2051 lines
60 KiB
C
2051 lines
60 KiB
C
/*
|
|
* File : module.c
|
|
* This file is part of RT-Thread RTOS
|
|
* COPYRIGHT (C) 2006 - 2012, RT-Thread Development Team
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Change Logs:
|
|
* Date Author Notes
|
|
* 2010-01-09 Bernard first version
|
|
* 2010-04-09 yi.qiu implement based on first version
|
|
* 2010-10-23 yi.qiu implement module memory allocator
|
|
* 2011-05-25 yi.qiu implement module hook function
|
|
* 2011-06-23 yi.qiu rewrite module memory allocator
|
|
* 2012-11-23 Bernard using RT_DEBUG_LOG instead of rt_kprintf.
|
|
* 2012-11-28 Bernard remove rt_current_module and user
|
|
* can use rt_module_unload to remove a module.
|
|
* 2017-08-20 parai support intel 386 machine
|
|
*/
|
|
|
|
#include <rthw.h>
|
|
#include <rtthread.h>
|
|
#include <rtm.h>
|
|
|
|
#ifdef RT_USING_FINSH
|
|
#include <finsh.h>
|
|
#endif
|
|
|
|
#ifdef RT_USING_MODULE
|
|
#include "module.h"
|
|
|
|
#define elf_module ((Elf32_Ehdr *)module_ptr)
|
|
#define shdr ((Elf32_Shdr *)((rt_uint8_t *)module_ptr + elf_module->e_shoff))
|
|
#define phdr ((Elf32_Phdr *)((rt_uint8_t *)module_ptr + elf_module->e_phoff))
|
|
|
|
#define IS_PROG(s) (s.sh_type == SHT_PROGBITS)
|
|
#define IS_NOPROG(s) (s.sh_type == SHT_NOBITS)
|
|
#define IS_REL(s) (s.sh_type == SHT_REL)
|
|
#define IS_RELA(s) (s.sh_type == SHT_RELA)
|
|
#define IS_ALLOC(s) (s.sh_flags == SHF_ALLOC)
|
|
#define IS_AX(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_EXECINSTR))
|
|
#define IS_AW(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_WRITE))
|
|
|
|
#ifdef RT_USING_MODULE_STKSZ
|
|
#undef RT_USING_MODULE_STKSZ
|
|
#endif
|
|
|
|
#ifndef RT_USING_MODULE_STKSZ
|
|
#define RT_USING_MODULE_STKSZ (4096 * 2)
|
|
#endif
|
|
|
|
#ifndef RT_USING_MODULE_PRIO
|
|
#define RT_USING_MODULE_PRIO (RT_THREAD_PRIORITY_MAX - 2)
|
|
#endif
|
|
|
|
#ifdef RT_USING_SLAB
|
|
#define PAGE_COUNT_MAX 256
|
|
|
|
/* module memory allocator */
|
|
struct rt_mem_head
|
|
{
|
|
rt_size_t size; /* size of memory block */
|
|
struct rt_mem_head *next; /* next valid memory block */
|
|
};
|
|
|
|
struct rt_page_info
|
|
{
|
|
rt_uint32_t *page_ptr;
|
|
rt_uint32_t npage;
|
|
};
|
|
|
|
static void *rt_module_malloc_page(rt_size_t npages);
|
|
static void rt_module_free_page(rt_module_t module,
|
|
void *page_ptr,
|
|
rt_size_t npages);
|
|
|
|
static struct rt_semaphore mod_sem;
|
|
#endif
|
|
|
|
static struct rt_module_symtab *_rt_module_symtab_begin = RT_NULL;
|
|
static struct rt_module_symtab *_rt_module_symtab_end = RT_NULL;
|
|
|
|
#if defined(__IAR_SYSTEMS_ICC__) /* for IAR compiler */
|
|
#pragma section="RTMSymTab"
|
|
#endif
|
|
|
|
/**
|
|
* @ingroup SystemInit
|
|
*
|
|
* This function will initialize system module
|
|
*/
|
|
int rt_system_module_init(void)
|
|
{
|
|
#if defined(__GNUC__) && !defined(__CC_ARM)
|
|
extern int __rtmsymtab_start;
|
|
extern int __rtmsymtab_end;
|
|
|
|
_rt_module_symtab_begin = (struct rt_module_symtab *)&__rtmsymtab_start;
|
|
_rt_module_symtab_end = (struct rt_module_symtab *)&__rtmsymtab_end;
|
|
#elif defined (__CC_ARM)
|
|
extern int RTMSymTab$$Base;
|
|
extern int RTMSymTab$$Limit;
|
|
|
|
_rt_module_symtab_begin = (struct rt_module_symtab *)&RTMSymTab$$Base;
|
|
_rt_module_symtab_end = (struct rt_module_symtab *)&RTMSymTab$$Limit;
|
|
#elif defined (__IAR_SYSTEMS_ICC__)
|
|
_rt_module_symtab_begin = __section_begin("RTMSymTab");
|
|
_rt_module_symtab_end = __section_end("RTMSymTab");
|
|
#endif
|
|
|
|
#ifdef RT_USING_SLAB
|
|
/* initialize heap semaphore */
|
|
rt_sem_init(&mod_sem, "module", 1, RT_IPC_FLAG_FIFO);
|
|
#endif
|
|
return 0;
|
|
}
|
|
INIT_COMPONENT_EXPORT(rt_system_module_init);
|
|
|
|
#ifdef RT_USING_FINSH
|
|
void list_symbol(void)
|
|
{
|
|
/* find in kernel symbol table */
|
|
struct rt_module_symtab *index;
|
|
|
|
for (index = _rt_module_symtab_begin;
|
|
index != _rt_module_symtab_end;
|
|
index ++)
|
|
{
|
|
rt_kprintf("%s\n", index->name);
|
|
}
|
|
|
|
return ;
|
|
}
|
|
FINSH_FUNCTION_EXPORT(list_symbol, list symbol for module);
|
|
MSH_CMD_EXPORT(list_symbol, list symbol for module);
|
|
#endif
|
|
|
|
static rt_uint32_t rt_module_symbol_find(const char *sym_str)
|
|
{
|
|
/* find in kernel symbol table */
|
|
struct rt_module_symtab *index;
|
|
|
|
for (index = _rt_module_symtab_begin;
|
|
index != _rt_module_symtab_end;
|
|
index ++)
|
|
{
|
|
if (rt_strcmp(index->name, sym_str) == 0)
|
|
return (rt_uint32_t)index->addr;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This function will return self module object
|
|
*
|
|
* @return the self module object
|
|
*/
|
|
rt_module_t rt_module_self(void)
|
|
{
|
|
rt_thread_t tid;
|
|
|
|
tid = rt_thread_self();
|
|
if (tid == RT_NULL)
|
|
return RT_NULL;
|
|
|
|
/* return current module */
|
|
return (rt_module_t)tid->module_id;
|
|
}
|
|
RTM_EXPORT(rt_module_self);
|
|
|
|
static int rt_module_arm_relocate(struct rt_module *module,
|
|
Elf32_Rel *rel,
|
|
Elf32_Addr sym_val)
|
|
{
|
|
Elf32_Addr *where, tmp;
|
|
Elf32_Sword addend, offset;
|
|
rt_uint32_t upper, lower, sign, j1, j2;
|
|
|
|
where = (Elf32_Addr *)((rt_uint8_t *)module->module_space
|
|
+ rel->r_offset
|
|
- module->vstart_addr);
|
|
switch (ELF32_R_TYPE(rel->r_info))
|
|
{
|
|
case R_ARM_NONE:
|
|
break;
|
|
case R_ARM_ABS32:
|
|
*where += (Elf32_Addr)sym_val;
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_ABS32: %x -> %x\n",
|
|
where, *where));
|
|
break;
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
addend = *where & 0x00ffffff;
|
|
if (addend & 0x00800000)
|
|
addend |= 0xff000000;
|
|
tmp = sym_val - (Elf32_Addr)where + (addend << 2);
|
|
tmp >>= 2;
|
|
*where = (*where & 0xff000000) | (tmp & 0x00ffffff);
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_PC24: %x -> %x\n",
|
|
where, *where));
|
|
break;
|
|
case R_ARM_REL32:
|
|
*where += sym_val - (Elf32_Addr)where;
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE,
|
|
("R_ARM_REL32: %x -> %x, sym %x, offset %x\n",
|
|
where, *where, sym_val, rel->r_offset));
|
|
break;
|
|
case R_ARM_V4BX:
|
|
*where &= 0xf000000f;
|
|
*where |= 0x01a0f000;
|
|
break;
|
|
#ifdef MODULE_USING_386
|
|
case R_386_GLOB_DAT:
