rt-thread/bsp/hc32/libraries/hc32_drivers/drv_eth.c

644 lines
20 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
* Copyright (c) 2022, Xiaohua Semiconductor Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-04-28 CDT first version
*/
/*******************************************************************************
* Include files
******************************************************************************/
#include "drv_eth.h"
#if defined(BSP_USING_ETH)
#include <netif/ethernetif.h>
#include <lwipopts.h>
#include "drv_irq.h"
#include "board_config.h"
/*******************************************************************************
* Local pre-processor symbols/macros ('#define')
******************************************************************************/
//#define DRV_DEBUG
#define LOG_TAG "drv.eth"
#include <drv_log.h>
#define MAX_ADDR_LEN 6
/*******************************************************************************
* Local type definitions ('typedef')
******************************************************************************/
struct hc32_eth
{
/* inherit from ethernet device */
struct eth_device parent;
#if !(defined(PHY_USING_INTERRUPT_MODE) && defined(ETH_USING_INTERFACE_RMII))
rt_timer_t poll_link_timer;
#endif
/* interface address info, hw address */
rt_uint8_t dev_addr[MAX_ADDR_LEN];
/* ETH_Speed */
rt_uint32_t eth_speed;
/* ETH_Duplex_Mode */
rt_uint32_t eth_mode;
/* eth irq */
struct hc32_irq_config irq_config;
func_ptr_t irq_callback;
};
/* eth phy status */
enum
{
ETH_PHY_LINK = 0x01U,
ETH_PHY_100M = 0x02U,
ETH_PHY_FULL_DUPLEX = 0x04U,
};
/*******************************************************************************
* Global variable definitions (declared in header file with 'extern')
******************************************************************************/
extern rt_err_t rt_hw_eth_board_init(CM_ETH_TypeDef *CM_ETHx);
extern rt_err_t rt_hw_eth_phy_reset(CM_ETH_TypeDef *CM_ETHx);
/*******************************************************************************
* Local function prototypes ('static')
******************************************************************************/
static void eth_global_irq_handle(void);
/*******************************************************************************
* Local variable definitions ('static')
******************************************************************************/
static stc_eth_handle_t EthHandle;
/* Ethernet Tx,Rx DMA Descriptor */
static stc_eth_dma_desc_t *EthDmaTxDscrTab, *EthDmaRxDscrTab;
/* Ethernet Transmit,Receive Buffer */
static rt_uint8_t *EthTxBuff, *EthRxBuff;
static struct hc32_eth hc32_eth_device =
{
.irq_config = ETH_IRQ_CONFIG,
.irq_callback = eth_global_irq_handle,
};
/*******************************************************************************
* Function implementation - global ('extern') and local ('static')
