rt-thread/bsp/airm2m/air32f103/libraries/AIR32F10xLib/src/air32f10x_adc.c

1281 lines
44 KiB
C

/* Includes ------------------------------------------------------------------*/
#include "air32f10x_adc.h"
#include "air32f10x_rcc.h"
/** @defgroup ADC
* @brief ADC driver modules
* @{
*/
/** @defgroup ADC_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup ADC_Private_Defines
* @{
*/
/* ADC DISCNUM mask */
#define CR1_DISCNUM_Reset ((uint32_t)0xFFFF1FFF)
/* ADC DISCEN mask */
#define CR1_DISCEN_Set ((uint32_t)0x00000800)
#define CR1_DISCEN_Reset ((uint32_t)0xFFFFF7FF)
/* ADC JAUTO mask */
#define CR1_JAUTO_Set ((uint32_t)0x00000400)
#define CR1_JAUTO_Reset ((uint32_t)0xFFFFFBFF)
/* ADC JDISCEN mask */
#define CR1_JDISCEN_Set ((uint32_t)0x00001000)
#define CR1_JDISCEN_Reset ((uint32_t)0xFFFFEFFF)
/* ADC AWDCH mask */
#define CR1_AWDCH_Reset ((uint32_t)0xFFFFFFE0)
/* ADC Analog watchdog enable mode mask */
#define CR1_AWDMode_Reset ((uint32_t)0xFF3FFDFF)
/* CR1 register Mask */
#define CR1_CLEAR_Mask ((uint32_t)0xFFF0FEFF)
/* ADC ADON mask */
#define CR2_ADON_Set ((uint32_t)0x00000001)
#define CR2_ADON_Reset ((uint32_t)0xFFFFFFFE)
/* ADC DMA mask */
#define CR2_DMA_Set ((uint32_t)0x00000100)
#define CR2_DMA_Reset ((uint32_t)0xFFFFFEFF)
/* ADC RSTCAL mask */
#define CR2_RSTCAL_Set ((uint32_t)0x00000008)
/* ADC CAL mask */
#define CR2_CAL_Set ((uint32_t)0x00000004)
/* ADC SWSTART mask */
#define CR2_SWSTART_Set ((uint32_t)0x00400000)
/* ADC EXTTRIG mask */
#define CR2_EXTTRIG_Set ((uint32_t)0x00100000)
#define CR2_EXTTRIG_Reset ((uint32_t)0xFFEFFFFF)
/* ADC Software start mask */
#define CR2_EXTTRIG_SWSTART_Set ((uint32_t)0x00500000)
#define CR2_EXTTRIG_SWSTART_Reset ((uint32_t)0xFFAFFFFF)
/* ADC JEXTSEL mask */
#define CR2_JEXTSEL_Reset ((uint32_t)0xFFFF8FFF)
/* ADC JEXTTRIG mask */
#define CR2_JEXTTRIG_Set ((uint32_t)0x00008000)
#define CR2_JEXTTRIG_Reset ((uint32_t)0xFFFF7FFF)
/* ADC JSWSTART mask */
#define CR2_JSWSTART_Set ((uint32_t)0x00200000)
/* ADC injected software start mask */
#define CR2_JEXTTRIG_JSWSTART_Set ((uint32_t)0x00208000)
#define CR2_JEXTTRIG_JSWSTART_Reset ((uint32_t)0xFFDF7FFF)
/* ADC TSPD mask */
#define CR2_TSVREFE_Set ((uint32_t)0x00800000)
#define CR2_TSVREFE_Reset ((uint32_t)0xFF7FFFFF)
/* CR2 register Mask */
#define CR2_CLEAR_Mask ((uint32_t)0xFFF1F7FD)
/* ADC SQx mask */
#define SQR3_SQ_Set ((uint32_t)0x0000001F)
#define SQR2_SQ_Set ((uint32_t)0x0000001F)
#define SQR1_SQ_Set ((uint32_t)0x0000001F)
/* SQR1 register Mask */
#define SQR1_CLEAR_Mask ((uint32_t)0xFF0FFFFF)
/* ADC JSQx mask */
#define JSQR_JSQ_Set ((uint32_t)0x0000001F)
/* ADC JL mask */
#define JSQR_JL_Set ((uint32_t)0x00300000)
#define JSQR_JL_Reset ((uint32_t)0xFFCFFFFF)
/* ADC SMPx mask */
#define SMPR1_SMP_Set ((uint32_t)0x00000007)
#define SMPR2_SMP_Set ((uint32_t)0x00000007)
/* ADC JDRx registers offset */
#define JDR_Offset ((uint8_t)0x28)
/* ADC1 DR register base address */
#define DR_ADDRESS ((uint32_t)0x4001244C)
/**
* @}
*/
/** @defgroup ADC_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup ADC_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup ADC_Private_FunctionPrototypes
* @{
*/
/**
* @}
*/
/** @defgroup ADC_Private_Functions
* @{
*/
/**
* @brief Deinitializes the ADCx peripheral registers to their default reset values.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @retval None
*/
void ADC_DeInit(ADC_TypeDef* ADCx)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
if (ADCx == ADC1)
{
/* Enable ADC1 reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC1, ENABLE);
/* Release ADC1 from reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC1, DISABLE);
}
else if (ADCx == ADC2)
{
/* Enable ADC2 reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC2, ENABLE);
/* Release ADC2 from reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC2, DISABLE);
}
else
{
if (ADCx == ADC3)
{
/* Enable ADC3 reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC3, ENABLE);
/* Release ADC3 from reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_ADC3, DISABLE);
}
}
}
/**
* @brief Initializes the ADCx peripheral according to the specified parameters
* in the ADC_InitStruct.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_InitStruct: pointer to an ADC_InitTypeDef structure that contains
* the configuration information for the specified ADC peripheral.