|
|
case R_386_JUMP_SLOT:
|
|
#endif
|
|
case R_ARM_GLOB_DAT:
|
|
case R_ARM_JUMP_SLOT:
|
|
*where = (Elf32_Addr)sym_val;
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_JUMP_SLOT: 0x%x -> 0x%x 0x%x\n",
|
|
where, *where, sym_val));
|
|
break;
|
|
#if 0 /* To do */
|
|
case R_ARM_GOT_BREL:
|
|
temp = (Elf32_Addr)sym_val;
|
|
*where = (Elf32_Addr)&temp;
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_GOT_BREL: 0x%x -> 0x%x 0x%x\n",
|
|
where, *where, sym_val));
|
|
break;
|
|
#endif
|
|
#ifdef MODULE_USING_386
|
|
case R_386_RELATIVE:
|
|
#endif
|
|
case R_ARM_RELATIVE:
|
|
*where = (Elf32_Addr)sym_val + *where;
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("R_ARM_RELATIVE: 0x%x -> 0x%x 0x%x\n",
|
|
where, *where, sym_val));
|
|
break;
|
|
case R_ARM_THM_CALL:
|
|
case R_ARM_THM_JUMP24:
|
|
upper = *(rt_uint16_t *)where;
|
|
lower = *(rt_uint16_t *)((Elf32_Addr)where + 2);
|
|
|
|
sign = (upper >> 10) & 1;
|
|
j1 = (lower >> 13) & 1;
|
|
j2 = (lower >> 11) & 1;
|
|
offset = (sign << 24) |
|
|
((~(j1 ^ sign) & 1) << 23) |
|
|
((~(j2 ^ sign) & 1) << 22) |
|
|
((upper & 0x03ff) << 12) |
|
|
((lower & 0x07ff) << 1);
|
|
if (offset & 0x01000000)
|
|
offset -= 0x02000000;
|
|
offset += sym_val - (Elf32_Addr)where;
|
|
|
|
if (!(offset & 1) ||
|
|
offset <= (rt_int32_t)0xff000000 ||
|
|
offset >= (rt_int32_t)0x01000000)
|
|
{
|
|
rt_kprintf("Module: Only Thumb addresses allowed\n");
|
|
|
|
return -1;
|
|
}
|
|
|
|
sign = (offset >> 24) & 1;
|
|
j1 = sign ^ (~(offset >> 23) & 1);
|
|
j2 = sign ^ (~(offset >> 22) & 1);
|
|
*(rt_uint16_t *)where = (rt_uint16_t)((upper & 0xf800) |
|
|
(sign << 10) |
|
|
((offset >> 12) & 0x03ff));
|
|
*(rt_uint16_t *)(where + 2) = (rt_uint16_t)((lower & 0xd000) |
|
|
(j1 << 13) | (j2 << 11) |
|
|
((offset >> 1) & 0x07ff));
|
|
upper = *(rt_uint16_t *)where;
|
|
lower = *(rt_uint16_t *)((Elf32_Addr)where + 2);
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void rt_module_init_object_container(struct rt_module *module)
|
|
{
|
|
RT_ASSERT(module != RT_NULL);
|
|
|
|
/* clear all of object information */
|
|
rt_memset(&module->module_object[0], 0x0, sizeof(module->module_object));
|
|
|
|
/* initialize object container - thread */
|
|
rt_list_init(&(module->module_object[RT_Object_Class_Thread].object_list));
|
|
module->module_object[RT_Object_Class_Thread].object_size = sizeof(struct rt_thread);
|
|
module->module_object[RT_Object_Class_Thread].type = RT_Object_Class_Thread;
|
|
|
|
#ifdef RT_USING_SEMAPHORE
|
|
/* initialize object container - semaphore */
|
|
rt_list_init(&(module->module_object[RT_Object_Class_Semaphore].object_list));
|
|
module->module_object[RT_Object_Class_Semaphore].object_size = sizeof(struct rt_semaphore);
|
|
module->module_object[RT_Object_Class_Semaphore].type = RT_Object_Class_Semaphore;
|
|
#endif
|
|
|
|
#ifdef RT_USING_MUTEX
|
|
/* initialize object container - mutex */
|
|
rt_list_init(&(module->module_object[RT_Object_Class_Mutex].object_list));
|
|
module->module_object[RT_Object_Class_Mutex].object_size = sizeof(struct rt_mutex);
|
|
module->module_object[RT_Object_Class_Mutex].type = RT_Object_Class_Mutex;
|
|
#endif
|
|
|
|
#ifdef RT_USING_EVENT
|
|
/* initialize object container - event */
|
|
rt_list_init(&(module->module_object[RT_Object_Class_Event].object_list));
|
|
module->module_object[RT_Object_Class_Event].object_size = sizeof(struct rt_event);
|
|
module->module_object[RT_Object_Class_Event].type = RT_Object_Class_Event;
|
|
#endif
|
|
|
|
#ifdef RT_USING_MAILBOX
|
|
/* initialize object container - mailbox */
|
|
rt_list_init(&(module->module_object[RT_Object_Class_MailBox].object_list));
|
|
module->module_object[RT_Object_Class_MailBox].object_size = sizeof(struct rt_mailbox);
|
|
module->module_object[RT_Object_Class_MailBox].type = RT_Object_Class_MailBox;
|
|
#endif
|
|
|
|
#ifdef RT_USING_MESSAGEQUEUE
|
|
/* initialize object container - message queue */
|
|
rt_list_init(&(module->module_object[RT_Object_Class_MessageQueue].object_list));
|
|
module->module_object[RT_Object_Class_MessageQueue].object_size = sizeof(struct rt_messagequeue);
|
|
module->module_object[RT_Object_Class_MessageQueue].type = RT_Object_Class_MessageQueue;
|
|
#endif
|
|
|
|
#ifdef RT_USING_MEMHEAP
|
|
/* initialize object container - memory heap */
|
|
rt_list_init(&(module->module_object[RT_Object_Class_MemHeap].object_list));
|
|
module->module_object[RT_Object_Class_MemHeap].object_size = sizeof(struct rt_memheap);
|
|
module->module_object[RT_Object_Class_MemHeap].type = RT_Object_Class_MemHeap;
|
|
#endif
|
|
|
|
#ifdef RT_USING_MEMPOOL
|
|
/* initialize object container - memory pool */
|
|
rt_list_init(&(module->module_object[RT_Object_Class_MemPool].object_list));
|
|
module->module_object[RT_Object_Class_MemPool].object_size = sizeof(struct rt_mempool);
|
|
module->module_object[RT_Object_Class_MemPool].type = RT_Object_Class_MemPool;
|
|
#endif
|
|
|
|
#ifdef RT_USING_DEVICE
|
|
/* initialize object container - device */
|
|
rt_list_init(&(module->module_object[RT_Object_Class_Device].object_list));
|
|
module->module_object[RT_Object_Class_Device].object_size = sizeof(struct rt_device);
|
|
module->module_object[RT_Object_Class_Device].type = RT_Object_Class_Device;
|
|
#endif
|
|
|
|
/* initialize object container - timer */
|
|
rt_list_init(&(module->module_object[RT_Object_Class_Timer].object_list));
|
|
module->module_object[RT_Object_Class_Timer].object_size = sizeof(struct rt_timer);
|
|
module->module_object[RT_Object_Class_Timer].type = RT_Object_Class_Timer;
|
|
}
|
|
|
|
#ifdef RT_USING_HOOK
|
|
static void (*rt_module_load_hook)(rt_module_t module);
|
|
static void (*rt_module_unload_hook)(rt_module_t module);
|
|
|
|
/**
|
|
* @addtogroup Hook
|
|
*/
|
|
|
|
/**@{*/
|
|
|
|
/**
|
|
* This function will set a hook function, which will be invoked when module
|
|
* be loaded to system.
|
|
*
|
|
* @param hook the hook function
|
|
*/
|
|
void rt_module_load_sethook(void (*hook)(rt_module_t module))
|
|
{
|
|
rt_module_load_hook = hook;
|
|
}
|
|
|
|
/**
|
|
* This function will set a hook function, which will be invoked when module
|
|
* be unloaded from system.