******************************************************************************/
static rt_err_t rt_hc32_eth_init(rt_device_t dev)
{
stc_eth_init_t stcEthInit;
uint16_t u16RegVal;
/* Enable ETH clock */
FCG_Fcg1PeriphClockCmd(FCG1_PERIPH_ETHMAC, ENABLE);
/* Init Ethernet GPIO */
rt_hw_eth_phy_reset(CM_ETH);
rt_hw_eth_board_init(CM_ETH);
/* Reset ETHERNET */
(void)ETH_DeInit();
/* Configure structure initialization */
(void)ETH_CommStructInit(&EthHandle.stcCommInit);
(void)ETH_StructInit(&stcEthInit);
EthHandle.stcCommInit.u16AutoNego = ETH_AUTO_NEGO_DISABLE;
EthHandle.stcCommInit.au8MacAddr[0] = hc32_eth_device.dev_addr[0];
EthHandle.stcCommInit.au8MacAddr[1] = hc32_eth_device.dev_addr[1];
EthHandle.stcCommInit.au8MacAddr[2] = hc32_eth_device.dev_addr[2];
EthHandle.stcCommInit.au8MacAddr[3] = hc32_eth_device.dev_addr[3];
EthHandle.stcCommInit.au8MacAddr[4] = hc32_eth_device.dev_addr[4];
EthHandle.stcCommInit.au8MacAddr[5] = hc32_eth_device.dev_addr[5];
#ifdef ETH_USING_INTERFACE_RMII
EthHandle.stcCommInit.u32Interface = ETH_MAC_IF_RMII;
#else
EthHandle.stcCommInit.u32Interface = ETH_MAC_IF_MII;
#endif
EthHandle.stcCommInit.u32ReceiveMode = ETH_RX_MD_INT;
#ifdef RT_LWIP_USING_HW_CHECKSUM
EthHandle.stcCommInit.u32ChecksumMode = ETH_MAC_CHECKSUM_MD_HW;
#else
EthHandle.stcCommInit.u32ChecksumMode = ETH_MAC_CHECKSUM_MD_SW;
#endif
/* Configure ethernet peripheral */
if (LL_OK != ETH_Init(&EthHandle, &stcEthInit))
{
LOG_E("eth hardware init failed");
}
else
{
LOG_D("eth hardware init success");
}
/* Initialize Tx Descriptors list: Chain Mode */
(void)ETH_DMA_TxDescListInit(&EthHandle, EthDmaTxDscrTab, EthTxBuff, ETH_TX_BUF_NUM);
/* Initialize Rx Descriptors list: Chain Mode */
(void)ETH_DMA_RxDescListInit(&EthHandle, EthDmaRxDscrTab, EthRxBuff, ETH_RX_BUF_NUM);
/* Enable ETH interrupt */
NVIC_EnableIRQ(hc32_eth_device.irq_config.irq_num);
/* Enable MAC and DMA transmission and reception */
if (LL_OK == ETH_Start())
{
LOG_D("eth hardware start");
}
else
{
LOG_E("eth hardware start faild");
return -RT_ERROR;
}
/* Configure PHY LED mode */
u16RegVal = PHY_PAGE_ADDR_7;
(void)ETH_PHY_WriteReg(&EthHandle, PHY_PSR, u16RegVal);
(void)ETH_PHY_ReadReg(&EthHandle, PHY_P7_IWLFR, &u16RegVal);
MODIFY_REG16(u16RegVal, PHY_LED_SELECT, PHY_LED_SELECT_10);
(void)ETH_PHY_WriteReg(&EthHandle, PHY_P7_IWLFR, u16RegVal);
u16RegVal = PHY_PAGE_ADDR_0;
(void)ETH_PHY_WriteReg(&EthHandle, PHY_PSR, u16RegVal);
#ifdef ETH_USING_INTERFACE_RMII
/* Disable Power Saving Mode */
(void)ETH_PHY_ReadReg(&EthHandle, PHY_PSMR, &u16RegVal);
CLR_REG16_BIT(u16RegVal, PHY_EN_PWR_SAVE);
(void)ETH_PHY_WriteReg(&EthHandle, PHY_PSMR, u16RegVal);
#endif
return RT_EOK;
}
static rt_err_t rt_hc32_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
LOG_D("eth open");
return RT_EOK;
}
static rt_err_t rt_hc32_eth_close(rt_device_t dev)
{
LOG_D("eth close");
return RT_EOK;
}
static rt_size_t rt_hc32_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