* @retval None
*/
void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct)
{
uint32_t tmpreg1 = 0;
uint8_t tmpreg2 = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_MODE(ADC_InitStruct->ADC_Mode));
assert_param(IS_FUNCTIONAL_STATE(ADC_InitStruct->ADC_ScanConvMode));
assert_param(IS_FUNCTIONAL_STATE(ADC_InitStruct->ADC_ContinuousConvMode));
assert_param(IS_ADC_EXT_TRIG(ADC_InitStruct->ADC_ExternalTrigConv));
assert_param(IS_ADC_DATA_ALIGN(ADC_InitStruct->ADC_DataAlign));
assert_param(IS_ADC_REGULAR_LENGTH(ADC_InitStruct->ADC_NbrOfChannel));
/*---------------------------- ADCx CR1 Configuration -----------------*/
/* Get the ADCx CR1 value */
tmpreg1 = ADCx->CR1;
/* Clear DUALMOD and SCAN bits */
tmpreg1 &= CR1_CLEAR_Mask;
/* Configure ADCx: Dual mode and scan conversion mode */
/* Set DUALMOD bits according to ADC_Mode value */
/* Set SCAN bit according to ADC_ScanConvMode value */
tmpreg1 |= (uint32_t)(ADC_InitStruct->ADC_Mode | ((uint32_t)ADC_InitStruct->ADC_ScanConvMode << 8));
/* Write to ADCx CR1 */
ADCx->CR1 = tmpreg1;
/*---------------------------- ADCx CR2 Configuration -----------------*/
/* Get the ADCx CR2 value */
tmpreg1 = ADCx->CR2;
/* Clear CONT, ALIGN and EXTSEL bits */
tmpreg1 &= CR2_CLEAR_Mask;
/* Configure ADCx: external trigger event and continuous conversion mode */
/* Set ALIGN bit according to ADC_DataAlign value */
/* Set EXTSEL bits according to ADC_ExternalTrigConv value */
/* Set CONT bit according to ADC_ContinuousConvMode value */
tmpreg1 |= (uint32_t)(ADC_InitStruct->ADC_DataAlign | ADC_InitStruct->ADC_ExternalTrigConv |
((uint32_t)ADC_InitStruct->ADC_ContinuousConvMode << 1));
/* Write to ADCx CR2 */
ADCx->CR2 = tmpreg1;
/*---------------------------- ADCx SQR1 Configuration -----------------*/
/* Get the ADCx SQR1 value */
tmpreg1 = ADCx->SQR1;
/* Clear L bits */
tmpreg1 &= SQR1_CLEAR_Mask;
/* Configure ADCx: regular channel sequence length */
/* Set L bits according to ADC_NbrOfChannel value */
tmpreg2 |= (uint8_t) (ADC_InitStruct->ADC_NbrOfChannel - (uint8_t)1);
tmpreg1 |= (uint32_t)tmpreg2 << 20;
/* Write to ADCx SQR1 */
ADCx->SQR1 = tmpreg1;
}
/**
* @brief Fills each ADC_InitStruct member with its default value.
* @param ADC_InitStruct : pointer to an ADC_InitTypeDef structure which will be initialized.
* @retval None
*/
void ADC_StructInit(ADC_InitTypeDef* ADC_InitStruct)
{
/* Reset ADC init structure parameters values */
/* Initialize the ADC_Mode member */
ADC_InitStruct->ADC_Mode = ADC_Mode_Independent;
/* initialize the ADC_ScanConvMode member */
ADC_InitStruct->ADC_ScanConvMode = DISABLE;
/* Initialize the ADC_ContinuousConvMode member */
ADC_InitStruct->ADC_ContinuousConvMode = DISABLE;
/* Initialize the ADC_ExternalTrigConv member */
ADC_InitStruct->ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1;
/* Initialize the ADC_DataAlign member */
ADC_InitStruct->ADC_DataAlign = ADC_DataAlign_Right;
/* Initialize the ADC_NbrOfChannel member */
ADC_InitStruct->ADC_NbrOfChannel = 1;
}
/**
* @brief Enables or disables the specified ADC peripheral.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param NewState: new state of the ADCx peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Set the ADON bit to wake up the ADC from power down mode */
ADCx->CR2 |= CR2_ADON_Set;
}
else
{
/* Disable the selected ADC peripheral */
ADCx->CR2 &= CR2_ADON_Reset;
}
}
/**
* @brief Enables or disables the specified ADC DMA request.