|
|
*
|
|
* @param hook the hook function
|
|
*/
|
|
void rt_module_unload_sethook(void (*hook)(rt_module_t module))
|
|
{
|
|
rt_module_unload_hook = hook;
|
|
}
|
|
|
|
/**@}*/
|
|
#endif
|
|
|
|
static struct rt_module *_load_shared_object(const char *name,
|
|
void *module_ptr)
|
|
{
|
|
rt_module_t module = RT_NULL;
|
|
rt_bool_t linked = RT_FALSE;
|
|
rt_uint32_t index, module_size = 0;
|
|
Elf32_Addr vstart_addr, vend_addr;
|
|
rt_bool_t has_vstart;
|
|
|
|
RT_ASSERT(module_ptr != RT_NULL);
|
|
|
|
if (rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) == 0)
|
|
{
|
|
/* rtmlinker finished */
|
|
linked = RT_TRUE;
|
|
}
|
|
|
|
/* get the ELF image size */
|
|
has_vstart = RT_FALSE;
|
|
vstart_addr = vend_addr = RT_NULL;
|
|
for (index = 0; index < elf_module->e_phnum; index++)
|
|
{
|
|
if (phdr[index].p_type != PT_LOAD)
|
|
continue;
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("LOAD segment: %d, 0x%p, 0x%08x\n",
|
|
index, phdr[index].p_vaddr, phdr[index].p_memsz));
|
|
|
|
if (phdr[index].p_memsz < phdr[index].p_filesz)
|
|
{
|
|
rt_kprintf("invalid elf: segment %d: p_memsz: %d, p_filesz: %d\n",
|
|
index, phdr[index].p_memsz, phdr[index].p_filesz);
|
|
return RT_NULL;
|
|
}
|
|
if (!has_vstart)
|
|
{
|
|
vstart_addr = phdr[index].p_vaddr;
|
|
vend_addr = phdr[index].p_vaddr + phdr[index].p_memsz;
|
|
has_vstart = RT_TRUE;
|
|
if (vend_addr < vstart_addr)
|
|
{
|
|
rt_kprintf("invalid elf: segment %d: p_vaddr: %d, p_memsz: %d\n",
|
|
index, phdr[index].p_vaddr, phdr[index].p_memsz);
|
|
return RT_NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (phdr[index].p_vaddr < vend_addr)
|
|
{
|
|
rt_kprintf("invalid elf: segment should be sorted and not overlapped\n");
|
|
return RT_NULL;
|
|
}
|
|
if (phdr[index].p_vaddr > vend_addr + 16)
|
|
{
|
|
/* There should not be too much padding in the object files. */
|
|
rt_kprintf("warning: too much padding before segment %d\n", index);
|
|
}
|
|
|
|
vend_addr = phdr[index].p_vaddr + phdr[index].p_memsz;
|
|
if (vend_addr < phdr[index].p_vaddr)
|
|
{
|
|
rt_kprintf("invalid elf: "
|
|
"segment %d address overflow\n", index);
|
|
return RT_NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
module_size = vend_addr - vstart_addr;
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("module size: %d, vstart_addr: 0x%p\n",
|
|
module_size, vstart_addr));
|
|
|
|
if (module_size == 0)
|
|
{
|
|
rt_kprintf("Module: size error\n");
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
/* allocate module */
|
|
module = (struct rt_module *)rt_object_allocate(RT_Object_Class_Module,
|
|
name);
|
|
if (!module)
|
|
return RT_NULL;
|
|
|
|
module->vstart_addr = vstart_addr;
|
|
|
|
module->nref = 0;
|
|
|
|
/* allocate module space */
|
|
module->module_space = rt_malloc(module_size);
|
|
if (module->module_space == RT_NULL)
|
|
{
|
|
rt_kprintf("Module: allocate space failed.\n");
|
|
rt_object_delete(&(module->parent));
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
/* zero all space */
|
|
rt_memset(module->module_space, 0, module_size);
|
|
|
|
for (index = 0; index < elf_module->e_phnum; index++)
|
|
{
|
|
if (phdr[index].p_type == PT_LOAD)
|
|
{
|
|
rt_memcpy(module->module_space + phdr[index].p_vaddr - vstart_addr,
|
|
(rt_uint8_t *)elf_module + phdr[index].p_offset,
|
|
phdr[index].p_filesz);
|
|
}
|
|
}
|
|
|
|
/* set module entry */
|
|
module->module_entry = module->module_space
|
|
+ elf_module->e_entry - vstart_addr;
|
|
|
|
/* handle relocation section */
|
|
for (index = 0; index < elf_module->e_shnum; index ++)
|
|
{
|
|
rt_uint32_t i, nr_reloc;
|
|
Elf32_Sym *symtab;
|
|
Elf32_Rel *rel;
|
|
rt_uint8_t *strtab;
|
|
static rt_bool_t unsolved = RT_FALSE;
|
|
|
|
if (!IS_REL(shdr[index]))
|
|
continue;
|
|
|
|
/* get relocate item */
|
|
rel = (Elf32_Rel *)((rt_uint8_t *)module_ptr + shdr[index].sh_offset);
|
|
|
|
/* locate .rel.plt and .rel.dyn section */
|
|
symtab = (Elf32_Sym *)((rt_uint8_t *)module_ptr +
|
|
shdr[shdr[index].sh_link].sh_offset);
|
|
strtab = (rt_uint8_t *)module_ptr +
|
|
shdr[shdr[shdr[index].sh_link].sh_link].sh_offset;
|
|
nr_reloc = (rt_uint32_t)(shdr[index].sh_size / sizeof(Elf32_Rel));
|
|
|
|
/* relocate every items */
|
|
for (i = 0; i < nr_reloc; i ++)
|
|
{
|
|
Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)];
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("relocate symbol %s shndx %d\n",
|
|
strtab + sym->st_name,
|
|
sym->st_shndx));
|
|
|
|
if ((sym->st_shndx != SHT_NULL) ||
|
|
(ELF_ST_BIND(sym->st_info) == STB_LOCAL)
|
|
#ifdef MODULE_USING_386
|
|
|| ( (ELF_ST_BIND(sym->st_info) == STB_GLOBAL) && (ELF_ST_TYPE(sym->st_info) == STT_OBJECT) )
|
|
#endif
|
|
)
|
|
{
|
|
rt_module_arm_relocate(module, rel,
|
|
(Elf32_Addr)(module->module_space
|
|
+ sym->st_value
|
|
- vstart_addr));
|
|
}
|
|
else if (!linked)
|
|
{
|
|
Elf32_Addr addr;
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("relocate symbol: %s\n",
|
|
strtab + sym->st_name));
|
|
|
|
/* need to resolve symbol in kernel symbol table */
|
|
addr = rt_module_symbol_find((const char *)(strtab + sym->st_name));
|
|
if (addr == 0)
|
|
{
|
|
rt_kprintf("Module: can't find %s in kernel symbol table\n",
|
|
strtab + sym->st_name);
|
|
unsolved = RT_TRUE;
|
|
}
|
|
else
|
|
rt_module_arm_relocate(module, rel, addr);
|
|
}
|
|
rel ++;
|
|
}
|
|
|
|
if (unsolved)
|
|
{
|
|
rt_object_delete(&(module->parent));
|
|
|
|
return RT_NULL;
|
|
}
|
|
}
|
|
|
|
/* construct module symbol table */
|
|
for (index = 0; index < elf_module->e_shnum; index ++)
|
|
{
|
|
/* find .dynsym section */
|
|
rt_uint8_t *shstrab;
|
|
shstrab = (rt_uint8_t *)module_ptr +
|
|
shdr[elf_module->e_shstrndx].sh_offset;
|
|
if (rt_strcmp((const char *)(shstrab + shdr[index].sh_name), ELF_DYNSYM) == 0)
|
|
break;
|
|
}
|
|
|
|
/* found .dynsym section */
|
|
if (index != elf_module->e_shnum)
|
|
{
|
|
int i, count = 0;
|
|
Elf32_Sym *symtab = RT_NULL;
|
|
rt_uint8_t *strtab = RT_NULL;
|
|
|
|
symtab = (Elf32_Sym *)((rt_uint8_t *)module_ptr + shdr[index].sh_offset);
|
|
strtab = (rt_uint8_t *)module_ptr + shdr[shdr[index].sh_link].sh_offset;
|
|
|
|
for (i = 0; i < shdr[index].sh_size / sizeof(Elf32_Sym); i++)
|
|
{
|
|
if ((ELF_ST_BIND(symtab[i].st_info) == STB_GLOBAL) &&
|
|
(ELF_ST_TYPE(symtab[i].st_info) == STT_FUNC))
|
|
count ++;
|
|
}
|
|
|
|
module->symtab = (struct rt_module_symtab *)rt_malloc
|
|
(count * sizeof(struct rt_module_symtab));
|
|
module->nsym = count;
|
|
for (i = 0, count = 0; i < shdr[index].sh_size / sizeof(Elf32_Sym); i++)
|
|
{
|
|
rt_size_t length;
|
|
|
|
if ((ELF_ST_BIND(symtab[i].st_info) != STB_GLOBAL) ||
|
|
(ELF_ST_TYPE(symtab[i].st_info) != STT_FUNC))
|
|
continue;
|
|
|
|
length = rt_strlen((const char *)(strtab + symtab[i].st_name)) + 1;
|
|
|
|
module->symtab[count].addr =
|
|
(void *)(module->module_space + symtab[i].st_value);
|
|
module->symtab[count].name = rt_malloc(length);
|
|
rt_memset((void *)module->symtab[count].name, 0, length);
|
|
rt_memcpy((void *)module->symtab[count].name,
|
|
strtab + symtab[i].st_name,
|
|
length);
|
|
count ++;
|
|
}
|
|
}
|
|
|
|
return module;
|
|
}
|
|
|
|
static struct rt_module* _load_relocated_object(const char *name,