LOG_D("eth read");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_hc32_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
LOG_D("eth write");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_hc32_eth_control(rt_device_t dev, int cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args)
{
SMEMCPY(args, hc32_eth_device.dev_addr, 6);
}
else
{
return -RT_ERROR;
}
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit data*/
rt_err_t rt_hc32_eth_tx(rt_device_t dev, struct pbuf *p)
{
rt_err_t errval = RT_ERROR;
struct pbuf *q;
uint8_t *txBuffer;
__IO stc_eth_dma_desc_t *DmaTxDesc;
uint32_t byteCnt;
uint32_t frameLength = 0UL;
uint32_t bufferOffset;
uint32_t payloadOffset;
DmaTxDesc = EthHandle.stcTxDesc;
txBuffer = (uint8_t *)((EthHandle.stcTxDesc)->u32Buf1Addr);
bufferOffset = 0UL;
/* Copy frame from pbufs to driver buffers */
for (q = p; q != NULL; q = q->next)
{
/* If this buffer isn't available, goto error */
if (0UL != (DmaTxDesc->u32ControlStatus & ETH_DMA_TXDESC_OWN))
{
LOG_D("buffer not valid");
errval = (err_t)ERR_USE;
goto error;
}
/* Get bytes in current lwIP buffer */
byteCnt = q->len;
payloadOffset = 0UL;
/* Check if the length of data to copy is bigger than Tx buffer size */
while ((byteCnt + bufferOffset) > ETH_TX_BUF_SIZE)
{
/* Copy data to Tx buffer*/
SMEMCPY((uint8_t *) & (txBuffer[bufferOffset]), (uint8_t *) & (((uint8_t *)q->payload)[payloadOffset]), (ETH_TX_BUF_SIZE - bufferOffset));
/* Point to next descriptor */
DmaTxDesc = (stc_eth_dma_desc_t *)(DmaTxDesc->u32Buf2NextDescAddr);
/* Check if the buffer is available */
if (0UL != (DmaTxDesc->u32ControlStatus & ETH_DMA_TXDESC_OWN))
{
errval = (err_t)ERR_USE;
goto error;
}
txBuffer = (uint8_t *)(DmaTxDesc->u32Buf1Addr);
byteCnt = byteCnt - (ETH_TX_BUF_SIZE - bufferOffset);
payloadOffset = payloadOffset + (ETH_TX_BUF_SIZE - bufferOffset);
frameLength = frameLength + (ETH_TX_BUF_SIZE - bufferOffset);
bufferOffset = 0UL;
}
/* Copy the remaining bytes */
SMEMCPY((uint8_t *) & (txBuffer[bufferOffset]), (uint8_t *) & (((uint8_t *)q->payload)[payloadOffset]), byteCnt);
bufferOffset = bufferOffset + byteCnt;
frameLength = frameLength + byteCnt;
}
LOG_D("transmit frame length :%d", framelength);
/* Prepare transmit descriptors to give to DMA */
(void)ETH_DMA_SetTransFrame(&EthHandle, frameLength);
errval = (err_t)ERR_OK;
error:
/* When Transmit Underflow flag is set, clear it and issue a Transmit Poll Demand to resume transmission */
if (RESET != ETH_DMA_GetStatus(ETH_DMA_FLAG_UNS))
{
/* Clear DMA UNS flag */
ETH_DMA_ClearStatus(ETH_DMA_FLAG_UNS);
/* Resume DMA transmission */
WRITE_REG32(CM_ETH->DMA_TXPOLLR, 0UL);
}
return errval;
}
/* receive data*/
struct pbuf *rt_hc32_eth_rx(rt_device_t dev)
{
struct pbuf *p = NULL;
struct pbuf *q;
uint32_t len;
uint8_t *rxBuffer;
__IO stc_eth_dma_desc_t *DmaRxDesc;
uint32_t byteCnt;
uint32_t bufferOffset;
uint32_t payloadOffset;
uint32_t i;
