rt-thread/bsp/smartfusion2/CMSIS/system_m2sxxx.c

1006 lines
33 KiB
C

/*******************************************************************************
* (c) Copyright 2012-2013 Microsemi SoC Products Group. All rights reserved.
*
* SmartFusion2 CMSIS system initialization.
*
* SVN $Revision: 7375 $
* SVN $Date: 2015-05-01 14:57:40 +0100 (Fri, 01 May 2015) $
*/
#include "m2sxxx.h"
#if MSCC_NO_RELATIVE_PATHS
#include "sys_config.h"
#else
#include "sys_config.h"
#endif
#include "sys_init_cfg_types.h"
/*------------------------------------------------------------------------------
Silicon revisions.
*/
#define UNKNOWN_SILICON_REV 0
#define M2S050_REV_A_SILICON 1
#define M2S050_REV_B_SILICON 2
/*------------------------------------------------------------------------------
* CoreConfigP IP block version.
*/
#define CORE_CONFIGP_V7_0 0x00070000u
/*------------------------------------------------------------------------------
*
*/
void mscc_post_hw_cfg_init(void);
/*------------------------------------------------------------------------------
* CoreConfigP/CoreConfigP register bits
*/
#define CONFIG_1_DONE 1u
#define CONFIG_2_DONE 2u
#define INIT_DONE_MASK 0x00000001u
#define SDIF_RELEASED_MASK 0x00000002u
/*------------------------------------------------------------------------------
* System registers of interest.
*/
/*
* MSSDDR_FACC1_CR register masks:
*/
#define DDR_CLK_EN_SHIFT 8u
#define FACC_GLMUX_SEL_MASK 0x00001000u
#define CONTROLLER_PLL_INIT_MASK 0x04000000u
#define RCOSC_DIV2_MASK 0x00000004u
/*
* MSSDDR_PLL_STATUS register masks:
*/
#define FAB_PLL_LOCK_MASK 0x00000001u
#define MPLL_LOCK_MASK 0x00000002u
/*
* MSSDDR_PLL_STATUS_HIGH_CR register masks:
*/
#define FACC_PLL_BYPASS_MASK 0x00000001u
/*------------------------------------------------------------------------------
* Standard CMSIS global variables.
*/
uint32_t SystemCoreClock = MSS_SYS_M3_CLK_FREQ; /*!< System Clock Frequency (Core Clock) */
/*------------------------------------------------------------------------------
* SmartFusion2 specific clocks.
*/
uint32_t g_FrequencyPCLK0 = MSS_SYS_APB_0_CLK_FREQ; /*!< Clock frequency of APB bus 0. */
uint32_t g_FrequencyPCLK1 = MSS_SYS_APB_1_CLK_FREQ; /*!< Clock frequency of APB bus 1. */
uint32_t g_FrequencyPCLK2 = MSS_SYS_APB_2_CLK_FREQ; /*!< Clock frequency of APB bus 2. */
uint32_t g_FrequencyFIC0 = MSS_SYS_FIC_0_CLK_FREQ; /*!< Clock frequecny of FPGA fabric interface controller 1. */
uint32_t g_FrequencyFIC1 = MSS_SYS_FIC_1_CLK_FREQ; /*!< Clock frequecny of FPGA fabric inteface controller 2. */
uint32_t g_FrequencyFIC64 = MSS_SYS_FIC64_CLK_FREQ; /*!< Clock frequecny of 64-bit FPGA fabric interface controller. */
/*------------------------------------------------------------------------------
* System configuration tables generated by Libero.
