rt-thread/components/drivers/ofw/irq.c

650 lines
18 KiB
C
Executable File

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-08-25 GuEe-GUI first version
*/
#include <rtthread.h>
#include <string.h>
#include <drivers/pic.h>
#include <drivers/ofw.h>
#include <drivers/ofw_io.h>
#include <drivers/ofw_irq.h>
#define DBG_TAG "rtdm.ofw"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#include "ofw_internal.h"
static int ofw_interrupt_cells(struct rt_ofw_node *np)
{
int interrupt_cells = -RT_EEMPTY;
rt_ofw_prop_read_u32(np, "#interrupt-cells", (rt_uint32_t *)&interrupt_cells);
return interrupt_cells;
}
int rt_ofw_irq_cells(struct rt_ofw_node *np)
{
return np ? ofw_interrupt_cells(np) : -RT_EINVAL;
}
static rt_err_t ofw_parse_irq_map(struct rt_ofw_node *np, struct rt_ofw_cell_args *irq_args)
{
rt_err_t err = RT_EOK;
rt_phandle ic_phandle = 0;
rt_ssize_t map_len, map_mask_len;
struct rt_ofw_node *ic_np = RT_NULL;
const fdt32_t *addr, *map, *map_mask;
int child_address_cells, child_interrupt_cells;
int parent_address_cells, parent_interrupt_cells;
int addr_cells, pin_cells, icaddr_cells, idx1, idx2, limit;
/*
* interrupt-map:
* An interrupt-map is a property on a nexus node that bridges one
* interrupt domain with a set of parent interrupt domains and specifies
* how interrupt specifiers in the child domain are mapped to
* their respective parent domains.
*
* The interrupt map is a table where each row is a mapping entry
* consisting of five components: child unit address, child interrupt
* specifier, interrupt-parent, parent unit address, parent interrupt
* specifier.
*
* child unit address
* The unit address of the child node being mapped. The number of
* 32-bit cells required to specify this is described by the
* #address-cells property of the bus node on which the child is
* located.
*
* child interrupt specifier
* The interrupt specifier of the child node being mapped. The number
* of 32-bit cells required to specify this component is described by
* the #interrupt-cells property of this node-the nexus node containing
* the interrupt-map property.
*
* interrupt-parent
* A single <phandle> value that points to the interrupt parent to
* which the child domain is being mapped.
*
* parent unit address
* The unit address in the domain of the interrupt parent. The number
* of 32-bit cells required to specify this address is described by the
* #address-cells property of the node pointed to by the
* interrupt-parent field.
*
* parent interrupt specifier
* The interrupt specifier in the parent domain. The number of 32-bit
* cells required to specify this component is described by the
* #interrupt-cells property of the node pointed to by the
* interrupt-parent field.
*
* Lookups are performed on the interrupt mapping table by matching a
* unit-address/interrupt specifier pair against the child components in
* the interrupt-map. Because some fields in the unit interrupt specifier
* may not be relevant, a mask is applied before the lookup is done.
* Example:
*
* pic: interrupt-controller@0 {
* interrupt-controller;
* #address-cells = <0>; // icaddr (parent unit address)
* #interrupt-cells = <1>; // icintr (parent interrupt specifier)
* };
*
* gic: interrupt-controller@1 {
* interrupt-controller;
* #address-cells = <2>; // icaddr (parent unit address)
* #interrupt-cells = <3>; // icintr (parent interrupt specifier)
* };
*
* pcie {
* #address-cells = <3>; // addr (child unit address)
* #interrupt-cells = <1>; // pin (child interrupt specifier)
* interrupt-parent = <&gic>;
* interrupt-map-mask = <0x1800 0 0 7>;
* interrupt-map =
* // addr pin ic icintr
* <0x0000 0 0 1 &pic 1>, // INTA SOLT 0
* <0x0000 0 0 2 &pic 2>, // INTB
* <0x0000 0 0 3 &pic 3>, // INTC
* <0x0000 0 0 4 &pic 4>, // INTD
* <0x0800 0 0 1 &pic 2>, // INTA SOLT 1
* <0x0800 0 0 2 &pic 3>, // INTB
* <0x0800 0 0 3 &pic 4>, // INTC
* <0x0800 0 0 4 &pic 1>, // INTD
* // addr pin ic icaddr icintr
* <0x1000 0 0 1 &gic 0 0 GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>, // INTA SOLT 2
* <0x1000 0 0 2 &gic 0 0 GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>, // INTB
* <0x1000 0 0 3 &gic 0 0 GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>, // INTC
* <0x1000 0 0 4 &gic 0 0 GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>, // INTD
* <0x1800 0 0 1 &gic 0 0 GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>, // INTA SOLT 3
* <0x1800 0 0 2 &gic 0 0 GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>, // INTB
* <0x1800 0 0 3 &gic 0 0 GIC_SPI 2 IRQ_TYPE_LEVEL_HIGH>, // INTC
* <0x1800 0 0 4 &gic 0 0 GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>; // INTD
* };
*
* In fact, almost no SoC will be use multi IC to implement INTx.
