return 0;
}
void hal_rtc_min_year_show(unsigned int *min)
{
struct hal_rtc_dev *rtc_dev = &sunxi_hal_rtc;
*min = rtc_dev->data_year->min;
RTC_INFO("sunxi rtc max year:%d", *min);
}
void hal_rtc_max_year_show(unsigned int *max)
{
struct hal_rtc_dev *rtc_dev = &sunxi_hal_rtc;
*max = rtc_dev->data_year->max;
RTC_INFO("sunxi rtc max year:%d", *max);
}
int hal_rtc_init(void)
{
struct hal_rtc_dev *rtc_dev = &sunxi_hal_rtc;
int ret;
unsigned int tmp_data;
rtc_dev->base = SUNXI_RTC_BASE;
rtc_dev->data_year = (struct hal_rtc_data_year *) &data_year_param;
hal_writel(0, rtc_dev->base + SUNXI_ALRM_COUNTER);
/* disable alarm, not generate irq pending */
hal_writel(0, rtc_dev->base + SUNXI_ALRM_EN);
/* disable alarm week/cnt irq, unset to cpu */
hal_writel(0, rtc_dev->base + SUNXI_ALRM_IRQ_EN);
/* clear alarm week/cnt irq pending */
hal_writel(SUNXI_ALRM_IRQ_STA_CNT_IRQ_PEND, rtc_dev->base +
SUNXI_ALRM_IRQ_STA);
/* clear alarm wakeup output */
hal_writel(SUNXI_ALRM_WAKEUP_OUTPUT_EN, rtc_dev->base +
SUNXI_ALARM_CONFIG);
if(hal_rtc_clk_init(rtc_dev))
{
RTC_ERR("rtc init clk error!\n");
return RTC_CLK_ERROR;
}
/*
* Step1: select RTC clock source
*/
tmp_data = hal_readl(rtc_dev->base + SUNXI_LOSC_CTRL);
tmp_data |= (REG_CLK32K_AUTO_SWT_EN);
/* Enable auto switch function */
tmp_data &= (~REG_CLK32K_AUTO_SWT_BYPASS);
hal_writel(tmp_data, rtc_dev->base + SUNXI_LOSC_CTRL);
tmp_data = hal_readl(rtc_dev->base + SUNXI_LOSC_CTRL);
tmp_data |= (RTC_SOURCE_EXTERNAL | REG_LOSCCTRL_MAGIC);
hal_writel(tmp_data, rtc_dev->base + SUNXI_LOSC_CTRL);
/* We need to set GSM after change clock source */
tmp_data = hal_readl(rtc_dev->base + SUNXI_LOSC_CTRL);
tmp_data |= (EXT_LOSC_GSM | REG_LOSCCTRL_MAGIC);
hal_writel(tmp_data, rtc_dev->base + SUNXI_LOSC_CTRL);
rtc_dev->irq = SUXNI_IRQ_RTC;
ret = request_irq(rtc_dev->irq, hal_rtc_alarmirq, 0, "rtc-ctrl", rtc_dev);
if (ret)
{
RTC_ERR("Could not request IRQ");
return -1;
}
enable_irq(rtc_dev->irq);
RTC_INFO("RTC enabled");
return 0;
}
int hal_rtc_deinit(void)
{
struct hal_rtc_dev *rtc_dev = &sunxi_hal_rtc;
#if defined(CONFIG_SOC_SUN20IW1)
hal_clock_disable(rtc_dev->bus_clk);
hal_clock_put(rtc_dev->bus_clk);
hal_clock_disable(rtc_dev->rtc1k_clk);
hal_clock_put(rtc_dev->rtc1k_clk);
hal_clock_disable(rtc_dev->rtcspi_clk);
hal_clock_put(rtc_dev->rtcspi_clk);
hal_reset_control_assert(rtc_dev->reset);
hal_reset_control_put(rtc_dev->reset);
#endif
free_irq(rtc_dev->irq, rtc_dev);
return 0;
}