*/
#if MSS_SYS_MDDR_CONFIG_BY_CORTEX
extern MDDR_TypeDef * const g_m2s_mddr_addr;
extern const ddr_subsys_cfg_t g_m2s_mddr_subsys_config;
#endif
#if MSS_SYS_FDDR_CONFIG_BY_CORTEX
extern FDDR_TypeDef * const g_m2s_fddr_addr;
extern const ddr_subsys_cfg_t g_m2s_fddr_subsys_config;
#endif
#define MSS_SYS_SERDES_CONFIG_BY_CORTEX (MSS_SYS_SERDES_0_CONFIG_BY_CORTEX || MSS_SYS_SERDES_1_CONFIG_BY_CORTEX || MSS_SYS_SERDES_2_CONFIG_BY_CORTEX || MSS_SYS_SERDES_3_CONFIG_BY_CORTEX)
#if MSS_SYS_SERDES_0_CONFIG_BY_CORTEX
extern const cfg_addr_value_pair_t g_m2s_serdes_0_config[SERDES_0_CFG_NB_OF_PAIRS];
#endif
#if MSS_SYS_SERDES_1_CONFIG_BY_CORTEX
extern const cfg_addr_value_pair_t g_m2s_serdes_1_config[SERDES_1_CFG_NB_OF_PAIRS];
#endif
#if MSS_SYS_SERDES_2_CONFIG_BY_CORTEX
extern const cfg_addr_value_pair_t g_m2s_serdes_2_config[SERDES_2_CFG_NB_OF_PAIRS];
#endif
#if MSS_SYS_SERDES_3_CONFIG_BY_CORTEX
extern const cfg_addr_value_pair_t g_m2s_serdes_3_config[SERDES_3_CFG_NB_OF_PAIRS];
#endif
#define MSS_SYS_CORESF2RESET_USED (MSS_SYS_MDDR_CONFIG_BY_CORTEX || MSS_SYS_FDDR_CONFIG_BY_CORTEX || MSS_SYS_SERDES_CONFIG_BY_CORTEX)
/*==============================================================================
* List of PCIe lanes on which PMA_READY must be polled. Allows only polling PMA
* READY on the first lane of a PCIe link regardless of the number of lanes used
* or whether lane reversal is used.
*/
#if MSS_SYS_SERDES_CONFIG_BY_CORTEX
#define CONFIG_REG_LANE_SEL_LANE_0 0x00000100U
#define CONFIG_REG_LANE_SEL_LANE_1 0x00000200U
#define CONFIG_REG_LANE_SEL_LANE_2 0x00000400U
#define CONFIG_REG_LANE_SEL_LANE_3 0x00000800U
#define CONFIG_REG_LANE_SEL_MASK (CONFIG_REG_LANE_SEL_LANE_0 | \
CONFIG_REG_LANE_SEL_LANE_1 | \
CONFIG_REG_LANE_SEL_LANE_2 | \
CONFIG_REG_LANE_SEL_LANE_3)
#define FIRST_PCIE_CTRL 1U
#define SECOND_PCIE_CTRL 2U
typedef struct pma_poll_info
{
SERDESIF_TypeDef * serdes;
SERDES_TypeDef * const lane;
uint16_t config_reg_lane_sel;
uint16_t pcie_ctrl_id; /* distinguish between first and second PCIe controller on M2S090. */
} pma_poll_info_t;
/*------------------------------------------------------------------------------
* SERDES0: list of PMA to poll as part of PCIe configuration. This list only
* handles the first PCIe controller of SERDES0.
*/
static const pma_poll_info_t g_serdes0_pcie_lane_cfg_lut[] =
{
#if defined(SERDESIF_0_PCIE_LANE_PMA_STATUS_LANE_0)
{
SERDES0, /* SERDESIF_TypeDef * serdes */
&SERDES0->lane[0], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_0, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_0_PCIE_LANE_PMA_STATUS_LANE_1)
{
SERDES0, /* SERDESIF_TypeDef * serdes */
&SERDES0->lane[1], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_1, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_0_PCIE_LANE_PMA_STATUS_LANE_2)
{
SERDES0, /* SERDESIF_TypeDef * serdes */
&SERDES0->lane[2], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_2, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_0_PCIE_LANE_PMA_STATUS_LANE_3)
{
SERDES0, /* SERDESIF_TypeDef * serdes */
&SERDES0->lane[3], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_3, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
{
(SERDESIF_TypeDef *)0, /* SERDESIF_TypeDef * serdes */
(SERDES_TypeDef *)0, /* SERDES_TypeDef * const lane */
0, /* uint16_t config_reg_lane_sel */
0 /* uint16_t pcie_ctrl_id */
}
};
/*------------------------------------------------------------------------------
* SERDES1: list of PMA to poll as part of PCIe configuration. This list handles
* both SERDES1 first PCIe controller and the M2S090 SERDES0 second PCIe
* controller.
