rt-thread/src/module.c

366 lines
10 KiB
C

/*
* File : module.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2010, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2010-01-09 Bernard first version
* 2010-04-09 yi.qiu implement based on first version
*/
#include <rtm.h>
#include <rtthread.h>
#include "string.h"
#include "kservice.h"
#define RT_MODULE_DEBUG
#ifdef RT_USING_MODULE
#include "module.h"
#define elf_module ((Elf32_Ehdr *)module_ptr)
#define shdr ((Elf32_Shdr *)((rt_uint8_t *)module_ptr + elf_module->e_shoff))
#define phdr ((Elf32_Phdr *)((rt_uint8_t *)module_ptr + elf_module->e_phoff))
#define IS_PROG(s) (s.sh_type == SHT_PROGBITS)
#define IS_NOPROG(s) (s.sh_type == SHT_NOBITS)
#define IS_REL(s) (s.sh_type == SHT_REL)
#define IS_RELA(s) (s.sh_type == SHT_RELA)
#define IS_ALLOC(s) (s.sh_flags == SHF_ALLOC)
#define IS_AX(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_EXECINSTR))
#define IS_AW(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_WRITE))
struct rt_module* rt_current_module;
/**
* This function will return self module object
*
* @return the self thread object
*
*/
rt_module_t rt_module_self (void)
{
return rt_current_module;
}
static int rt_module_arm_relocate(struct rt_module* module, Elf32_Rel *rel, Elf32_Addr sym_val)
{
Elf32_Addr *where, tmp;
Elf32_Sword addend;
where = (Elf32_Addr *)((rt_uint8_t*)module->module_space + rel->r_offset);
switch (ELF32_R_TYPE(rel->r_info))
{
case R_ARM_NONE:
break;
case R_ARM_ABS32:
*where += (Elf32_Addr)sym_val;
#ifdef RT_MODULE_DEBUG
rt_kprintf("R_ARM_ABS32: %x -> %x\n", where, *where);
#endif
break;
case R_ARM_PC24:
case R_ARM_PLT32:
case R_ARM_CALL:
case R_ARM_JUMP24:
addend = *where & 0x00ffffff;
if (addend & 0x00800000)
addend |= 0xff000000;
tmp = sym_val - (Elf32_Addr)where + (addend << 2);
tmp >>= 2;
*where = (*where & 0xff000000) | (tmp & 0x00ffffff);
#ifdef RT_MODULE_DEBUG
rt_kprintf("R_ARM_PC24: %x -> %x\n", where, *where);
#endif
break;
case R_ARM_V4BX:
*where &= 0xf000000f;
*where |= 0x01a0f000;
break;
case R_ARM_GLOB_DAT:
*where += (Elf32_Addr)sym_val;
break;
case R_ARM_JUMP_SLOT:
break;
default:
return -1;
}
return 0;
}
static void rt_module_init_object_container(struct rt_module* module)
{
RT_ASSERT(module != RT_NULL);
/* init object container - thread */
rt_list_init(&(module->module_object[RT_Object_Class_Thread].object_list));
module->module_object[RT_Object_Class_Thread].object_size = sizeof(struct rt_thread);
module->module_object[RT_Object_Class_Thread].type = RT_Object_Class_Thread;
#ifdef RT_USING_SEMAPHORE
/* init object container - semaphore */
rt_list_init(&(module->module_object[RT_Object_Class_Semaphore].object_list));
module->module_object[RT_Object_Class_Semaphore].object_size = sizeof(struct rt_semaphore);
module->module_object[RT_Object_Class_Semaphore].type = RT_Object_Class_Semaphore;
#endif
#ifdef RT_USING_MUTEX
/* init object container - mutex */
rt_list_init(&(module->module_object[RT_Object_Class_Mutex].object_list));
module->module_object[RT_Object_Class_Mutex].object_size = sizeof(struct rt_mutex);
module->module_object[RT_Object_Class_Mutex].type = RT_Object_Class_Mutex;
#endif
#ifdef RT_USING_EVENT
/* init object container - event */
rt_list_init(&(module->module_object[RT_Object_Class_Event].object_list));
module->module_object[RT_Object_Class_Event].object_size = sizeof(struct rt_event);
module->module_object[RT_Object_Class_Event].type = RT_Object_Class_Event;
#endif
#ifdef RT_USING_MAILBOX
/* init object container - mailbox */
rt_list_init(&(module->module_object[RT_Object_Class_MailBox].object_list));
module->module_object[RT_Object_Class_MailBox].object_size = sizeof(struct rt_mailbox);
module->module_object[RT_Object_Class_MailBox].type = RT_Object_Class_MailBox;
#endif
#ifdef RT_USING_MESSAGEQUEUE
/* init object container - message queue */
rt_list_init(&(module->module_object[RT_Object_Class_MessageQueue].object_list));
module->module_object[RT_Object_Class_MessageQueue].object_size = sizeof(struct rt_messagequeue);
module->module_object[RT_Object_Class_MessageQueue].type = RT_Object_Class_MessageQueue;
#endif
#ifdef RT_USING_MEMPOOL
/* init object container - memory pool */
rt_list_init(&(module->module_object[RT_Object_Class_MemPool].object_list));
module->module_object[RT_Object_Class_MemPool].object_size = sizeof(struct rt_mempool);
module->module_object[RT_Object_Class_MemPool].type = RT_Object_Class_MemPool;
#endif
#ifdef RT_USING_DEVICE
/* init object container - device */
rt_list_init(&(module->module_object[RT_Object_Class_Device].object_list));
module->module_object[RT_Object_Class_Device].object_size = sizeof(struct rt_device);
module->module_object[RT_Object_Class_Device].type = RT_Object_Class_Device;
#endif
/* init object container - timer */
rt_list_init(&(module->module_object[RT_Object_Class_Timer].object_list));