* @param ADCx: where x can be 1 or 3 to select the ADC peripheral.
* Note: ADC2 hasn't a DMA capability.
* @param NewState: new state of the selected ADC DMA transfer.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_DMA_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ADC DMA request */
ADCx->CR2 |= CR2_DMA_Set;
}
else
{
/* Disable the selected ADC DMA request */
ADCx->CR2 &= CR2_DMA_Reset;
}
}
/**
* @brief Enables or disables the specified ADC interrupts.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_IT: specifies the ADC interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg ADC_IT_EOC: End of conversion interrupt mask
* @arg ADC_IT_AWD: Analog watchdog interrupt mask
* @arg ADC_IT_JEOC: End of injected conversion interrupt mask
* @param NewState: new state of the specified ADC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_ITConfig(ADC_TypeDef* ADCx, uint16_t ADC_IT, FunctionalState NewState)
{
uint8_t itmask = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_ADC_IT(ADC_IT));
/* Get the ADC IT index */
itmask = (uint8_t)ADC_IT;
if (NewState != DISABLE)
{
/* Enable the selected ADC interrupts */
ADCx->CR1 |= itmask;
}
else
{
/* Disable the selected ADC interrupts */
ADCx->CR1 &= (~(uint32_t)itmask);
}
}
/**
* @brief Resets the selected ADC calibration registers.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @retval None
*/
void ADC_ResetCalibration(ADC_TypeDef* ADCx)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
/* Resets the selected ADC calibration registers */
ADCx->CR2 |= CR2_RSTCAL_Set;
}
/**
* @brief Gets the selected ADC reset calibration registers status.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @retval The new state of ADC reset calibration registers (SET or RESET).
*/
FlagStatus ADC_GetResetCalibrationStatus(ADC_TypeDef* ADCx)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
/* Check the status of RSTCAL bit */
if ((ADCx->CR2 & CR2_RSTCAL_Set) != (uint32_t)RESET)
{
/* RSTCAL bit is set */
bitstatus = SET;
}
else
{
/* RSTCAL bit is reset */
bitstatus = RESET;
}
/* Return the RSTCAL bit status */
return bitstatus;
}
/**
* @brief Starts the selected ADC calibration process.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @retval None
*/
void ADC_StartCalibration(ADC_TypeDef* ADCx)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
/* Enable the selected ADC calibration process */
ADCx->CR2 |= CR2_CAL_Set;
}
/**
* @brief Gets the selected ADC calibration status.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @retval The new state of ADC calibration (SET or RESET).
*/
FlagStatus ADC_GetCalibrationStatus(ADC_TypeDef* ADCx)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
/* Check the status of CAL bit */
if ((ADCx->CR2 & CR2_CAL_Set) != (uint32_t)RESET)
{
/* CAL bit is set: calibration on going */
bitstatus = SET;
}
else
{
/* CAL bit is reset: end of calibration */
bitstatus = RESET;
}
/* Return the CAL bit status */
return bitstatus;
}
/**
* @brief Enables or disables the selected ADC software start conversion .
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param NewState: new state of the selected ADC software start conversion.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_SoftwareStartConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ADC conversion on external event and start the selected
ADC conversion */
ADCx->CR2 |= CR2_EXTTRIG_SWSTART_Set;
}
else
{
/* Disable the selected ADC conversion on external event and stop the selected
ADC conversion */
ADCx->CR2 &= CR2_EXTTRIG_SWSTART_Reset;
}
}
/**
* @brief Gets the selected ADC Software start conversion Status.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @retval The new state of ADC software start conversion (SET or RESET).
*/
FlagStatus ADC_GetSoftwareStartConvStatus(ADC_TypeDef* ADCx)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
/* Check the status of SWSTART bit */
if ((ADCx->CR2 & CR2_SWSTART_Set) != (uint32_t)RESET)
{
/* SWSTART bit is set */
bitstatus = SET;
}
else
{
/* SWSTART bit is reset */
bitstatus = RESET;
}
/* Return the SWSTART bit status */
return bitstatus;
}
/**
* @brief Configures the discontinuous mode for the selected ADC regular
* group channel.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param Number: specifies the discontinuous mode regular channel
* count value. This number must be between 1 and 8.
* @retval None
*/
void ADC_DiscModeChannelCountConfig(ADC_TypeDef* ADCx, uint8_t Number)
{
uint32_t tmpreg1 = 0;
uint32_t tmpreg2 = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_REGULAR_DISC_NUMBER(Number));
/* Get the old register value */
tmpreg1 = ADCx->CR1;
/* Clear the old discontinuous mode channel count */
tmpreg1 &= CR1_DISCNUM_Reset;
/* Set the discontinuous mode channel count */
tmpreg2 = Number - 1;
tmpreg1 |= tmpreg2 << 13;
/* Store the new register value */
ADCx->CR1 = tmpreg1;
}
/**
* @brief Enables or disables the discontinuous mode on regular group
* channel for the specified ADC
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param NewState: new state of the selected ADC discontinuous mode
* on regular group channel.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_DiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ADC regular discontinuous mode */
ADCx->CR1 |= CR1_DISCEN_Set;
}
else
{
/* Disable the selected ADC regular discontinuous mode */
ADCx->CR1 &= CR1_DISCEN_Reset;
}
}
/**
* @brief Configures for the selected ADC regular channel its corresponding
* rank in the sequencer and its sample time.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_Channel: the ADC channel to configure.