*/
static const pma_poll_info_t g_serdes1_pcie_lane_cfg_lut[] =
{
#if defined(SERDESIF_1_PCIE_LANE_PMA_STATUS_LANE_0)
{
SERDES1, /* SERDESIF_TypeDef * serdes */
&SERDES1->lane[0], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_0, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_1_PCIE_LANE_PMA_STATUS_LANE_1)
{
SERDES1, /* SERDESIF_TypeDef * serdes */
&SERDES1->lane[1], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_1, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_1_PCIE_LANE_PMA_STATUS_LANE_2)
{
SERDES1, /* SERDESIF_TypeDef * serdes */
&SERDES1->lane[2], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_2, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_1_PCIE_LANE_PMA_STATUS_LANE_3)
{
SERDES1, /* SERDESIF_TypeDef * serdes */
&SERDES1->lane[3], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_3, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_0_PCIE_1_LANE_PMA_STATUS_LANE_0)
{
SERDES0, /* SERDESIF_TypeDef * serdes */
&SERDES0->lane[0], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_0, /* uint16_t config_reg_lane_sel */
SECOND_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_0_PCIE_1_LANE_PMA_STATUS_LANE_1)
{
SERDES0, /* SERDESIF_TypeDef * serdes */
&SERDES0->lane[1], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_1, /* uint16_t config_reg_lane_sel */
SECOND_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_0_PCIE_1_LANE_PMA_STATUS_LANE_2)
{
SERDES0, /* SERDESIF_TypeDef * serdes */
&SERDES0->lane[2], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_2, /* uint16_t config_reg_lane_sel */
SECOND_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_0_PCIE_1_LANE_PMA_STATUS_LANE_3)
{
SERDES0, /* SERDESIF_TypeDef * serdes */
&SERDES0->lane[3], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_3, /* uint16_t config_reg_lane_sel */
SECOND_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
{
(SERDESIF_TypeDef *)0, /* SERDESIF_TypeDef * serdes */
(SERDES_TypeDef *)0, /* SERDES_TypeDef * const lane */
0, /* uint16_t config_reg_lane_sel */
0 /* uint16_t pcie_ctrl_id */
}
};
/*------------------------------------------------------------------------------
* SERDES2: list of PMA to poll as part of PCIe configuration.
*/
static const pma_poll_info_t g_serdes2_pcie_lane_cfg_lut[] =
{
#if defined(SERDESIF_2_PCIE_LANE_PMA_STATUS_LANE_0)
{
SERDES2, /* SERDESIF_TypeDef * serdes */
&SERDES2->lane[0], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_0, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_2_PCIE_LANE_PMA_STATUS_LANE_1)
{
SERDES2, /* SERDESIF_TypeDef * serdes */
&SERDES2->lane[1], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_1, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_2_PCIE_LANE_PMA_STATUS_LANE_2)
{
SERDES2, /* SERDESIF_TypeDef * serdes */
&SERDES2->lane[2], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_2, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_2_PCIE_LANE_PMA_STATUS_LANE_3)
{
SERDES2, /* SERDESIF_TypeDef * serdes */
&SERDES2->lane[3], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_3, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
{
(SERDESIF_TypeDef *)0, /* SERDESIF_TypeDef * serdes */
(SERDES_TypeDef *)0, /* SERDES_TypeDef * const lane */
0, /* uint16_t config_reg_lane_sel */
0 /* uint16_t pcie_ctrl_id */
}
};
/*------------------------------------------------------------------------------
* SERDES3: list of PMA to poll as part of PCIe configuration.
*/
static const pma_poll_info_t g_serdes3_pcie_lane_cfg_lut[] =
{
#if defined(SERDESIF_3_PCIE_LANE_PMA_STATUS_LANE_0)
{
SERDES3, /* SERDESIF_TypeDef * serdes */
&SERDES3->lane[0], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_0, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_3_PCIE_LANE_PMA_STATUS_LANE_1)
{
SERDES3, /* SERDESIF_TypeDef * serdes */
&SERDES3->lane[1], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_1, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_3_PCIE_LANE_PMA_STATUS_LANE_2)
{
SERDES3, /* SERDESIF_TypeDef * serdes */
&SERDES3->lane[2], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_2, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
#if defined(SERDESIF_3_PCIE_LANE_PMA_STATUS_LANE_3)
{
SERDES3, /* SERDESIF_TypeDef * serdes */
&SERDES3->lane[3], /* SERDES_TypeDef * const lane */
CONFIG_REG_LANE_SEL_LANE_3, /* uint16_t config_reg_lane_sel */
FIRST_PCIE_CTRL /* uint16_t pcie_ctrl_id */
},
#endif
{
(SERDESIF_TypeDef *)0, /* SERDESIF_TypeDef * serdes */
(SERDES_TypeDef *)0, /* SERDES_TypeDef * const lane */
0, /* uint16_t config_reg_lane_sel */
0 /* uint16_t pcie_ctrl_id */
}
};
/*------------------------------------------------------------------------------
* Master lookup table for all SERDES PCIe configuration.