|
|
void *module_ptr)
|
|
{
|
|
rt_uint32_t index, rodata_addr = 0, bss_addr = 0, data_addr = 0;
|
|
rt_uint32_t module_addr = 0, module_size = 0;
|
|
struct rt_module *module = RT_NULL;
|
|
rt_uint8_t *ptr, *strtab, *shstrab;
|
|
|
|
/* get the ELF image size */
|
|
for (index = 0; index < elf_module->e_shnum; index ++)
|
|
{
|
|
/* text */
|
|
if (IS_PROG(shdr[index]) && IS_AX(shdr[index]))
|
|
{
|
|
module_size += shdr[index].sh_size;
|
|
module_addr = shdr[index].sh_addr;
|
|
}
|
|
/* rodata */
|
|
if (IS_PROG(shdr[index]) && IS_ALLOC(shdr[index]))
|
|
{
|
|
module_size += shdr[index].sh_size;
|
|
}
|
|
/* data */
|
|
if (IS_PROG(shdr[index]) && IS_AW(shdr[index]))
|
|
{
|
|
module_size += shdr[index].sh_size;
|
|
}
|
|
/* bss */
|
|
if (IS_NOPROG(shdr[index]) && IS_AW(shdr[index]))
|
|
{
|
|
module_size += shdr[index].sh_size;
|
|
}
|
|
}
|
|
|
|
/* no text, data and bss on image */
|
|
if (module_size == 0)
|
|
return RT_NULL;
|
|
|
|
/* allocate module */
|
|
module = (struct rt_module *)
|
|
rt_object_allocate(RT_Object_Class_Module, (const char *)name);
|
|
if (module == RT_NULL)
|
|
return RT_NULL;
|
|
|
|
module->vstart_addr = 0;
|
|
|
|
/* allocate module space */
|
|
module->module_space = rt_malloc(module_size);
|
|
if (module->module_space == RT_NULL)
|
|
{
|
|
rt_kprintf("Module: allocate space failed.\n");
|
|
rt_object_delete(&(module->parent));
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
/* zero all space */
|
|
ptr = module->module_space;
|
|
rt_memset(ptr, 0, module_size);
|
|
|
|
/* load text and data section */
|
|
for (index = 0; index < elf_module->e_shnum; index ++)
|
|
{
|
|
/* load text section */
|
|
if (IS_PROG(shdr[index]) && IS_AX(shdr[index]))
|
|
{
|
|
rt_memcpy(ptr,
|
|
(rt_uint8_t *)elf_module + shdr[index].sh_offset,
|
|
shdr[index].sh_size);
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("load text 0x%x, size %d\n",
|
|
ptr, shdr[index].sh_size));
|
|
ptr += shdr[index].sh_size;
|
|
}
|
|
|
|
/* load rodata section */
|
|
if (IS_PROG(shdr[index]) && IS_ALLOC(shdr[index]))
|
|
{
|
|
rt_memcpy(ptr,
|
|
(rt_uint8_t *)elf_module + shdr[index].sh_offset,
|
|
shdr[index].sh_size);
|
|
rodata_addr = (rt_uint32_t)ptr;
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE,
|
|
("load rodata 0x%x, size %d, rodata 0x%x\n",
|
|
ptr, shdr[index].sh_size, *(rt_uint32_t *)data_addr));
|
|
ptr += shdr[index].sh_size;
|
|
}
|
|
|
|
/* load data section */
|
|
if (IS_PROG(shdr[index]) && IS_AW(shdr[index]))
|
|
{
|
|
rt_memcpy(ptr,
|
|
(rt_uint8_t *)elf_module + shdr[index].sh_offset,
|
|
shdr[index].sh_size);
|
|
data_addr = (rt_uint32_t)ptr;
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE,
|
|
("load data 0x%x, size %d, data 0x%x\n",
|
|
ptr, shdr[index].sh_size, *(rt_uint32_t *)data_addr));
|
|
ptr += shdr[index].sh_size;
|
|
}
|
|
|
|
/* load bss section */
|
|
if (IS_NOPROG(shdr[index]) && IS_AW(shdr[index]))
|
|
{
|
|
rt_memset(ptr, 0, shdr[index].sh_size);
|
|
bss_addr = (rt_uint32_t)ptr;
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("load bss 0x%x, size %d,\n",
|
|
ptr, shdr[index].sh_size));
|
|
}
|
|
}
|
|
|
|
/* set module entry */
|
|
module->module_entry =
|
|
(rt_uint8_t *)module->module_space + elf_module->e_entry - module_addr;
|
|
|
|
/* handle relocation section */
|
|
for (index = 0; index < elf_module->e_shnum; index ++)
|
|
{
|
|
rt_uint32_t i, nr_reloc;
|
|
Elf32_Sym *symtab;
|
|
Elf32_Rel *rel;
|
|
|
|
if (!IS_REL(shdr[index]))
|
|
continue;
|
|
|
|
/* get relocate item */
|
|
rel = (Elf32_Rel *)((rt_uint8_t *)module_ptr + shdr[index].sh_offset);
|
|
|
|
/* locate .dynsym and .dynstr */
|
|
symtab = (Elf32_Sym *)((rt_uint8_t *)module_ptr +
|
|
shdr[shdr[index].sh_link].sh_offset);
|
|
strtab = (rt_uint8_t *)module_ptr +
|
|
shdr[shdr[shdr[index].sh_link].sh_link].sh_offset;
|
|
shstrab = (rt_uint8_t *)module_ptr +
|
|
shdr[elf_module->e_shstrndx].sh_offset;
|
|
nr_reloc = (rt_uint32_t)(shdr[index].sh_size / sizeof(Elf32_Rel));
|
|
|
|
/* relocate every items */
|
|
for (i = 0; i < nr_reloc; i ++)
|
|
{
|
|
Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)];
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("relocate symbol: %s\n",
|
|
strtab + sym->st_name));
|
|
|
|
if (sym->st_shndx != STN_UNDEF)
|
|
{
|
|
if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) ||
|
|
(ELF_ST_TYPE(sym->st_info) == STT_OBJECT))
|
|
{
|
|
if (rt_strncmp((const char *)(shstrab +
|
|
shdr[sym->st_shndx].sh_name), ELF_RODATA, 8) == 0)
|
|
{
|
|
/* relocate rodata section */
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rodata\n"));
|
|
rt_module_arm_relocate(module, rel,
|
|
(Elf32_Addr)(rodata_addr + sym->st_value));
|
|
}
|
|
else if (rt_strncmp((const char *)
|
|
(shstrab + shdr[sym->st_shndx].sh_name), ELF_BSS, 5) == 0)
|
|
{
|
|
/* relocate bss section */
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("bss\n"));
|
|
rt_module_arm_relocate(module, rel,
|
|
(Elf32_Addr)bss_addr + sym->st_value);
|
|
}
|
|
else if (rt_strncmp((const char *)(shstrab + shdr[sym->st_shndx].sh_name),
|
|
ELF_DATA, 6) == 0)
|
|
{
|
|
/* relocate data section */
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("data\n"));
|
|
rt_module_arm_relocate(module, rel,
|
|
(Elf32_Addr)data_addr + sym->st_value);
|
|
}
|
|
}
|
|
else if (ELF_ST_TYPE(sym->st_info) == STT_FUNC)
|
|
{
|
|
/* relocate function */
|
|
rt_module_arm_relocate(module, rel,
|
|
(Elf32_Addr)((rt_uint8_t *)
|
|
module->module_space
|
|
- module_addr
|
|
+ sym->st_value));
|
|
}
|
|
}
|
|
else if (ELF_ST_TYPE(sym->st_info) == STT_FUNC)
|
|
{
|
|
/* relocate function */
|
|
rt_module_arm_relocate(module, rel,
|
|
(Elf32_Addr)((rt_uint8_t *)
|
|
module->module_space
|
|
- module_addr
|
|
+ sym->st_value));
|
|
}
|
|
else
|
|
{
|
|
Elf32_Addr addr;
|
|
|
|
if (ELF32_R_TYPE(rel->r_info) != R_ARM_V4BX)
|
|
{
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("relocate symbol: %s\n",
|
|
strtab + sym->st_name));
|
|
|
|
/* need to resolve symbol in kernel symbol table */
|
|
addr = rt_module_symbol_find((const char *)(strtab + sym->st_name));
|
|
if (addr != (Elf32_Addr)RT_NULL)
|
|
{
|
|
rt_module_arm_relocate(module, rel, addr);
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("symbol addr 0x%x\n",
|
|
addr));
|
|
}
|
|
else
|
|
rt_kprintf("Module: can't find %s in kernel symbol table\n",
|
|
strtab + sym->st_name);
|
|
}
|
|
else
|
|
{
|
|
rt_module_arm_relocate(module, rel,
|
|
(Elf32_Addr)((rt_uint8_t *)
|
|
module->module_space
|
|
- module_addr
|
|
+ sym->st_value));
|
|
}
|
|
}
|
|
rel ++;
|
|
}
|
|
}
|
|
|
|
return module;
|
|
}
|
|
|
|
#define RT_MODULE_ARG_MAX 8
|
|
static int _rt_module_split_arg(char *cmd, rt_size_t length, char *argv[])
|
|
{
|
|
int argc = 0;
|
|
char *ptr = cmd;
|
|
|
|
while ((ptr - cmd) < length)
|
|
{
|
|
/* strip bank and tab */
|
|
while ((*ptr == ' ' || *ptr == '\t') && (ptr - cmd) < length)
|
|
*ptr++ = '\0';
|
|
/* check whether it's the end of line */
|
|
if ((ptr - cmd) >= length) break;
|
|
|
|
/* handle string with quote */
|
|
if (*ptr == '"')
|
|
{
|
|
argv[argc++] = ++ptr;
|
|
|
|
/* skip this string */
|
|
while (*ptr != '"' && (ptr - cmd) < length)