* This parameter can be one of the following values:
* @arg ADC_Channel_0: ADC Channel0 selected
* @arg ADC_Channel_1: ADC Channel1 selected
* @arg ADC_Channel_2: ADC Channel2 selected
* @arg ADC_Channel_3: ADC Channel3 selected
* @arg ADC_Channel_4: ADC Channel4 selected
* @arg ADC_Channel_5: ADC Channel5 selected
* @arg ADC_Channel_6: ADC Channel6 selected
* @arg ADC_Channel_7: ADC Channel7 selected
* @arg ADC_Channel_8: ADC Channel8 selected
* @arg ADC_Channel_9: ADC Channel9 selected
* @arg ADC_Channel_10: ADC Channel10 selected
* @arg ADC_Channel_11: ADC Channel11 selected
* @arg ADC_Channel_12: ADC Channel12 selected
* @arg ADC_Channel_13: ADC Channel13 selected
* @arg ADC_Channel_14: ADC Channel14 selected
* @arg ADC_Channel_15: ADC Channel15 selected
* @arg ADC_Channel_16: ADC Channel16 selected
* @arg ADC_Channel_17: ADC Channel17 selected
* @param Rank: The rank in the regular group sequencer. This parameter must be between 1 to 16.
* @param ADC_SampleTime: The sample time value to be set for the selected channel.
* This parameter can be one of the following values:
* @arg ADC_SampleTime_1Cycles5: Sample time equal to 1.5 cycles
* @arg ADC_SampleTime_7Cycles5: Sample time equal to 7.5 cycles
* @arg ADC_SampleTime_13Cycles5: Sample time equal to 13.5 cycles
* @arg ADC_SampleTime_28Cycles5: Sample time equal to 28.5 cycles
* @arg ADC_SampleTime_41Cycles5: Sample time equal to 41.5 cycles
* @arg ADC_SampleTime_55Cycles5: Sample time equal to 55.5 cycles
* @arg ADC_SampleTime_71Cycles5: Sample time equal to 71.5 cycles
* @arg ADC_SampleTime_239Cycles5: Sample time equal to 239.5 cycles
* @retval None
*/
void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)
{
uint32_t tmpreg1 = 0, tmpreg2 = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_CHANNEL(ADC_Channel));
assert_param(IS_ADC_REGULAR_RANK(Rank));
assert_param(IS_ADC_SAMPLE_TIME(ADC_SampleTime));
/* if ADC_Channel_10 ... ADC_Channel_17 is selected */
if (ADC_Channel > ADC_Channel_9)
{
/* Get the old register value */
tmpreg1 = ADCx->SMPR1;
/* Calculate the mask to clear */
tmpreg2 = SMPR1_SMP_Set << (3 * (ADC_Channel - 10));
/* Clear the old channel sample time */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_SampleTime << (3 * (ADC_Channel - 10));
/* Set the new channel sample time */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SMPR1 = tmpreg1;
}
else /* ADC_Channel include in ADC_Channel_[0..9] */
{
/* Get the old register value */
tmpreg1 = ADCx->SMPR2;
/* Calculate the mask to clear */
tmpreg2 = SMPR2_SMP_Set << (3 * ADC_Channel);
/* Clear the old channel sample time */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_SampleTime << (3 * ADC_Channel);
/* Set the new channel sample time */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SMPR2 = tmpreg1;
}
/* For Rank 1 to 6 */
if (Rank < 7)
{
/* Get the old register value */
tmpreg1 = ADCx->SQR3;
/* Calculate the mask to clear */
tmpreg2 = SQR3_SQ_Set << (5 * (Rank - 1));
/* Clear the old SQx bits for the selected rank */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 1));
/* Set the SQx bits for the selected rank */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SQR3 = tmpreg1;
}
/* For Rank 7 to 12 */
else if (Rank < 13)
{
/* Get the old register value */
tmpreg1 = ADCx->SQR2;
/* Calculate the mask to clear */
tmpreg2 = SQR2_SQ_Set << (5 * (Rank - 7));
/* Clear the old SQx bits for the selected rank */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 7));
/* Set the SQx bits for the selected rank */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SQR2 = tmpreg1;
}
/* For Rank 13 to 16 */
else
{
/* Get the old register value */
tmpreg1 = ADCx->SQR1;
/* Calculate the mask to clear */
tmpreg2 = SQR1_SQ_Set << (5 * (Rank - 13));
/* Clear the old SQx bits for the selected rank */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 13));
/* Set the SQx bits for the selected rank */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SQR1 = tmpreg1;
}
}
/**
* @brief Enables or disables the ADCx conversion through external trigger.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param NewState: new state of the selected ADC external trigger start of conversion.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_ExternalTrigConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ADC conversion on external event */
ADCx->CR2 |= CR2_EXTTRIG_Set;
}
else
{
/* Disable the selected ADC conversion on external event */
ADCx->CR2 &= CR2_EXTTRIG_Reset;
}
}
/**
* @brief Returns the last ADCx conversion result data for regular channel.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @retval The Data conversion value.