/* Get received frame */
if (LL_OK != ETH_DMA_GetReceiveFrame_Int(&EthHandle))
{
LOG_D("receive frame faild");
return NULL;
}
/* Obtain the size of the packet */
len = (EthHandle.stcRxFrame).u32Len;
rxBuffer = (uint8_t *)(EthHandle.stcRxFrame).u32Buf;
LOG_D("receive frame len : %d", len);
if (len > 0UL)
{
/* Allocate a pbuf chain of pbufs from the Lwip buffer pool */
p = pbuf_alloc(PBUF_RAW, (uint16_t)len, PBUF_POOL);
}
if (p != NULL)
{
DmaRxDesc = (EthHandle.stcRxFrame).pstcFSDesc;
bufferOffset = 0UL;
for (q = p; q != NULL; q = q->next)
{
byteCnt = q->len;
payloadOffset = 0UL;
/* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size */
while ((byteCnt + bufferOffset) > ETH_RX_BUF_SIZE)
{
/* Copy data to pbuf */
SMEMCPY((uint8_t *) & (((uint8_t *)q->payload)[payloadOffset]), (uint8_t *) & (rxBuffer[bufferOffset]), (ETH_RX_BUF_SIZE - bufferOffset));
/* Point to next descriptor */
DmaRxDesc = (stc_eth_dma_desc_t *)(DmaRxDesc->u32Buf2NextDescAddr);
rxBuffer = (uint8_t *)(DmaRxDesc->u32Buf1Addr);
byteCnt = byteCnt - (ETH_RX_BUF_SIZE - bufferOffset);
payloadOffset = payloadOffset + (ETH_RX_BUF_SIZE - bufferOffset);
bufferOffset = 0UL;
}
/* Copy remaining data in pbuf */
SMEMCPY((uint8_t *) & (((uint8_t *)q->payload)[payloadOffset]), (uint8_t *) & (rxBuffer[bufferOffset]), byteCnt);
bufferOffset = bufferOffset + byteCnt;
}
}
/* Release descriptors to DMA */
DmaRxDesc = (EthHandle.stcRxFrame).pstcFSDesc;
for (i = 0UL; i < (EthHandle.stcRxFrame).u32SegCount; i++)
{
DmaRxDesc->u32ControlStatus |= ETH_DMA_RXDESC_OWN;
DmaRxDesc = (stc_eth_dma_desc_t *)(DmaRxDesc->u32Buf2NextDescAddr);
}
/* Clear Segment_Count */
(EthHandle.stcRxFrame).u32SegCount = 0UL;
/* When Rx Buffer unavailable flag is set, clear it and resume reception */
if (RESET != ETH_DMA_GetStatus(ETH_DMA_FLAG_RUS))
{
/* Clear DMA RUS flag */
ETH_DMA_ClearStatus(ETH_DMA_FLAG_RUS);
/* Resume DMA reception */
WRITE_REG32(CM_ETH->DMA_RXPOLLR, 0UL);
}
return p;
}
static void hc32_eth_irq_handle(stc_eth_handle_t *eth_handle)
{
rt_err_t result;
(void)eth_handle;
/* Frame received */
if (RESET != ETH_DMA_GetStatus(ETH_DMA_FLAG_RIS))
{
result = eth_device_ready(&(hc32_eth_device.parent));
if (result != RT_EOK)
{
LOG_I("eth rx complete callback err = %d", result);
}
/* Clear the Eth DMA Rx IT pending bits */
ETH_DMA_ClearStatus(ETH_DMA_FLAG_RIS | ETH_DMA_FLAG_NIS);
}
}
/* interrupt service routine */
static void eth_global_irq_handle(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_eth_irq_handle(&EthHandle);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_phy_link_change(void)
{
static rt_uint8_t phy_status = 0;
rt_uint8_t phy_status_new = 0;
uint16_t u16RegVal = 0U;
uint16_t u16Page = 0U;
/* Switch page */
(void)ETH_PHY_ReadReg(&EthHandle, PHY_PSR, &u16Page);
if (u16Page != PHY_PAGE_ADDR_0)
{
u16RegVal = PHY_PAGE_ADDR_0;
(void)ETH_PHY_WriteReg(&EthHandle, PHY_PSR, u16RegVal);
}
/* Read PHY_BSR */