|
|
if (*ptr ++ == '\\') ptr ++;
|
|
if ((ptr - cmd) >= length) break;
|
|
|
|
/* skip '"' */
|
|
*ptr ++ = '\0';
|
|
}
|
|
else
|
|
{
|
|
argv[argc++] = ptr;
|
|
while ((*ptr != ' ' && *ptr != '\t') && (ptr - cmd) < length)
|
|
ptr ++;
|
|
}
|
|
|
|
if (argc >= RT_MODULE_ARG_MAX) break;
|
|
}
|
|
|
|
return argc;
|
|
}
|
|
|
|
/* module main thread entry */
|
|
static void module_main_entry(void *parameter)
|
|
{
|
|
int argc;
|
|
char *argv[RT_MODULE_ARG_MAX];
|
|
typedef int (*main_func_t)(int argc, char **argv);
|
|
|
|
rt_module_t module = (rt_module_t) parameter;
|
|
if (module == RT_NULL)
|
|
return;
|
|
|
|
if (module->module_cmd_line == RT_NULL && module->module_cmd_size != 0)
|
|
/* malloc for module_cmd_line failed. */
|
|
return;
|
|
|
|
/* FIXME: we should run some C++ initialize code before jump into the
|
|
* entry. */
|
|
|
|
if (module->module_cmd_line == RT_NULL)
|
|
{
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("run bare entry: 0x%p\n",
|
|
module->module_entry));
|
|
((main_func_t)module->module_entry)(0, RT_NULL);
|
|
return;
|
|
}
|
|
|
|
rt_memset(argv, 0x00, sizeof(argv));
|
|
argc = _rt_module_split_arg((char *)module->module_cmd_line,
|
|
module->module_cmd_size, argv);
|
|
if (argc == 0)
|
|
return;
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("run main entry: 0x%p with %s\n",
|
|
module->module_entry,
|
|
module->module_cmd_line));
|
|
/* do the main function */
|
|
((main_func_t)module->module_entry)(argc, argv);
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* This function will load a module with a main function from memory and create a
|
|
* main thread for it
|
|
*
|
|
* @param name the name of module, which shall be unique
|
|
* @param module_ptr the memory address of module image
|
|
* @argc the count of argument
|
|
* @argd the argument data, which should be a
|
|
*
|
|
* @return the module object
|
|
*/
|
|
rt_module_t rt_module_do_main(const char *name,
|
|
void *module_ptr,
|
|
const char *cmd_line,
|
|
int line_size)
|
|
{
|
|
rt_module_t module;
|
|
|
|
RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_load: %s\n", name));
|
|
|
|
/* check ELF header */
|
|
if (rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) != 0 &&
|
|
rt_memcmp(elf_module->e_ident, ELFMAG, SELFMAG) != 0)
|
|
{
|
|
rt_kprintf("Module: magic error\n");
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
/* check ELF class */
|
|
if (elf_module->e_ident[EI_CLASS] != ELFCLASS32)
|
|
{
|
|
rt_kprintf("Module: ELF class error\n");
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
if (elf_module->e_type == ET_REL)
|
|
{
|
|
module = _load_relocated_object(name, module_ptr);
|
|
}
|
|
else if (elf_module->e_type == ET_DYN)
|
|
{
|
|
module = _load_shared_object(name, module_ptr);
|
|
}
|
|
else
|
|
{
|
|
rt_kprintf("Module: unsupported elf type\n");
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
if (module == RT_NULL)
|
|
return RT_NULL;
|
|
|
|
/* init module object container */
|
|
rt_module_init_object_container(module);
|
|
|
|
if (line_size && cmd_line)
|
|
{
|
|
/* set module argument */
|
|
module->module_cmd_line = (rt_uint8_t *)rt_malloc(line_size + 1);
|
|
if (module->module_cmd_line)
|
|
{
|
|
rt_memcpy(module->module_cmd_line, cmd_line, line_size);
|
|
module->module_cmd_line[line_size] = '\0';
|
|
}
|
|
module->module_cmd_size = line_size;
|
|
}
|
|
else
|
|
{
|
|
/* initialize an empty command */
|
|
module->module_cmd_line = RT_NULL;
|
|
module->module_cmd_size = 0;
|
|
}
|
|
|
|
/* increase module reference count */
|
|
module->nref ++;
|
|
|
|
if (elf_module->e_entry != 0)
|
|
{
|
|
#ifdef RT_USING_SLAB
|
|
/* init module memory allocator */
|
|
module->mem_list = RT_NULL;
|
|
|
|
/* create page array */
|
|
module->page_array =
|
|
(void *)rt_malloc(PAGE_COUNT_MAX * sizeof(struct rt_page_info));
|
|
module->page_cnt = 0;
|
|
#endif
|
|
|
|
/* create module thread */
|
|
module->module_thread = rt_thread_create(name,
|
|
module_main_entry, module,
|
|
RT_USING_MODULE_STKSZ,
|
|
RT_USING_MODULE_PRIO, 10);
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("thread entry 0x%x\n",
|
|
module->module_entry));
|
|
|
|
/* set module id */
|
|
module->module_thread->module_id = (void *)module;
|
|
module->parent.flag = RT_MODULE_FLAG_WITHENTRY;
|
|
|
|
/* startup module thread */
|
|
rt_thread_startup(module->module_thread);
|
|
}
|
|
else
|
|
{
|
|
/* without entry point */
|
|
module->parent.flag |= RT_MODULE_FLAG_WITHOUTENTRY;
|
|
}
|
|
|
|
#ifdef RT_USING_HOOK
|
|
if (rt_module_load_hook != RT_NULL)
|
|
{
|
|
rt_module_load_hook(module);
|
|
}
|
|
#endif
|
|
|
|
return module;
|
|
}
|
|
|
|
/**
|
|
* This function will load a module from memory and create a thread for it
|
|
*
|
|
* @param name the name of module, which shall be unique
|
|
* @param module_ptr the memory address of module image
|
|
*
|
|
* @return the module object
|
|
*/
|
|
rt_module_t rt_module_load(const char *name, void *module_ptr)
|
|
{
|
|
return rt_module_do_main(name, module_ptr, RT_NULL, 0);
|
|
}
|
|
|
|
#ifdef RT_USING_DFS
|
|
#include <dfs_posix.h>
|
|
|
|
static char *_module_name(const char *path)
|
|
{
|
|
const char *first, *end, *ptr;
|
|
char *name;
|
|
int size;
|
|
|
|
ptr = (char *)path;
|
|
first = ptr;
|
|
end = path + rt_strlen(path);
|
|
|
|
while (*ptr != '\0')
|
|
{
|
|
if (*ptr == '/')
|
|
first = ptr + 1;
|
|
if (*ptr == '.')
|
|
end = ptr - 1;
|
|
|
|
ptr ++;
|
|
}
|
|
|
|
size = end - first + 1;
|
|
name = rt_malloc(size);
|
|
rt_strncpy(name, first, size);
|
|
name[size] = '\0';
|
|
|
|
return name;
|
|
}
|
|
|
|
/**
|
|
* This function will load a module from a file
|
|
*
|
|
* @param path the full path of application module
|
|
*
|
|
* @return the module object
|
|
*/
|
|
rt_module_t rt_module_open(const char *path)
|
|
{
|
|
int fd, length;
|
|
struct rt_module *module;
|
|
struct stat s;
|
|
char *buffer, *offset_ptr;
|
|
char *name;
|
|
|
|
RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
/* check parameters */
|
|
RT_ASSERT(path != RT_NULL);
|
|
|
|
if (stat(path, &s) != 0)
|
|
{
|
|
rt_kprintf("Module: access %s failed\n", path);
|
|
|
|
return RT_NULL;
|
|
}
|
|
buffer = (char *)rt_malloc(s.st_size);
|
|
if (buffer == RT_NULL)
|
|
{
|
|
rt_kprintf("Module: out of memory\n");
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
offset_ptr = buffer;
|
|
fd = open(path, O_RDONLY, 0);
|
|
if (fd < 0)
|
|
{
|
|
rt_kprintf("Module: open %s failed\n", path);
|
|
rt_free(buffer);
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
do
|
|
{
|
|
length = read(fd, offset_ptr, 4096);
|
|
if (length > 0)
|
|
{
|
|
offset_ptr += length;
|
|
}
|
|
}while (length > 0);
|
|
|
|
/* close fd */
|
|
close(fd);
|
|
|
|
if ((rt_uint32_t)offset_ptr - (rt_uint32_t)buffer != s.st_size)
|
|
{
|
|
rt_kprintf("Module: read file failed\n");
|
|
rt_free(buffer);
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
name = _module_name(path);
|
|
module = rt_module_load(name, (void *)buffer);
|
|
rt_free(buffer);
|
|
rt_free(name);
|
|
|
|
return module;
|
|
}
|
|
|
|
/**
|
|
* This function will do a excutable program with main function and parameters.