*/
uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
/* Return the selected ADC conversion value */
return (uint16_t) ADCx->DR;
}
/**
* @brief Returns the last ADC1 and ADC2 conversion result data in dual mode.
* @retval The Data conversion value.
*/
uint32_t ADC_GetDualModeConversionValue(void)
{
/* Return the dual mode conversion value */
return (*(__IO uint32_t *) DR_ADDRESS);
}
/**
* @brief Enables or disables the selected ADC automatic injected group
* conversion after regular one.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param NewState: new state of the selected ADC auto injected conversion
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_AutoInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ADC automatic injected group conversion */
ADCx->CR1 |= CR1_JAUTO_Set;
}
else
{
/* Disable the selected ADC automatic injected group conversion */
ADCx->CR1 &= CR1_JAUTO_Reset;
}
}
/**
* @brief Enables or disables the discontinuous mode for injected group
* channel for the specified ADC
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param NewState: new state of the selected ADC discontinuous mode
* on injected group channel.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_InjectedDiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ADC injected discontinuous mode */
ADCx->CR1 |= CR1_JDISCEN_Set;
}
else
{
/* Disable the selected ADC injected discontinuous mode */
ADCx->CR1 &= CR1_JDISCEN_Reset;
}
}
/**
* @brief Configures the ADCx external trigger for injected channels conversion.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_ExternalTrigInjecConv: specifies the ADC trigger to start injected conversion.
* This parameter can be one of the following values:
* @arg ADC_ExternalTrigInjecConv_T1_TRGO: Timer1 TRGO event selected (for ADC1, ADC2 and ADC3)
* @arg ADC_ExternalTrigInjecConv_T1_CC4: Timer1 capture compare4 selected (for ADC1, ADC2 and ADC3)
* @arg ADC_ExternalTrigInjecConv_T2_TRGO: Timer2 TRGO event selected (for ADC1 and ADC2)
* @arg ADC_ExternalTrigInjecConv_T2_CC1: Timer2 capture compare1 selected (for ADC1 and ADC2)
* @arg ADC_ExternalTrigInjecConv_T3_CC4: Timer3 capture compare4 selected (for ADC1 and ADC2)
* @arg ADC_ExternalTrigInjecConv_T4_TRGO: Timer4 TRGO event selected (for ADC1 and ADC2)
* @arg ADC_ExternalTrigInjecConv_Ext_IT15_TIM8_CC4: External interrupt line 15 or Timer8
* capture compare4 event selected (for ADC1 and ADC2)
* @arg ADC_ExternalTrigInjecConv_T4_CC3: Timer4 capture compare3 selected (for ADC3 only)
* @arg ADC_ExternalTrigInjecConv_T8_CC2: Timer8 capture compare2 selected (for ADC3 only)
* @arg ADC_ExternalTrigInjecConv_T8_CC4: Timer8 capture compare4 selected (for ADC3 only)
* @arg ADC_ExternalTrigInjecConv_T5_TRGO: Timer5 TRGO event selected (for ADC3 only)
* @arg ADC_ExternalTrigInjecConv_T5_CC4: Timer5 capture compare4 selected (for ADC3 only)
* @arg ADC_ExternalTrigInjecConv_None: Injected conversion started by software and not
* by external trigger (for ADC1, ADC2 and ADC3)
* @retval None
*/
void ADC_ExternalTrigInjectedConvConfig(ADC_TypeDef* ADCx, uint32_t ADC_ExternalTrigInjecConv)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_EXT_INJEC_TRIG(ADC_ExternalTrigInjecConv));
/* Get the old register value */
tmpreg = ADCx->CR2;
/* Clear the old external event selection for injected group */
tmpreg &= CR2_JEXTSEL_Reset;
/* Set the external event selection for injected group */
tmpreg |= ADC_ExternalTrigInjecConv;
/* Store the new register value */
ADCx->CR2 = tmpreg;
}
/**
* @brief Enables or disables the ADCx injected channels conversion through
* external trigger
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param NewState: new state of the selected ADC external trigger start of
* injected conversion.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_ExternalTrigInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ADC external event selection for injected group */
ADCx->CR2 |= CR2_JEXTTRIG_Set;
}
else
{
/* Disable the selected ADC external event selection for injected group */
ADCx->CR2 &= CR2_JEXTTRIG_Reset;
}
}
/**
* @brief Enables or disables the selected ADC start of the injected
* channels conversion.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param NewState: new state of the selected ADC software start injected conversion.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_SoftwareStartInjectedConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ADC conversion for injected group on external event and start the selected
ADC injected conversion */
ADCx->CR2 |= CR2_JEXTTRIG_JSWSTART_Set;
}
else
{
/* Disable the selected ADC conversion on external event for injected group and stop the selected
ADC injected conversion */
ADCx->CR2 &= CR2_JEXTTRIG_JSWSTART_Reset;
}
}
/**
* @brief Gets the selected ADC Software start injected conversion Status.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @retval The new state of ADC software start injected conversion (SET or RESET).