* before call ofw_parse_irq_map(np, &args):
*
* args.data = addr;
* args.args_count = 2 or 3;
* args.args[0] = (addr cells);
* args.args[1] = (pin cells);
* args.args[2] = (icaddr cells);
*
* if call with `pcie` in ofw_parse_irq_map(np, &args):
*
* np = &pcie;
* args.data = addr = fdt32_t({ (bus << 16) | (device << 11) | (function << 8), 0, 0, pin });
* args.args_count = 2;
* args.args[0] = 3;
* args.args[1] = 1;
*
* To perform a lookup of the gic interrupt source number for INTB for IDSEL
* 0x12 (slot 2), function 0x3, the following steps would be performed:
*
* 1.The user addr is value <0x9300 0 0 2>.
*
* 2.The encoding of the address includes the bus number (0x0 << 16),
* device number (0x12 << 11), and function number (0x3 << 8).
*
* 3.The interrupt specifier is 2, which is the encoding for INTB as per
* the PCI binding.
*
* 4.The interrupt-map-mask value <0x1800 0 0 7> is applied, giving a
* result of <0x1000 0 0 2>.
*
* 5.That result is looked up in the interrupt-map table, which maps to the
* parent interrupt specifier <GIC_SPI 4 IRQ_TYPE_LEVEL_HIGH>.
*/
do {
err = -RT_EEMPTY;
if ((child_address_cells = rt_ofw_bus_addr_cells(np)) < 0)
{
LOG_D("%s property %s is undefined", np->full_name, "#address-cells");
break;
}
if ((child_interrupt_cells = ofw_interrupt_cells(np)) < 0)
{
LOG_D("%s property %s is undefined", np->full_name, "#interrupt-cells");
break;
}
if (!(map = rt_ofw_prop_read_raw(np, "interrupt-map", &map_len)))
{
LOG_D("%s property %s is undefined", np->full_name, "interrupt-map");
break;
}
if (!(map_mask = rt_ofw_prop_read_raw(np, "interrupt-map-mask", &map_mask_len)))
{
LOG_D("%s property %s is undefined", np->full_name, "interrupt-map-mask");
break;
}
err = -RT_EINVAL;
addr = irq_args->data;
addr_cells = irq_args->args[0];
pin_cells = irq_args->args[1];
icaddr_cells = irq_args->args_count == 3 ? irq_args->args[2] : 0;
if (addr_cells > child_address_cells)
{
LOG_D("%s(%d) > %s(%d)", "addr_cells", addr_cells, "child_address_cells", child_address_cells);
break;
}
if (pin_cells > child_interrupt_cells)
{
LOG_D("%s(%d) > %s(%d)", "pin_cells", pin_cells, "child_interrupt_cells", child_interrupt_cells);
break;
}
err = -RT_ENOENT;
#define _map_walk_range(_idx, _idx2, _count, ...) \
for (idx1 = _idx, idx2 = _idx2, limit = idx1 + _count; idx1 < limit __VA_ARGS__; ++idx1, ++idx2)
_map_walk_range(0, 0, addr_cells)
{
/* Applied addr mask */
((fdt32_t *)addr)[idx1] &= map_mask[idx2];
}
_map_walk_range(addr_cells, child_address_cells, pin_cells)
{
/* Applied pin mask */
((fdt32_t *)addr)[idx1] &= map_mask[idx2];
}
while (map_len > 0)
{
rt_bool_t match = RT_TRUE;
_map_walk_range(0, 0, addr_cells)
{
/* Applied mask */
if (addr[idx1] != map[idx2])
{
match = RT_FALSE;
break;
}
}
_map_walk_range(addr_cells, child_address_cells, pin_cells, && match)
{
/* Applied mask */
if (addr[idx1] != map[idx2])
{
match = RT_FALSE;
break;
}
}
/* Skip addr, pin */
map += map_mask_len;
/* IC is different? */