(void)ETH_PHY_ReadReg(&EthHandle, PHY_BASIC_STATUS_REG, &u16RegVal);
LOG_D("phy basic status reg is 0x%X", u16RegVal);
if ((0x0000U != u16RegVal) && (0xFFFFU != u16RegVal))
{
if (u16RegVal & (PHY_AUTONEGO_COMPLETE_MASK | PHY_LINKED_STATUS_MASK))
{
phy_status_new |= ETH_PHY_LINK;
if (0U != (u16RegVal & (PHY_100BASE_TX_FD | PHY_10BASE_T_FD)))
{
phy_status_new |= ETH_PHY_FULL_DUPLEX;
}
if (0U != (u16RegVal & (PHY_100BASE_TX_FD | PHY_100BASE_TX_HD)))
{
phy_status_new |= ETH_PHY_100M;
}
}
}
/* Restore page */
if (u16Page != PHY_PAGE_ADDR_0)
{
(void)ETH_PHY_WriteReg(&EthHandle, PHY_PSR, u16Page);
}
if (phy_status != phy_status_new)
{
phy_status = phy_status_new;
if (phy_status & ETH_PHY_LINK)
{
if (phy_status & ETH_PHY_FULL_DUPLEX)
{
hc32_eth_device.eth_mode = ETH_MAC_DUPLEX_MD_FULL;
}
else
{
hc32_eth_device.eth_mode = ETH_MAC_DUPLEX_MD_HALF;
}
if (phy_status & ETH_PHY_100M)
{
hc32_eth_device.eth_speed = ETH_MAC_SPEED_100M;
}
else
{
hc32_eth_device.eth_speed = ETH_MAC_SPEED_10M;
}
LOG_D("link up");
eth_device_linkchange(&hc32_eth_device.parent, RT_TRUE);
}
else
{
LOG_I("link down");
eth_device_linkchange(&hc32_eth_device.parent, RT_FALSE);
}
}
}
#if defined(PHY_USING_INTERRUPT_MODE) && defined(ETH_USING_INTERFACE_RMII)
static void eth_phy_irq_handler(void *args)
{
rt_uint16_t status = 0;
ETH_PHY_ReadReg(&EthHandle, PHY_IISDR, &status);
LOG_D("phy interrupt status reg is 0x%X", status);
hc32_phy_link_change();
}
#endif
static void hc32_phy_monitor_thread(void *parameter)
{
uint8_t phy_addr = 0xFF;
uint8_t detected_count = 0;
/* phy search */
while (phy_addr == 0xFF)
{
rt_uint16_t i, temp;
for (i = 0; i <= 0x1F; i++)
{
EthHandle.stcCommInit.u16PhyAddr = i;
ETH_PHY_ReadReg(&EthHandle, PHY_ID1_REG, &temp);
if (temp != 0xFFFF && temp != 0x00)
{
phy_addr = i;
break;
}
}
detected_count++;
rt_thread_mdelay(1000);
if (detected_count > 10)
{
LOG_E("No PHY device was detected!");
}
}
LOG_D("Found a phy, address:0x%02X", phy_addr);
/* Reset PHY */
ETH_PHY_WriteReg(&EthHandle, PHY_BASIC_CONTROL_REG, PHY_RESET_MASK);
rt_thread_mdelay(2000);
ETH_PHY_WriteReg(&EthHandle, PHY_BASIC_CONTROL_REG, PHY_AUTO_NEGOTIATION_MASK);
hc32_phy_link_change();
#if defined(PHY_USING_INTERRUPT_MODE) && defined(ETH_USING_INTERFACE_RMII)
/* configuration intterrupt pin */
rt_pin_mode(ETH_PHY_INT_PIN, PIN_MODE_INPUT_PULLUP);
rt_pin_attach_irq(ETH_PHY_INT_PIN, PIN_IRQ_MODE_FALLING, eth_phy_irq_handler, (void *)"callbackargs");
rt_pin_irq_enable(ETH_PHY_INT_PIN, PIN_IRQ_ENABLE);
uint16_t u16RegVal;
/* Configure PHY to generate an interrupt when Eth Link state changes */
u16RegVal = PHY_PAGE_ADDR_7;
(void)ETH_PHY_WriteReg(&EthHandle, PHY_PSR, u16RegVal);
/* Enable Interrupt on change of link status */
(void)ETH_PHY_ReadReg(&EthHandle, PHY_P7_IWLFR, &u16RegVal);
SET_REG16_BIT(u16RegVal, PHY_INT_LINK_CHANGE);
(void)ETH_PHY_WriteReg(&EthHandle, PHY_P7_IWLFR, u16RegVal);
u16RegVal = PHY_PAGE_ADDR_0;