*/
FlagStatus ADC_GetSoftwareStartInjectedConvCmdStatus(ADC_TypeDef* ADCx)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
/* Check the status of JSWSTART bit */
if ((ADCx->CR2 & CR2_JSWSTART_Set) != (uint32_t)RESET)
{
/* JSWSTART bit is set */
bitstatus = SET;
}
else
{
/* JSWSTART bit is reset */
bitstatus = RESET;
}
/* Return the JSWSTART bit status */
return bitstatus;
}
/**
* @brief Configures for the selected ADC injected channel its corresponding
* rank in the sequencer and its sample time.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_Channel: the ADC channel to configure.
* This parameter can be one of the following values:
* @arg ADC_Channel_0: ADC Channel0 selected
* @arg ADC_Channel_1: ADC Channel1 selected
* @arg ADC_Channel_2: ADC Channel2 selected
* @arg ADC_Channel_3: ADC Channel3 selected
* @arg ADC_Channel_4: ADC Channel4 selected
* @arg ADC_Channel_5: ADC Channel5 selected
* @arg ADC_Channel_6: ADC Channel6 selected
* @arg ADC_Channel_7: ADC Channel7 selected
* @arg ADC_Channel_8: ADC Channel8 selected
* @arg ADC_Channel_9: ADC Channel9 selected
* @arg ADC_Channel_10: ADC Channel10 selected
* @arg ADC_Channel_11: ADC Channel11 selected
* @arg ADC_Channel_12: ADC Channel12 selected
* @arg ADC_Channel_13: ADC Channel13 selected
* @arg ADC_Channel_14: ADC Channel14 selected
* @arg ADC_Channel_15: ADC Channel15 selected
* @arg ADC_Channel_16: ADC Channel16 selected
* @arg ADC_Channel_17: ADC Channel17 selected
* @param Rank: The rank in the injected group sequencer. This parameter must be between 1 and 4.
* @param ADC_SampleTime: The sample time value to be set for the selected channel.
* This parameter can be one of the following values:
* @arg ADC_SampleTime_1Cycles5: Sample time equal to 1.5 cycles
* @arg ADC_SampleTime_7Cycles5: Sample time equal to 7.5 cycles
* @arg ADC_SampleTime_13Cycles5: Sample time equal to 13.5 cycles
* @arg ADC_SampleTime_28Cycles5: Sample time equal to 28.5 cycles
* @arg ADC_SampleTime_41Cycles5: Sample time equal to 41.5 cycles
* @arg ADC_SampleTime_55Cycles5: Sample time equal to 55.5 cycles
* @arg ADC_SampleTime_71Cycles5: Sample time equal to 71.5 cycles
* @arg ADC_SampleTime_239Cycles5: Sample time equal to 239.5 cycles
* @retval None
*/
void ADC_InjectedChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)
{
uint32_t tmpreg1 = 0, tmpreg2 = 0, tmpreg3 = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_CHANNEL(ADC_Channel));
assert_param(IS_ADC_INJECTED_RANK(Rank));
assert_param(IS_ADC_SAMPLE_TIME(ADC_SampleTime));
/* if ADC_Channel_10 ... ADC_Channel_17 is selected */
if (ADC_Channel > ADC_Channel_9)
{
/* Get the old register value */
tmpreg1 = ADCx->SMPR1;
/* Calculate the mask to clear */
tmpreg2 = SMPR1_SMP_Set << (3*(ADC_Channel - 10));
/* Clear the old channel sample time */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_SampleTime << (3*(ADC_Channel - 10));
/* Set the new channel sample time */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SMPR1 = tmpreg1;
}
else /* ADC_Channel include in ADC_Channel_[0..9] */
{
/* Get the old register value */
tmpreg1 = ADCx->SMPR2;
/* Calculate the mask to clear */
tmpreg2 = SMPR2_SMP_Set << (3 * ADC_Channel);
/* Clear the old channel sample time */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_SampleTime << (3 * ADC_Channel);
/* Set the new channel sample time */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SMPR2 = tmpreg1;
}
/* Rank configuration */
/* Get the old register value */
tmpreg1 = ADCx->JSQR;
/* Get JL value: Number = JL+1 */
tmpreg3 = (tmpreg1 & JSQR_JL_Set)>> 20;
/* Calculate the mask to clear: ((Rank-1)+(4-JL-1)) */
tmpreg2 = JSQR_JSQ_Set << (5 * (uint8_t)((Rank + 3) - (tmpreg3 + 1)));
/* Clear the old JSQx bits for the selected rank */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set: ((Rank-1)+(4-JL-1)) */
tmpreg2 = (uint32_t)ADC_Channel << (5 * (uint8_t)((Rank + 3) - (tmpreg3 + 1)));
/* Set the JSQx bits for the selected rank */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->JSQR = tmpreg1;
}
/**
* @brief Configures the sequencer length for injected channels
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param Length: The sequencer length.
* This parameter must be a number between 1 to 4.