|
|
*
|
|
* @param path the full path of application module
|
|
* @param cmd_line the command line of program
|
|
* @param size the size of command line of program
|
|
*
|
|
* @return the module object
|
|
*/
|
|
rt_module_t rt_module_exec_cmd(const char *path, const char *cmd_line, int size)
|
|
{
|
|
struct stat s;
|
|
int fd, length;
|
|
char *name, *buffer, *offset_ptr;
|
|
struct rt_module *module = RT_NULL;
|
|
|
|
name = buffer = RT_NULL;
|
|
|
|
RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
/* check parameters */
|
|
RT_ASSERT(path != RT_NULL);
|
|
|
|
/* get file size */
|
|
if (stat(path, &s) != 0)
|
|
{
|
|
rt_kprintf("Module: access %s failed\n", path);
|
|
goto __exit;
|
|
}
|
|
|
|
/* allocate buffer to save program */
|
|
offset_ptr = buffer = (char *)rt_malloc(s.st_size);
|
|
if (buffer == RT_NULL)
|
|
{
|
|
rt_kprintf("Module: out of memory\n");
|
|
goto __exit;
|
|
}
|
|
|
|
fd = open(path, O_RDONLY, 0);
|
|
if (fd < 0)
|
|
{
|
|
rt_kprintf("Module: open %s failed\n", path);
|
|
goto __exit;
|
|
}
|
|
|
|
do
|
|
{
|
|
length = read(fd, offset_ptr, 4096);
|
|
if (length > 0)
|
|
{
|
|
offset_ptr += length;
|
|
}
|
|
}while (length > 0);
|
|
/* close fd */
|
|
close(fd);
|
|
|
|
if ((rt_uint32_t)offset_ptr - (rt_uint32_t)buffer != s.st_size)
|
|
{
|
|
rt_kprintf("Module: read file failed\n");
|
|
goto __exit;
|
|
}
|
|
|
|
/* get module */
|
|
name = _module_name(path);
|
|
/* execute module */
|
|
module = rt_module_do_main(name, (void *)buffer, cmd_line, size);
|
|
|
|
__exit:
|
|
rt_free(buffer);
|
|
rt_free(name);
|
|
|
|
return module;
|
|
}
|
|
|
|
#if defined(RT_USING_FINSH)
|
|
#include <finsh.h>
|
|
FINSH_FUNCTION_EXPORT_ALIAS(rt_module_open, exec, exec module from a file);
|
|
#endif
|
|
|
|
#endif
|
|
|
|
/**
|
|
* This function will destroy a module and release its resource.
|
|
*
|
|
* @param module the module to be destroyed.
|
|
*
|
|
* @return the operation status, RT_EOK on OK; -RT_ERROR on error
|
|
*/
|
|
rt_err_t rt_module_destroy(rt_module_t module)
|
|
{
|
|
int i;
|
|
struct rt_object *object;
|
|
struct rt_list_node *list;
|
|
|
|
RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
/* check parameter */
|
|
RT_ASSERT(module != RT_NULL);
|
|
RT_ASSERT(module->nref == 0);
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_destroy: %8.*s\n",
|
|
RT_NAME_MAX, module->parent.name));
|
|
|
|
/* module has entry point */
|
|
if (!(module->parent.flag & RT_MODULE_FLAG_WITHOUTENTRY))
|
|
{
|
|
#ifdef RT_USING_SEMAPHORE
|
|
/* delete semaphores */
|
|
list = &module->module_object[RT_Object_Class_Semaphore].object_list;
|
|
while (list->next != list)
|
|
{
|
|
object = rt_list_entry(list->next, struct rt_object, list);
|
|
if (rt_object_is_systemobject(object) == RT_TRUE)
|
|
{
|
|
/* detach static object */
|
|
rt_sem_detach((rt_sem_t)object);
|
|
}
|
|
else
|
|
{
|
|
/* delete dynamic object */
|
|
rt_sem_delete((rt_sem_t)object);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RT_USING_MUTEX
|
|
/* delete mutexs*/
|
|
list = &module->module_object[RT_Object_Class_Mutex].object_list;
|
|
while (list->next != list)
|
|
{
|
|
object = rt_list_entry(list->next, struct rt_object, list);
|
|
if (rt_object_is_systemobject(object) == RT_TRUE)
|
|
{
|
|
/* detach static object */
|
|
rt_mutex_detach((rt_mutex_t)object);
|
|
}
|
|
else
|
|
{
|
|
/* delete dynamic object */
|
|
rt_mutex_delete((rt_mutex_t)object);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RT_USING_EVENT
|
|
/* delete mailboxs */
|
|
list = &module->module_object[RT_Object_Class_Event].object_list;
|
|
while (list->next != list)
|
|
{
|
|
object = rt_list_entry(list->next, struct rt_object, list);
|
|
if (rt_object_is_systemobject(object) == RT_TRUE)
|
|
{
|
|
/* detach static object */
|
|
rt_event_detach((rt_event_t)object);
|
|
}
|
|
else
|
|
{
|
|
/* delete dynamic object */
|
|
rt_event_delete((rt_event_t)object);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RT_USING_MAILBOX
|
|
/* delete mailboxs */
|
|
list = &module->module_object[RT_Object_Class_MailBox].object_list;
|
|
while (list->next != list)
|
|
{
|
|
object = rt_list_entry(list->next, struct rt_object, list);
|
|
if (rt_object_is_systemobject(object) == RT_TRUE)
|
|
{
|
|
/* detach static object */
|
|
rt_mb_detach((rt_mailbox_t)object);
|
|
}
|
|
else
|
|
{
|
|
/* delete dynamic object */
|
|
rt_mb_delete((rt_mailbox_t)object);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RT_USING_MESSAGEQUEUE
|
|
/* delete msgqueues */
|
|
list = &module->module_object[RT_Object_Class_MessageQueue].object_list;
|
|
while (list->next != list)
|
|
{
|
|
object = rt_list_entry(list->next, struct rt_object, list);
|
|
if (rt_object_is_systemobject(object) == RT_TRUE)
|
|
{
|
|
/* detach static object */
|
|
rt_mq_detach((rt_mq_t)object);
|
|
}
|
|
else
|
|
{
|
|
/* delete dynamic object */
|
|
rt_mq_delete((rt_mq_t)object);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RT_USING_MEMPOOL
|
|
/* delete mempools */
|
|
list = &module->module_object[RT_Object_Class_MemPool].object_list;
|
|
while (list->next != list)
|
|
{
|
|
object = rt_list_entry(list->next, struct rt_object, list);
|
|
if (rt_object_is_systemobject(object) == RT_TRUE)
|
|
{
|
|
/* detach static object */
|
|
rt_mp_detach((rt_mp_t)object);
|
|
}
|
|
else
|
|
{
|
|
/* delete dynamic object */
|
|
rt_mp_delete((rt_mp_t)object);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef RT_USING_DEVICE
|
|
/* delete devices */
|
|
list = &module->module_object[RT_Object_Class_Device].object_list;
|
|
while (list->next != list)
|
|
{
|
|
object = rt_list_entry(list->next, struct rt_object, list);
|
|
rt_device_unregister((rt_device_t)object);
|
|
}
|
|
#endif
|
|
|
|
/* delete timers */
|
|
list = &module->module_object[RT_Object_Class_Timer].object_list;
|
|
while (list->next != list)
|
|
{
|
|
object = rt_list_entry(list->next, struct rt_object, list);
|
|
if (rt_object_is_systemobject(object) == RT_TRUE)
|
|
{
|
|
/* detach static object */
|
|
rt_timer_detach((rt_timer_t)object);
|
|
}
|
|
else
|
|
{
|
|
/* delete dynamic object */
|
|
rt_timer_delete((rt_timer_t)object);
|
|
}
|
|
}
|
|
|
|
/* delete command line */
|
|
if (module->module_cmd_line != RT_NULL)
|
|
{
|
|
rt_free(module->module_cmd_line);
|
|
}
|
|
}
|
|
|
|
#ifdef RT_USING_SLAB
|
|
if (module->page_cnt > 0)
|
|
{
|
|
struct rt_page_info *page = (struct rt_page_info *)module->page_array;
|
|
|
|
rt_kprintf("Module: warning - memory still hasn't been free finished\n");
|
|
|
|
while (module->page_cnt != 0)
|
|
{
|
|
rt_module_free_page(module, page[0].page_ptr, page[0].npage);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* release module space memory */
|
|
rt_free(module->module_space);
|
|
|
|
/* release module symbol table */
|
|
for (i = 0; i < module->nsym; i ++)
|
|
{
|
|
rt_free((void *)module->symtab[i].name);
|
|
}
|
|
if (module->symtab != RT_NULL)
|
|
rt_free(module->symtab);
|
|
|
|
#ifdef RT_USING_SLAB
|
|
if (module->page_array != RT_NULL)
|
|
rt_free(module->page_array);
|
|
#endif
|
|
|
|
/* delete module object */
|
|
rt_object_delete((rt_object_t)module);
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
/**
|
|
* This function will unload a module from memory and release resources
|
|
*
|
|
* @param module the module to be unloaded
|
|
*
|
|
* @return the operation status, RT_EOK on OK; -RT_ERROR on error
|
|
*/
|
|
rt_err_t rt_module_unload(rt_module_t module)
|
|
{
|
|
struct rt_object *object;
|
|
struct rt_list_node *list;
|
|
|
|
RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
/* check parameter */
|
|
if (module == RT_NULL)
|
|
return -RT_ERROR;
|
|
|
|
rt_enter_critical();
|
|
if (!(module->parent.flag & RT_MODULE_FLAG_WITHOUTENTRY))
|
|
{
|
|
/* delete all sub-threads */
|
|
list = &module->module_object[RT_Object_Class_Thread].object_list;
|
|
while (list->next != list)
|
|
{
|
|
object = rt_list_entry(list->next, struct rt_object, list);
|
|
if (rt_object_is_systemobject(object) == RT_TRUE)
|
|
{
|
|
/* detach static object */
|
|
rt_thread_detach((rt_thread_t)object);
|
|
}
|
|
else
|
|
{
|
|
/* delete dynamic object */
|
|
rt_thread_delete((rt_thread_t)object);
|
|
}
|
|
}
|
|
|
|
/* delete the main thread of module */
|
|
if (module->module_thread != RT_NULL)
|
|
{
|
|
rt_thread_delete(module->module_thread);
|
|
}
|
|
}
|
|
rt_exit_critical();
|
|
|
|
#ifdef RT_USING_HOOK
|
|
if (rt_module_unload_hook != RT_NULL)
|
|
{
|
|
rt_module_unload_hook(module);
|
|
}
|
|
#endif
|
|
|
|
return RT_EOK;
|
|
}
|
|
|
|
/**
|
|
* This function will find the specified module.