(void)ETH_PHY_WriteReg(&EthHandle, PHY_PSR, u16RegVal);
#else
hc32_eth_device.poll_link_timer = rt_timer_create("eth_phy_link", (void (*)(void *))hc32_phy_link_change,
NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
if (!hc32_eth_device.poll_link_timer || rt_timer_start(hc32_eth_device.poll_link_timer) != RT_EOK)
{
LOG_E("Start eth phy link change detection timer failed");
}
#endif
}
/* Register the eth device */
static int rt_hw_hc32_eth_init(void)
{
rt_err_t state = RT_EOK;
/* register eth handler */
hc32_install_irq_handler(&hc32_eth_device.irq_config, hc32_eth_device.irq_callback, RT_FALSE);
/* Prepare receive and send buffers */
EthRxBuff = (rt_uint8_t *)rt_calloc(ETH_RX_BUF_NUM, ETH_MAX_PACKET_SIZE);
if (EthRxBuff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
EthTxBuff = (rt_uint8_t *)rt_calloc(ETH_TX_BUF_NUM, ETH_MAX_PACKET_SIZE);
if (EthTxBuff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
EthDmaRxDscrTab = (stc_eth_dma_desc_t *)rt_calloc(ETH_RX_BUF_NUM, sizeof(stc_eth_dma_desc_t));
if (EthDmaRxDscrTab == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
EthDmaTxDscrTab = (stc_eth_dma_desc_t *)rt_calloc(ETH_TX_BUF_NUM, sizeof(stc_eth_dma_desc_t));
if (EthDmaTxDscrTab == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
hc32_eth_device.eth_speed = ETH_MAC_SPEED_100M;
hc32_eth_device.eth_mode = ETH_MAC_DUPLEX_MD_FULL;
/* 00-80 uid */
hc32_eth_device.dev_addr[0] = 0x02;
hc32_eth_device.dev_addr[1] = 0x80;
hc32_eth_device.dev_addr[2] = 0x00;
/* generate MAC addr from unique ID */
hc32_eth_device.dev_addr[3] = (rt_uint8_t)READ_REG32(CM_EFM->UQID0);
hc32_eth_device.dev_addr[4] = (rt_uint8_t)READ_REG32(CM_EFM->UQID1);
hc32_eth_device.dev_addr[5] = (rt_uint8_t)READ_REG32(CM_EFM->UQID2);
hc32_eth_device.parent.parent.init = rt_hc32_eth_init;
hc32_eth_device.parent.parent.open = rt_hc32_eth_open;
hc32_eth_device.parent.parent.close = rt_hc32_eth_close;
hc32_eth_device.parent.parent.read = rt_hc32_eth_read;
hc32_eth_device.parent.parent.write = rt_hc32_eth_write;
hc32_eth_device.parent.parent.control = rt_hc32_eth_control;
hc32_eth_device.parent.parent.user_data = RT_NULL;
hc32_eth_device.parent.eth_rx = rt_hc32_eth_rx;
hc32_eth_device.parent.eth_tx = rt_hc32_eth_tx;
/* register eth device */
state = eth_device_init(&(hc32_eth_device.parent), "e0");
if (RT_EOK == state)
{
LOG_D("eth device init success");
}
else
{
LOG_E("eth device init faild: %d", state);
state = -RT_ERROR;
goto __exit;
}
/* start phy monitor */
rt_thread_t tid;
tid = rt_thread_create("phy_monitor", hc32_phy_monitor_thread, RT_NULL, 1024, 12, 5);
if (tid != RT_NULL)
{
rt_thread_startup(tid);
}
else
{
state = -RT_ERROR;
}
__exit:
if (state != RT_EOK)
{
if (EthRxBuff)
{
rt_free(EthRxBuff);
}
if (EthTxBuff)
{
rt_free(EthTxBuff);
}
if (EthDmaRxDscrTab)
{
rt_free(EthDmaRxDscrTab);
}
if (EthDmaTxDscrTab)
{
rt_free(EthDmaTxDscrTab);
}
}
return state;
}
INIT_DEVICE_EXPORT(rt_hw_hc32_eth_init);
#endif