if (ic_phandle != fdt32_to_cpu(*map))
{
rt_ofw_node_put(ic_np);
ic_phandle = fdt32_to_cpu(*map);
ic_np = rt_ofw_find_node_by_phandle(ic_phandle);
if (!ic_np)
{
LOG_D("%s irq parent phandle = %d is not found", np->full_name, ic_phandle);
break;
}
if ((parent_address_cells = rt_ofw_bus_addr_cells(ic_np)) < 0)
{
LOG_D("%s property %s is undefined", ic_np->full_name, "#address-cells");
break;
}
if (icaddr_cells > parent_address_cells)
{
LOG_D("%s(%d) > %s(%d)", "icaddr_cells", icaddr_cells, "parent_address_cells", parent_address_cells);
break;
}
if ((parent_interrupt_cells = ofw_interrupt_cells(ic_np)) < 0)
{
LOG_D("%s property %s is undefined", ic_np->full_name, "#interrupt-cells");
break;
}
RT_ASSERT(parent_interrupt_cells <= RT_OFW_MAX_CELL_ARGS);
}
/* Skip ic phandle */
++map;
_map_walk_range(addr_cells + pin_cells, 0, icaddr_cells, && match)
{
/* Applied ic_addr mask */
if (addr[idx1] != map[idx2])
{
match = RT_FALSE;
break;
}
}
/* Skip icaddr */
map += parent_address_cells;
if (match)
{
irq_args->data = ic_np;
irq_args->args_count = parent_interrupt_cells;
for (int i = 0; i < irq_args->args_count; ++i)
{
irq_args->args[i] = fdt32_to_cpu(*map++);
}
err = RT_EOK;
break;
}
/* Skip icintr */
map += parent_interrupt_cells;
map_len -= map_mask_len + 1 + parent_address_cells + parent_interrupt_cells;
}
#undef _map_walk_range
} while (0);
return err;
}
rt_err_t rt_ofw_parse_irq_map(struct rt_ofw_node *np, struct rt_ofw_cell_args *irq_args)
{
rt_err_t err;
if (np && irq_args && irq_args->data)
{
err = ofw_parse_irq_map(np, irq_args);
}
else
{
err = -RT_EINVAL;
}
return err;
}
static rt_err_t ofw_parse_irq_cells(struct rt_ofw_node *np, int index, struct rt_ofw_cell_args *out_irq_args)
{
rt_err_t err;
/*
* interrupts-extended:
*
* The interrupts-extended property lists the interrupt(s) generated by a
* device. interrupts-extended should be used instead of interrupts when a
* device is connected to multiple interrupt controllers as it encodes a
* parent phandle with each interrupt specifier. Example:
*
* pic: interrupt-controller@0 {
* interrupt-controller;
* #interrupt-cells = <1>;
* };
*
* gic: interrupt-controller@1 {
* interrupt-controller;
* #interrupt-cells = <3>;
* };
*
* node: node {
* interrupts-extended = <&pic 9>, <&gic GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>;
* };
*
* call `rt_ofw_parse_phandle_cells` to get irq info;
*/
err = rt_ofw_parse_phandle_cells(np, "interrupts-extended", "#interrupt-cells", index, out_irq_args);
do {
int interrupt_cells;
const fdt32_t *cell;
rt_ssize_t interrupt_len;
struct rt_ofw_node *ic_np;
if (!err)
{
break;
}
/*
* interrupts (old style):
*
* The interrupts property of a device node defines the interrupt or
* interrupts that are generated by the device. The value of the
* interrupts property consists of an arbitrary number of interrupt
* specifiers. The format of an interrupt specifier is defined by the
* binding of the interrupt domain root.