|
|
*
|
|
* @param name the name of module finding
|
|
*
|
|
* @return the module
|
|
*/
|
|
rt_module_t rt_module_find(const char *name)
|
|
{
|
|
struct rt_object_information *information;
|
|
struct rt_object *object;
|
|
struct rt_list_node *node;
|
|
|
|
RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
/* enter critical */
|
|
rt_enter_critical();
|
|
|
|
/* try to find device object */
|
|
information = rt_object_get_information(RT_Object_Class_Module);
|
|
RT_ASSERT(information != RT_NULL);
|
|
for (node = information->object_list.next;
|
|
node != &(information->object_list);
|
|
node = node->next)
|
|
{
|
|
object = rt_list_entry(node, struct rt_object, list);
|
|
if (rt_strncmp(object->name, name, RT_NAME_MAX) == 0)
|
|
{
|
|
/* leave critical */
|
|
rt_exit_critical();
|
|
|
|
return (rt_module_t)object;
|
|
}
|
|
}
|
|
|
|
/* leave critical */
|
|
rt_exit_critical();
|
|
|
|
/* not found */
|
|
return RT_NULL;
|
|
}
|
|
RTM_EXPORT(rt_module_find);
|
|
|
|
#ifdef RT_USING_SLAB
|
|
/*
|
|
* This function will allocate the numbers page with specified size
|
|
* in page memory.
|
|
*
|
|
* @param size the size of memory to be allocated.
|
|
* @note this function is used for RT-Thread Application Module
|
|
*/
|
|
static void *rt_module_malloc_page(rt_size_t npages)
|
|
{
|
|
void *chunk;
|
|
struct rt_page_info *page;
|
|
rt_module_t self_module;
|
|
|
|
self_module = rt_module_self();
|
|
RT_ASSERT(self_module != RT_NULL);
|
|
|
|
chunk = rt_page_alloc(npages);
|
|
if (chunk == RT_NULL)
|
|
return RT_NULL;
|
|
|
|
page = (struct rt_page_info *)self_module->page_array;
|
|
page[self_module->page_cnt].page_ptr = chunk;
|
|
page[self_module->page_cnt].npage = npages;
|
|
self_module->page_cnt ++;
|
|
|
|
RT_ASSERT(self_module->page_cnt <= PAGE_COUNT_MAX);
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_malloc_page 0x%x %d\n",
|
|
chunk, npages));
|
|
|
|
return chunk;
|
|
}
|
|
|
|
/*
|
|
* This function will release the previously allocated memory page
|
|
* by rt_malloc_page.
|
|
*
|
|
* @param page_ptr the page address to be released.
|
|
* @param npages the number of page shall be released.
|
|
*
|
|
* @note this function is used for RT-Thread Application Module
|
|
*/
|
|
static void rt_module_free_page(rt_module_t module,
|
|
void *page_ptr,
|
|
rt_size_t npages)
|
|
{
|
|
int i, index;
|
|
struct rt_page_info *page;
|
|
rt_module_t self_module;
|
|
|
|
self_module = rt_module_self();
|
|
RT_ASSERT(self_module != RT_NULL);
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_free_page 0x%x %d\n",
|
|
page_ptr, npages));
|
|
rt_page_free(page_ptr, npages);
|
|
|
|
page = (struct rt_page_info *)module->page_array;
|
|
|
|
for (i = 0; i < module->page_cnt; i ++)
|
|
{
|
|
if (page[i].page_ptr == page_ptr)
|
|
{
|
|
if (page[i].npage == npages + 1)
|
|
{
|
|
page[i].page_ptr +=
|
|
npages * RT_MM_PAGE_SIZE / sizeof(rt_uint32_t);
|
|
page[i].npage -= npages;
|
|
}
|
|
else if (page[i].npage == npages)
|
|
{
|
|
for (index = i; index < module->page_cnt - 1; index ++)
|
|
{
|
|
page[index].page_ptr = page[index + 1].page_ptr;
|
|
page[index].npage = page[index + 1].npage;
|
|
}
|
|
page[module->page_cnt - 1].page_ptr = RT_NULL;
|
|
page[module->page_cnt - 1].npage = 0;
|
|
|
|
module->page_cnt --;
|
|
}
|
|
else
|
|
RT_ASSERT(RT_FALSE);
|
|
self_module->page_cnt --;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* should not get here */
|
|
RT_ASSERT(RT_FALSE);
|
|
}
|
|
|
|
/**
|
|
* rt_module_malloc - allocate memory block in free list
|
|
*/
|
|
void *rt_module_malloc(rt_size_t size)
|
|
{
|
|
struct rt_mem_head *b, *n, *up;
|
|
struct rt_mem_head **prev;
|
|
rt_uint32_t npage;
|
|
rt_size_t nunits;
|
|
rt_module_t self_module;
|
|
|
|
self_module = rt_module_self();
|
|
RT_ASSERT(self_module != RT_NULL);
|
|
|
|
RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
nunits = (size + sizeof(struct rt_mem_head) - 1) /
|
|
sizeof(struct rt_mem_head)
|
|
+ 1;
|
|
|
|
RT_ASSERT(size != 0);
|
|
RT_ASSERT(nunits != 0);
|
|
|
|
rt_sem_take(&mod_sem, RT_WAITING_FOREVER);
|
|
|
|
for (prev = (struct rt_mem_head **)&self_module->mem_list;
|
|
(b = *prev) != RT_NULL;
|
|
prev = &(b->next))
|
|
{
|
|
if (b->size > nunits)
|
|
{
|
|
/* split memory */
|
|
n = b + nunits;
|
|
n->next = b->next;
|
|
n->size = b->size - nunits;
|
|
b->size = nunits;
|
|
*prev = n;
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_malloc 0x%x, %d\n",
|
|
b + 1, size));
|
|
rt_sem_release(&mod_sem);
|
|
|
|
return (void *)(b + 1);
|
|
}
|
|
|
|
if (b->size == nunits)
|
|
{
|
|
/* this node fit, remove this node */
|
|
*prev = b->next;
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_malloc 0x%x, %d\n",
|
|
b + 1, size));
|
|
|
|
rt_sem_release(&mod_sem);
|
|
|
|
return (void *)(b + 1);
|
|
}
|
|
}
|
|
|
|
/* allocate pages from system heap */
|
|
npage = (size + sizeof(struct rt_mem_head) + RT_MM_PAGE_SIZE - 1) /
|
|
RT_MM_PAGE_SIZE;
|
|
if ((up = (struct rt_mem_head *)rt_module_malloc_page(npage)) == RT_NULL)
|
|
return RT_NULL;
|
|
|
|
up->size = npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head);
|
|
|
|
for (prev = (struct rt_mem_head **)&self_module->mem_list;
|
|
(b = *prev) != RT_NULL;
|
|
prev = &(b->next))
|
|
{
|
|
if (b > up + up->size)
|
|
break;
|
|
}
|
|
|
|
up->next = b;
|
|
*prev = up;
|
|
|
|
rt_sem_release(&mod_sem);
|
|
|
|
return rt_module_malloc(size);
|
|
}
|
|
|
|
/**
|
|
* rt_module_free - free memory block in free list
|
|
*/
|
|
void rt_module_free(rt_module_t module, void *addr)
|
|
{
|
|
struct rt_mem_head *b, *n, *r;
|
|
struct rt_mem_head **prev;
|
|
|
|
RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
RT_ASSERT(addr);
|
|
RT_ASSERT((((rt_uint32_t)addr) & (sizeof(struct rt_mem_head) - 1)) == 0);
|
|
|
|
RT_DEBUG_LOG(RT_DEBUG_MODULE, ("rt_module_free 0x%x\n", addr));