*/
static const pma_poll_info_t * const g_pcie_lane_cfg_lut[] =
{
g_serdes0_pcie_lane_cfg_lut,
g_serdes1_pcie_lane_cfg_lut,
g_serdes2_pcie_lane_cfg_lut,
g_serdes3_pcie_lane_cfg_lut
};
#endif
/*------------------------------------------------------------------------------
* Local functions:
*/
static uint32_t get_silicon_revision(void);
static void silicon_workarounds(void);
static void m2s050_rev_a_workarounds(void);
#if (MSS_SYS_FACC_INIT_BY_CORTEX == 1)
static void complete_clock_config(void);
#endif
#if MSS_SYS_SERDES_CONFIG_BY_CORTEX
static void configure_serdes_intf(void);
static void configure_pcie_intf(void);
static void configure_pcie_block
(
const cfg_addr_value_pair_t * p_addr_value_pair,
uint32_t nb_of_cfg_pairs,
uint32_t serdes_id
);
#endif
#if (MSS_SYS_MDDR_CONFIG_BY_CORTEX || MSS_SYS_FDDR_CONFIG_BY_CORTEX)
static void config_ddr_subsys
(
const ddr_subsys_cfg_t * p_ddr_subsys_cfg,
DDRCore_TypeDef * p_ddr_subsys_regs
);
#endif
#if MSS_SYS_SERDES_CONFIG_BY_CORTEX
static void config_by_addr_value
(
const cfg_addr_value_pair_t * p_addr_value_pair,
uint32_t nb_of_cfg_pairs
);
#endif
static uint32_t get_rcosc_25_50mhz_frequency(void);
static void set_clock_frequency_globals(uint32_t fclk);
/***************************************************************************//**
* See system_m2sxxx.h for details.
*/
void SystemInit(void)
{
#if MSS_SYS_SERDES_CONFIG_BY_CORTEX
uint32_t sdif_released;
#endif
#if MSS_SYS_CORESF2RESET_USED
uint32_t init_done;
#endif
#if MSS_SYS_SERDES_CONFIG_BY_CORTEX
uint32_t core_cfg_version;
core_cfg_version = CORE_SF2_CFG->IP_VERSION_SR;
#endif
/*
* Do not make use of global variables or make any asumptions regarding
* memory content if modifying this function. The memory content has not been
* initialised by the time this function is called by the start-up code.
*/
#if (MSS_SYS_FACC_INIT_BY_CORTEX == 1)
complete_clock_config();
#endif
silicon_workarounds();
/*--------------------------------------------------------------------------
* Set STKALIGN to ensure exception stacking starts on 8 bytes address
* boundary. This ensures compliance with the "Procedure Call Standards for
* the ARM Architecture" (AAPCS).
*/
SCB->CCR |= SCB_CCR_STKALIGN_Msk;
/*--------------------------------------------------------------------------
* MDDR configuration
*/
#if MSS_SYS_MDDR_CONFIG_BY_CORTEX
if(0u == SYSREG->DDR_CR)
{
/*
* We only configure the MDDR memory controller if MDDR is not remapped
* to address 0x00000000. If MDDR is remapped to 0x00000000 then we are
* probably executing this code from MDDR in a debugging session and
* attempting to reconfigure the MDDR memory controller will cause the
* Cortex-M3 to crash.
*/
config_ddr_subsys(&g_m2s_mddr_subsys_config, &g_m2s_mddr_addr->core);
}
#endif
/*--------------------------------------------------------------------------
* FDDR configuration
*/
#if MSS_SYS_FDDR_CONFIG_BY_CORTEX
config_ddr_subsys(&g_m2s_fddr_subsys_config, &g_m2s_fddr_addr->core);
#endif
/*--------------------------------------------------------------------------
* Call user defined configuration function.
*/
mscc_post_hw_cfg_init();
/*--------------------------------------------------------------------------
* SERDES interfaces configuration.
*/
#if MSS_SYS_SERDES_CONFIG_BY_CORTEX
configure_serdes_intf();
if(core_cfg_version >= CORE_CONFIGP_V7_0)
{
CORE_SF2_CFG->CONFIG_DONE = CONFIG_1_DONE;
/* Poll for SDIF_RELEASED. */
do
{
sdif_released = CORE_SF2_CFG->INIT_DONE & SDIF_RELEASED_MASK;
} while (0u == sdif_released);
}
configure_pcie_intf();
#endif
/*--------------------------------------------------------------------------
* Synchronize with CoreSF2Reset controlling resets from the fabric.