* @retval None
*/
void ADC_InjectedSequencerLengthConfig(ADC_TypeDef* ADCx, uint8_t Length)
{
uint32_t tmpreg1 = 0;
uint32_t tmpreg2 = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_INJECTED_LENGTH(Length));
/* Get the old register value */
tmpreg1 = ADCx->JSQR;
/* Clear the old injected sequnence lenght JL bits */
tmpreg1 &= JSQR_JL_Reset;
/* Set the injected sequnence lenght JL bits */
tmpreg2 = Length - 1;
tmpreg1 |= tmpreg2 << 20;
/* Store the new register value */
ADCx->JSQR = tmpreg1;
}
/**
* @brief Set the injected channels conversion value offset
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_InjectedChannel: the ADC injected channel to set its offset.
* This parameter can be one of the following values:
* @arg ADC_InjectedChannel_1: Injected Channel1 selected
* @arg ADC_InjectedChannel_2: Injected Channel2 selected
* @arg ADC_InjectedChannel_3: Injected Channel3 selected
* @arg ADC_InjectedChannel_4: Injected Channel4 selected
* @param Offset: the offset value for the selected ADC injected channel
* This parameter must be a 12bit value.
* @retval None
*/
void ADC_SetInjectedOffset(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel, uint16_t Offset)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedChannel));
assert_param(IS_ADC_OFFSET(Offset));
tmp = (uint32_t)ADCx;
tmp += ADC_InjectedChannel;
/* Set the selected injected channel data offset */
*(__IO uint32_t *) tmp = (uint32_t)Offset;
}
/**
* @brief Returns the ADC injected channel conversion result
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_InjectedChannel: the converted ADC injected channel.
* This parameter can be one of the following values:
* @arg ADC_InjectedChannel_1: Injected Channel1 selected
* @arg ADC_InjectedChannel_2: Injected Channel2 selected
* @arg ADC_InjectedChannel_3: Injected Channel3 selected
* @arg ADC_InjectedChannel_4: Injected Channel4 selected
* @retval The Data conversion value.
*/
uint16_t ADC_GetInjectedConversionValue(ADC_TypeDef* ADCx, uint8_t ADC_InjectedChannel)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_INJECTED_CHANNEL(ADC_InjectedChannel));
tmp = (uint32_t)ADCx;
tmp += ADC_InjectedChannel + JDR_Offset;
/* Returns the selected injected channel conversion data value */
return (uint16_t) (*(__IO uint32_t*) tmp);
}
/**
* @brief Enables or disables the analog watchdog on single/all regular
* or injected channels
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_AnalogWatchdog: the ADC analog watchdog configuration.
* This parameter can be one of the following values:
* @arg ADC_AnalogWatchdog_SingleRegEnable: Analog watchdog on a single regular channel
* @arg ADC_AnalogWatchdog_SingleInjecEnable: Analog watchdog on a single injected channel
* @arg ADC_AnalogWatchdog_SingleRegOrInjecEnable: Analog watchdog on a single regular or injected channel
* @arg ADC_AnalogWatchdog_AllRegEnable: Analog watchdog on all regular channel
* @arg ADC_AnalogWatchdog_AllInjecEnable: Analog watchdog on all injected channel
* @arg ADC_AnalogWatchdog_AllRegAllInjecEnable: Analog watchdog on all regular and injected channels
* @arg ADC_AnalogWatchdog_None: No channel guarded by the analog watchdog
* @retval None
*/
void ADC_AnalogWatchdogCmd(ADC_TypeDef* ADCx, uint32_t ADC_AnalogWatchdog)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_ANALOG_WATCHDOG(ADC_AnalogWatchdog));
/* Get the old register value */
tmpreg = ADCx->CR1;
/* Clear AWDEN, AWDENJ and AWDSGL bits */
tmpreg &= CR1_AWDMode_Reset;
/* Set the analog watchdog enable mode */
tmpreg |= ADC_AnalogWatchdog;
/* Store the new register value */
ADCx->CR1 = tmpreg;
}
/**
* @brief Configures the high and low thresholds of the analog watchdog.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param HighThreshold: the ADC analog watchdog High threshold value.
* This parameter must be a 12bit value.
* @param LowThreshold: the ADC analog watchdog Low threshold value.
* This parameter must be a 12bit value.
* @retval None
*/
void ADC_AnalogWatchdogThresholdsConfig(ADC_TypeDef* ADCx, uint16_t HighThreshold,
uint16_t LowThreshold)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_THRESHOLD(HighThreshold));
assert_param(IS_ADC_THRESHOLD(LowThreshold));
/* Set the ADCx high threshold */
ADCx->HTR = HighThreshold;
/* Set the ADCx low threshold */
ADCx->LTR = LowThreshold;
}
/**
* @brief Configures the analog watchdog guarded single channel
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_Channel: the ADC channel to configure for the analog watchdog.