|
|
|
|
rt_sem_take(&mod_sem, RT_WAITING_FOREVER);
|
|
|
|
n = (struct rt_mem_head *)addr - 1;
|
|
prev = (struct rt_mem_head **)&module->mem_list;
|
|
|
|
while ((b = *prev) != RT_NULL)
|
|
{
|
|
RT_ASSERT(b->size > 0);
|
|
RT_ASSERT(b > n || b + b->size <= n);
|
|
|
|
if (b + b->size == n && ((rt_uint32_t)n % RT_MM_PAGE_SIZE != 0))
|
|
{
|
|
if (b + (b->size + n->size) == b->next)
|
|
{
|
|
b->size += b->next->size + n->size;
|
|
b->next = b->next->next;
|
|
}
|
|
else
|
|
b->size += n->size;
|
|
|
|
if ((rt_uint32_t)b % RT_MM_PAGE_SIZE == 0)
|
|
{
|
|
int npage =
|
|
b->size * sizeof(struct rt_page_info) / RT_MM_PAGE_SIZE;
|
|
if (npage > 0)
|
|
{
|
|
if ((b->size * sizeof(struct rt_page_info) % RT_MM_PAGE_SIZE) != 0)
|
|
{
|
|
rt_size_t nunits = npage *
|
|
RT_MM_PAGE_SIZE /
|
|
sizeof(struct rt_mem_head);
|
|
/* split memory */
|
|
r = b + nunits;
|
|
r->next = b->next;
|
|
r->size = b->size - nunits;
|
|
*prev = r;
|
|
}
|
|
else
|
|
{
|
|
*prev = b->next;
|
|
}
|
|
|
|
rt_module_free_page(module, b, npage);
|
|
}
|
|
}
|
|
|
|
/* unlock */
|
|
rt_sem_release(&mod_sem);
|
|
|
|
return;
|
|
}
|
|
|
|
if (b == n + n->size)
|
|
{
|
|
n->size = b->size + n->size;
|
|
n->next = b->next;
|
|
|
|
if ((rt_uint32_t)n % RT_MM_PAGE_SIZE == 0)
|
|
{
|
|
int npage =
|
|
n->size * sizeof(struct rt_page_info) / RT_MM_PAGE_SIZE;
|
|
if (npage > 0)
|
|
{
|
|
if ((n->size * sizeof(struct rt_page_info) % RT_MM_PAGE_SIZE) != 0)
|
|
{
|
|
rt_size_t nunits = npage *
|
|
RT_MM_PAGE_SIZE /
|
|
sizeof(struct rt_mem_head);
|
|
/* split memory */
|
|
r = n + nunits;
|
|
r->next = n->next;
|
|
r->size = n->size - nunits;
|
|
*prev = r;
|
|
}
|
|
else
|
|
*prev = n->next;
|
|
|
|
rt_module_free_page(module, n, npage);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
*prev = n;
|
|
}
|
|
|
|
/* unlock */
|
|
rt_sem_release(&mod_sem);
|
|
|
|
return;
|
|
}
|
|
if (b > n + n->size)
|
|
break;
|
|
|
|
prev = &(b->next);
|
|
}
|
|
|
|
if ((rt_uint32_t)n % RT_MM_PAGE_SIZE == 0)
|
|
{
|
|
int npage = n->size * sizeof(struct rt_page_info) / RT_MM_PAGE_SIZE;
|
|
if (npage > 0)
|
|
{
|
|
rt_module_free_page(module, n, npage);
|
|
if (n->size % RT_MM_PAGE_SIZE != 0)
|
|
{
|
|
rt_size_t nunits =
|
|
npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head);
|
|
/* split memory */
|
|
r = n + nunits;
|
|
r->next = b;
|
|
r->size = n->size - nunits;
|
|
*prev = r;
|
|
}
|
|
else
|
|
{
|
|
*prev = b;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
n->next = b;
|
|
*prev = n;
|
|
}
|
|
|
|
/* unlock */
|
|
rt_sem_release(&mod_sem);
|
|
}
|
|
|
|
/**
|
|
* rt_module_realloc - realloc memory block in free list
|
|
*/
|
|
void *rt_module_realloc(void *ptr, rt_size_t size)
|
|
{
|
|
struct rt_mem_head *b, *p, *prev, *tmpp;
|
|
rt_size_t nunits;
|
|
rt_module_t self_module;
|
|
|
|
self_module = rt_module_self();
|
|
RT_ASSERT(self_module != RT_NULL);
|
|
|
|
RT_DEBUG_NOT_IN_INTERRUPT;
|
|
|
|
if (!ptr)
|
|
return rt_module_malloc(size);
|
|
if (size == 0)
|
|
{
|
|
rt_module_free(self_module, ptr);
|
|
|
|
return RT_NULL;
|
|
}
|
|
|
|
nunits = (size + sizeof(struct rt_mem_head) - 1) /
|
|
sizeof(struct rt_mem_head)
|
|
+ 1;
|
|
b = (struct rt_mem_head *)ptr - 1;
|
|
|
|
if (nunits <= b->size)
|
|
{
|
|
/* new size is smaller or equal then before */
|
|
if (nunits == b->size)
|
|
return ptr;
|
|
else
|
|
{
|
|
p = b + nunits;
|
|
p->size = b->size - nunits;
|
|
b->size = nunits;
|
|
rt_module_free(self_module, (void *)(p + 1));
|
|
|
|
return (void *)(b + 1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* more space then required */
|
|
prev = (struct rt_mem_head *)self_module->mem_list;
|
|
for (p = prev->next;
|
|
p != (b->size + b) && p != RT_NULL;
|
|
prev = p, p = p->next)
|
|
{
|
|
break;
|
|
}
|
|
|
|
/* available block after ap in freelist */
|
|
if (p != RT_NULL &&
|
|
(p->size >= (nunits - (b->size))) &&
|
|
p == (b + b->size))
|
|
{
|
|
/* perfect match */
|
|
if (p->size == (nunits - (b->size)))
|
|
{
|
|
b->size = nunits;
|
|
prev->next = p->next;
|
|
}
|
|
else /* more space then required, split block */
|
|
{
|
|
/* pointer to old header */
|
|
tmpp = p;
|
|
p = b + nunits;
|
|
|
|
/* restoring old pointer */
|
|
p->next = tmpp->next;
|
|
|
|
/* new size for p */
|
|
p->size = tmpp->size + b->size - nunits;
|
|
b->size = nunits;
|
|
prev->next = p;
|
|
}
|
|
self_module->mem_list = (void *)prev;
|
|
|
|
return (void *)(b + 1);
|
|
}
|
|
else /* allocate new memory and copy old data */
|
|
{
|
|
if ((p = rt_module_malloc(size)) == RT_NULL)
|
|
return RT_NULL;
|
|
rt_memmove(p, (b + 1), ((b->size) * sizeof(struct rt_mem_head)));
|
|
rt_module_free(self_module, (void *)(b + 1));
|
|
|
|
return (void *)(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef RT_USING_FINSH
|
|
#include <finsh.h>
|
|
|
|
void list_memlist(const char *name)
|
|
{
|
|
rt_module_t module;
|
|
struct rt_mem_head **prev;
|
|
struct rt_mem_head *b;
|
|
|
|
module = rt_module_find(name);
|
|
if (module == RT_NULL)
|
|
return;
|
|
|
|
for (prev = (struct rt_mem_head **)&module->mem_list;
|
|
(b = *prev) != RT_NULL;
|
|
prev = &(b->next))
|
|
{
|
|
rt_kprintf("0x%x--%d\n", b, b->size * sizeof(struct rt_mem_head));
|
|
}
|
|
}
|
|
FINSH_FUNCTION_EXPORT(list_memlist, list module free memory information)
|
|
|
|
void list_mempage(const char *name)
|
|
{
|
|
rt_module_t module;
|
|
struct rt_page_info *page;
|
|
int i;
|
|
|
|
module = rt_module_find(name);
|
|
if (module == RT_NULL)
|
|
return;
|
|
|
|
page = (struct rt_page_info *)module->page_array;
|
|
|
|
for (i = 0; i < module->page_cnt; i ++)
|
|
{
|
|
rt_kprintf("0x%x--%d\n", page[i].page_ptr, page[i].npage);
|
|
}
|
|
}
|
|
FINSH_FUNCTION_EXPORT(list_mempage, list module using memory page information)
|
|
#endif /* RT_USING_FINSH */
|
|
|
|
#endif /* RT_USING_SLAB */
|
|
|
|
#endif
|