*/
#if MSS_SYS_CORESF2RESET_USED
/*
* Negate FPGA_SOFTRESET to de-assert MSS_RESET_N_M2F in the fabric. We must
* do this here because this signal is only deasserted by the System
* Controller on a power-on reset. Other types of reset such as a watchdog
* reset would result in the FPGA fabric being held in reset and getting
* stuck waiting for the CoreSF2Config INIT_DONE to become asserted.
*/
SYSREG->SOFT_RST_CR &= ~SYSREG_FPGA_SOFTRESET_MASK;
/*
* Signal to CoreSF2Reset that peripheral configuration registers have been
* written.
*/
CORE_SF2_CFG->CONFIG_DONE |= (CONFIG_1_DONE | CONFIG_2_DONE);
/* Wait for INIT_DONE from CoreSF2Reset. */
do
{
init_done = CORE_SF2_CFG->INIT_DONE & INIT_DONE_MASK;
} while (0u == init_done);
#endif
}
/***************************************************************************//**
* SystemCoreClockUpdate()
*/
#define RCOSC_25_50MHZ_CLK_SRC 0u
#define CLK_XTAL_CLK_SRC 1u
#define RCOSC_1_MHZ_CLK_SRC 2u
#define CCC2ASCI_CLK_SRC 3u
#define FACC_STANDBY_SHIFT 6u
#define FACC_STANDBY_SEL_MASK 0x00000007u
#define FREQ_32KHZ 32768u
#define FREQ_1MHZ 1000000u
#define FREQ_25MHZ 25000000u
#define FREQ_50MHZ 50000000u
void SystemCoreClockUpdate(void)
{
uint32_t controller_pll_init;
uint32_t clk_src;
controller_pll_init = SYSREG->MSSDDR_FACC1_CR & CONTROLLER_PLL_INIT_MASK;
if(0u == controller_pll_init)
{
/* Normal operations. */
uint32_t global_mux_sel;
global_mux_sel = SYSREG->MSSDDR_FACC1_CR & FACC_GLMUX_SEL_MASK;
if(0u == global_mux_sel)
{
/* MSS clocked from MSS PLL. Use Libero flow defines. */
SystemCoreClock = MSS_SYS_M3_CLK_FREQ;
g_FrequencyPCLK0 = MSS_SYS_APB_0_CLK_FREQ;
g_FrequencyPCLK1 = MSS_SYS_APB_1_CLK_FREQ;
g_FrequencyPCLK2 = MSS_SYS_APB_2_CLK_FREQ;
g_FrequencyFIC0 = MSS_SYS_FIC_0_CLK_FREQ;
g_FrequencyFIC1 = MSS_SYS_FIC_1_CLK_FREQ;
g_FrequencyFIC64 = MSS_SYS_FIC64_CLK_FREQ;
}
else
{
/* MSS clocked from standby clock. */
const uint8_t standby_clock_lut[8] = { RCOSC_25_50MHZ_CLK_SRC,
CLK_XTAL_CLK_SRC,
RCOSC_25_50MHZ_CLK_SRC,
CLK_XTAL_CLK_SRC,
RCOSC_1_MHZ_CLK_SRC,
RCOSC_1_MHZ_CLK_SRC,
CCC2ASCI_CLK_SRC,
CCC2ASCI_CLK_SRC };
uint32_t standby_sel;
uint8_t clock_source;
standby_sel = (SYSREG->MSSDDR_FACC2_CR >> FACC_STANDBY_SHIFT) & FACC_STANDBY_SEL_MASK;
clock_source = standby_clock_lut[standby_sel];
switch(clock_source)
{
case RCOSC_25_50MHZ_CLK_SRC:
clk_src = get_rcosc_25_50mhz_frequency();
set_clock_frequency_globals(clk_src);
break;
case CLK_XTAL_CLK_SRC:
set_clock_frequency_globals(FREQ_32KHZ);
break;
case RCOSC_1_MHZ_CLK_SRC:
set_clock_frequency_globals(FREQ_1MHZ);
break;
case CCC2ASCI_CLK_SRC:
/* Fall through. */
default:
set_clock_frequency_globals(FREQ_1MHZ);
break;
}
}
}
else
{
/* PLL initialization mode. Running from 25/50MHZ RC oscillator. */
clk_src = get_rcosc_25_50mhz_frequency();
set_clock_frequency_globals(clk_src);
}
}
/***************************************************************************//**
* Find out frequency generated by the 25_50mhz RC osciallator.