* This parameter can be one of the following values:
* @arg ADC_Channel_0: ADC Channel0 selected
* @arg ADC_Channel_1: ADC Channel1 selected
* @arg ADC_Channel_2: ADC Channel2 selected
* @arg ADC_Channel_3: ADC Channel3 selected
* @arg ADC_Channel_4: ADC Channel4 selected
* @arg ADC_Channel_5: ADC Channel5 selected
* @arg ADC_Channel_6: ADC Channel6 selected
* @arg ADC_Channel_7: ADC Channel7 selected
* @arg ADC_Channel_8: ADC Channel8 selected
* @arg ADC_Channel_9: ADC Channel9 selected
* @arg ADC_Channel_10: ADC Channel10 selected
* @arg ADC_Channel_11: ADC Channel11 selected
* @arg ADC_Channel_12: ADC Channel12 selected
* @arg ADC_Channel_13: ADC Channel13 selected
* @arg ADC_Channel_14: ADC Channel14 selected
* @arg ADC_Channel_15: ADC Channel15 selected
* @arg ADC_Channel_16: ADC Channel16 selected
* @arg ADC_Channel_17: ADC Channel17 selected
* @retval None
*/
void ADC_AnalogWatchdogSingleChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_CHANNEL(ADC_Channel));
/* Get the old register value */
tmpreg = ADCx->CR1;
/* Clear the Analog watchdog channel select bits */
tmpreg &= CR1_AWDCH_Reset;
/* Set the Analog watchdog channel */
tmpreg |= ADC_Channel;
/* Store the new register value */
ADCx->CR1 = tmpreg;
}
/**
* @brief Enables or disables the temperature sensor and Vrefint channel.
* @param NewState: new state of the temperature sensor.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_TempSensorVrefintCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the temperature sensor and Vrefint channel*/
ADC1->CR2 |= CR2_TSVREFE_Set;
}
else
{
/* Disable the temperature sensor and Vrefint channel*/
ADC1->CR2 &= CR2_TSVREFE_Reset;
}
}
/**
* @brief Checks whether the specified ADC flag is set or not.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg ADC_FLAG_AWD: Analog watchdog flag
* @arg ADC_FLAG_EOC: End of conversion flag
* @arg ADC_FLAG_JEOC: End of injected group conversion flag
* @arg ADC_FLAG_JSTRT: Start of injected group conversion flag
* @arg ADC_FLAG_STRT: Start of regular group conversion flag
* @retval The new state of ADC_FLAG (SET or RESET).
*/
FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_GET_FLAG(ADC_FLAG));
/* Check the status of the specified ADC flag */
if ((ADCx->SR & ADC_FLAG) != (uint8_t)RESET)
{
/* ADC_FLAG is set */
bitstatus = SET;
}
else
{
/* ADC_FLAG is reset */
bitstatus = RESET;
}
/* Return the ADC_FLAG status */
return bitstatus;
}
/**
* @brief Clears the ADCx's pending flags.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_FLAG: specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg ADC_FLAG_AWD: Analog watchdog flag
* @arg ADC_FLAG_EOC: End of conversion flag
* @arg ADC_FLAG_JEOC: End of injected group conversion flag
* @arg ADC_FLAG_JSTRT: Start of injected group conversion flag
* @arg ADC_FLAG_STRT: Start of regular group conversion flag
* @retval None
*/
void ADC_ClearFlag(ADC_TypeDef* ADCx, uint8_t ADC_FLAG)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_CLEAR_FLAG(ADC_FLAG));
/* Clear the selected ADC flags */
ADCx->SR = ~(uint32_t)ADC_FLAG;
}
/**
* @brief Checks whether the specified ADC interrupt has occurred or not.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_IT: specifies the ADC interrupt source to check.
* This parameter can be one of the following values:
* @arg ADC_IT_EOC: End of conversion interrupt mask
* @arg ADC_IT_AWD: Analog watchdog interrupt mask
* @arg ADC_IT_JEOC: End of injected conversion interrupt mask
* @retval The new state of ADC_IT (SET or RESET).
*/
ITStatus ADC_GetITStatus(ADC_TypeDef* ADCx, uint16_t ADC_IT)
{
ITStatus bitstatus = RESET;
uint32_t itmask = 0, enablestatus = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_GET_IT(ADC_IT));
/* Get the ADC IT index */
itmask = ADC_IT >> 8;
/* Get the ADC_IT enable bit status */
enablestatus = (ADCx->CR1 & (uint8_t)ADC_IT) ;
/* Check the status of the specified ADC interrupt */
if (((ADCx->SR & itmask) != (uint32_t)RESET) && enablestatus)
{
/* ADC_IT is set */
bitstatus = SET;
}
else
{
/* ADC_IT is reset */
bitstatus = RESET;
}
/* Return the ADC_IT status */
return bitstatus;
}
/**
* @brief Clears the ADCx's interrupt pending bits.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_IT: specifies the ADC interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg ADC_IT_EOC: End of conversion interrupt mask
* @arg ADC_IT_AWD: Analog watchdog interrupt mask
* @arg ADC_IT_JEOC: End of injected conversion interrupt mask
* @retval None
*/
void ADC_ClearITPendingBit(ADC_TypeDef* ADCx, uint16_t ADC_IT)
{
uint8_t itmask = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_IT(ADC_IT));
/* Get the ADC IT index */
itmask = (uint8_t)(ADC_IT >> 8);
/* Clear the selected ADC interrupt pending bits */
ADCx->SR = ~(uint32_t)itmask;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/