* interrupts is overridden by the interrupts-extended property and
* normally only one or the other should be used. Example:
*
* pic: interrupt-controller@0 {
* interrupt-controller;
* #interrupt-cells = <1>;
* };
*
* gic: interrupt-controller@1 {
* interrupt-controller;
* #interrupt-cells = <3>;
* };
*
* node0: node0 {
* interrupt-parent = <&pic>;
* interrupts = <9>;
* };
*
* node1: node1 {
* interrupt-parent = <&gic>;
* interrupts = <GIC_SPI 1 IRQ_TYPE_LEVEL_HIGH>;
* };
*/
cell = rt_ofw_prop_read_raw(np, "interrupts", &interrupt_len);
if (!cell)
{
err = -RT_ERROR;
break;
}
ic_np = rt_ofw_find_irq_parent(np, &interrupt_cells);
if (!ic_np)
{
err = -RT_ERROR;
break;
}
RT_ASSERT(interrupt_cells <= RT_OFW_MAX_CELL_ARGS);
if (index >= interrupt_len / (interrupt_cells * sizeof(*cell)))
{
err = -RT_EINVAL;
break;
}
cell += index * interrupt_cells;
out_irq_args->data = ic_np;
out_irq_args->args_count = interrupt_cells;
for (int idx = 0; idx < interrupt_cells; ++idx, ++cell)
{
out_irq_args->args[idx] = fdt32_to_cpu(*cell);
}
err = RT_EOK;
} while (0);
return err;
}
rt_err_t rt_ofw_parse_irq_cells(struct rt_ofw_node *np, int index, struct rt_ofw_cell_args *out_irq_args)
{
rt_err_t err;
if (np && index >= 0 && out_irq_args)
{
err = ofw_parse_irq_cells(np, index, out_irq_args);
}
else
{
err = -RT_EINVAL;
}
return err;
}
struct rt_ofw_node *rt_ofw_find_irq_parent(struct rt_ofw_node *np, int *out_interrupt_cells)
{
rt_ofw_foreach_parent_node(np)
{
rt_phandle ic_phandle;
if (!rt_ofw_prop_read_u32(np, "interrupt-parent", (rt_uint32_t *)&ic_phandle))
{
int interrupt_cells;
struct rt_ofw_node *ic_np = rt_ofw_find_node_by_phandle(ic_phandle);
if (ic_np && (interrupt_cells = ofw_interrupt_cells(ic_np)) >= 0)
{
np = ic_np;
if (out_interrupt_cells)
{
*out_interrupt_cells = interrupt_cells;
}
break;
}
rt_ofw_node_put(ic_np);
}
}
return np;
}
static int ofw_map_irq(struct rt_ofw_cell_args *irq_args)
{
int irq;
struct rt_ofw_node *ic_np = irq_args->data;
struct rt_pic *pic = rt_ofw_data(ic_np);
/* args.data is "interrupt-controller" */
if (pic)
{
struct rt_pic_irq pirq;
if (!pic->ops->irq_parse)
{
LOG_E("Master pic MUST implemented irq_parse");
RT_ASSERT(0);
}
if (!pic->ops->irq_map)
{
LOG_E("Master pic MUST implemented irq_map");
RT_ASSERT(0);
}
irq = pic->ops->irq_parse(pic, irq_args, &pirq);
if (!irq)
{
irq = pic->ops->irq_map(pic, pirq.hwirq, pirq.mode);
}
}
else
{
LOG_E("Master pic %s not support", ic_np->full_name);
irq = -RT_EIO;
}
rt_ofw_node_put(ic_np);
return irq;
}
int rt_ofw_map_irq(struct rt_ofw_cell_args *irq_args)
{
int irq;
if (irq_args && irq_args->data && irq_args->args_count > 0)
{
irq = ofw_map_irq(irq_args);
}
else
{
irq = -RT_EINVAL;
}
return irq;
}
int rt_ofw_get_irq_count(struct rt_ofw_node *np)
{
int count;
if (np)
{
struct rt_ofw_cell_args irq_args;
count = 0;
while (!ofw_parse_irq_cells(np, count, &irq_args))
{
++count;
}
}
else
{
count = -RT_EINVAL;
}
return count;
}
int rt_ofw_get_irq(struct rt_ofw_node *np, int index)
{
int irq;
if (np && index >= 0)
{
struct rt_ofw_cell_args irq_args;
irq = ofw_parse_irq_cells(np, index, &irq_args);
if (irq >= 0)
{
irq = ofw_map_irq(&irq_args);
}
}
else
{
irq = -RT_EINVAL;
}
return irq;
}
int rt_ofw_get_irq_by_name(struct rt_ofw_node *np, const char *name)
{
int irq;
if (np && name)
{
int index = rt_ofw_prop_index_of_string(np, "interrupt-names", name);
if (index >= 0)
{
irq = rt_ofw_get_irq(np, index);
}
else
{
irq = -1;
}
}
else
{
irq = -RT_EINVAL;
}
return irq;
}