module->module_object[RT_Object_Class_Timer].object_size = sizeof(struct rt_timer);
module->module_object[RT_Object_Class_Timer].type = RT_Object_Class_Timer;
}
/**
* This function will load a module from memory and create a thread for it
*
* @param name the name of module, which shall be unique
* @param module_ptr the memory address of module image
*
* @return the module object
*
*/
rt_module_t rt_module_load(const rt_uint8_t* name, void* module_ptr)
{
rt_uint32_t index;
rt_uint32_t module_size = 0;
struct rt_module* module = RT_NULL;
rt_uint8_t *ptr, *strtab, *shstrab;
#ifdef RT_MODULE_DEBUG
rt_kprintf("rt_module_load: %s\n", name);
#endif
/* check ELF header */
if (rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) != 0 ||
elf_module->e_ident[EI_CLASS] != ELFCLASS32)
{
rt_kprintf(" module magic error\n");
return RT_NULL;
}
/* get the ELF image size */
for (index = 0; index < elf_module->e_phnum; index++)
{
if(phdr[index].p_type == PT_LOAD)
module_size += phdr[index].p_memsz;
}
if (module_size == 0)
{
rt_kprintf(" module size error\n");
return module;
}
/* allocate module */
module = (struct rt_module *)rt_object_allocate(RT_Object_Class_Module, (const char*)name);
if (module == RT_NULL) return RT_NULL;
/* allocate module space */
module->module_space = rt_malloc(module_size);
if (module->module_space == RT_NULL)
{
rt_object_delete(&(module->parent));
return RT_NULL;
}
/* zero all space */
ptr = module->module_space;
rt_memset(ptr, 0, module_size);
for (index = 0; index < elf_module->e_phnum; index++)
{
if(phdr[index].p_type == PT_LOAD)
{
rt_memcpy(ptr, (rt_uint8_t*)elf_module + phdr[index].p_offset, phdr[index].p_filesz);
ptr += phdr[index].p_memsz;
}
}
/* set module entry */
module->module_entry = (rt_uint8_t*)module->module_space + elf_module->e_entry;
/* handle relocation section */
for (index = 0; index < elf_module->e_shnum; index ++)
{
if (IS_REL(shdr[index]))
{
rt_uint32_t i, nr_reloc;
Elf32_Sym *symtab;
Elf32_Rel *rel;
/* get relocate item */
rel = (Elf32_Rel *) ((rt_uint8_t*)module_ptr + shdr[index].sh_offset);
/* locate .rel.plt and .rel.dyn */
symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[shdr[index].sh_link].sh_offset);
strtab = (rt_uint8_t*) module_ptr + shdr[shdr[shdr[index].sh_link].sh_link].sh_offset;
nr_reloc = (rt_uint32_t) (shdr[index].sh_size / sizeof(Elf32_Rel));
/* relocate every items */
for (i = 0; i < nr_reloc; i ++)
{
Elf32_Addr addr = 0;
Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)];
#ifdef RT_MODULE_DEBUG
rt_kprintf("relocate symbol %s\n", strtab + sym->st_name);
#endif
rt_module_arm_relocate(module, rel, (Elf32_Addr)((rt_uint8_t*)module->module_space + sym->st_value));
rel ++;
}
}
}
/* init module object container */
rt_module_init_object_container(module);
module->stack_size = 512;
module->thread_priority = 90;
module->module_thread = rt_thread_create(name,
module->module_entry, RT_NULL,
module->stack_size,
module->thread_priority, 10);
module->module_thread->module_parent = module;
rt_thread_startup(module->module_thread);
return module;
}
/**
* This function will unload a module from memory and release resources
*
* @param module the module to be unloaded
*
* @return the operation status, RT_EOK on OK; -RT_ERROR on error
*
*/
rt_err_t rt_module_unload(rt_module_t module)
{
int i;
struct rt_object* object;
struct rt_list_node *list, *node;
/* check parameter */
RT_ASSERT(module != RT_NULL);
/* suspend module main thread */
if (module->module_thread->stat == RT_THREAD_READY)
rt_thread_suspend(module->module_thread);
/* delete all module object */
for(i = RT_Object_Class_Thread; i < RT_Object_Class_Module; i++)
{
list = &module->module_object[i].object_list;
for (node = list->next; node != list; node = node->next)
{
object = rt_list_entry(node, struct rt_object, list);
if (rt_object_is_systemobject(object) == RT_EOK)
{
/* detach static objcet */
rt_object_detach(object);
}
else
{
/* delete dynamic object */
rt_object_delete(object);
}
}
}
/* release module memory */
rt_free(module->module_space);
rt_object_delete((struct rt_object *)module);
return RT_EOK;
}
/**
* This function will find the specified module.
*
* @param name the name of module finding
*
* @return the module
*/
rt_module_t rt_module_find(char* name)
{
struct rt_object_information *information;
struct rt_object* object;
struct rt_list_node* node;
extern struct rt_object_information rt_object_container[];
/* enter critical */
rt_enter_critical();
/* try to find device object */
information = &rt_object_container[RT_Object_Class_Thread];
for (node = information->object_list.next; node != &(information->object_list); node = node->next)
{
object = rt_list_entry(node, struct rt_object, list);
if (rt_strncmp(object->name, name, RT_NAME_MAX) == 0)
{
/* leave critical */
rt_exit_critical();
return (rt_module_t)object;
}
}
/* leave critical */
rt_exit_critical();
/* not found */
return RT_NULL;
}
#endif