*/
static uint32_t get_rcosc_25_50mhz_frequency(void)
{
uint32_t rcosc_div2;
uint32_t rcosc_frequency;
rcosc_div2 = SYSREG->MSSDDR_PLL_STATUS & RCOSC_DIV2_MASK;
if(0u == rcosc_div2)
{
/* 25_50mhz oscillator is configured for 25 MHz operations. */
rcosc_frequency = FREQ_25MHZ;
}
else
{
/* 25_50mhz oscillator is configured for 50 MHz operations. */
rcosc_frequency = FREQ_50MHZ;
}
return rcosc_frequency;
}
/***************************************************************************//**
Set the value of the clock frequency global variables based on the value of
standby_clk passed as parameter.
The following global variables are set by this function:
- SystemCoreClock
- g_FrequencyPCLK0
- g_FrequencyPCLK1
- g_FrequencyPCLK2
- g_FrequencyFIC0
- g_FrequencyFIC1
- g_FrequencyFIC64
*/
static void set_clock_frequency_globals(uint32_t standby_clk)
{
SystemCoreClock = standby_clk;
g_FrequencyPCLK0 = standby_clk;
g_FrequencyPCLK1 = standby_clk;
g_FrequencyPCLK2 = MSS_SYS_APB_2_CLK_FREQ;
g_FrequencyFIC0 = standby_clk;
g_FrequencyFIC1 = standby_clk;
g_FrequencyFIC64 = standby_clk;
}
/***************************************************************************//**
* Write 16-bit configuration values into 32-bit word aligned registers.
*/
#if (MSS_SYS_MDDR_CONFIG_BY_CORTEX || MSS_SYS_FDDR_CONFIG_BY_CORTEX)
static void copy_cfg16_to_regs
(
volatile uint32_t * p_regs,
const uint16_t * p_cfg,
uint32_t nb_16bit_words
)
{
uint32_t inc;
for(inc = 0u; inc < nb_16bit_words; ++inc)
{
p_regs[inc] = p_cfg[inc];
}
}
#endif
/***************************************************************************//**
* Configure peripheral using register address and register value pairs.
*/
#if MSS_SYS_SERDES_CONFIG_BY_CORTEX
static void config_by_addr_value
(
const cfg_addr_value_pair_t * p_addr_value_pair,
uint32_t nb_of_cfg_pairs
)
{
uint32_t inc;
for(inc = 0u; inc < nb_of_cfg_pairs; ++inc)
{
*p_addr_value_pair[inc].p_reg = p_addr_value_pair[inc].value;
}
}
#endif
/***************************************************************************//**
* DDR subsystem configuration.
*/
#if (MSS_SYS_MDDR_CONFIG_BY_CORTEX || MSS_SYS_FDDR_CONFIG_BY_CORTEX)
#define NB_OF_DDRC_REGS_TO_CONFIG 57u
#define NB_OF_DDR_PHY_REGS_TO_CONFIG 65u
static void config_ddr_subsys
(
const ddr_subsys_cfg_t * p_ddr_subsys_cfg,
DDRCore_TypeDef * p_ddr_subsys_regs
)
{
volatile uint32_t * p_regs;
const uint16_t * p_cfg;
/*--------------------------------------------------------------------------
* Configure DDR controller part of the MDDR subsystem.
*/
p_cfg = &p_ddr_subsys_cfg->ddrc.DYN_SOFT_RESET_CR;
p_regs = &p_ddr_subsys_regs->ddrc.DYN_SOFT_RESET_CR;
copy_cfg16_to_regs(p_regs, p_cfg, NB_OF_DDRC_REGS_TO_CONFIG);
/*--------------------------------------------------------------------------
* Configure DDR PHY.
*/
p_cfg = &p_ddr_subsys_cfg->phy.LOOPBACK_TEST_CR;
p_regs = &p_ddr_subsys_regs->phy.LOOPBACK_TEST_CR;
copy_cfg16_to_regs(p_regs, p_cfg, NB_OF_DDR_PHY_REGS_TO_CONFIG);
/*--------------------------------------------------------------------------
* Configure DDR FIC.
*/
p_ddr_subsys_regs->fic.NB_ADDR_CR = p_ddr_subsys_cfg->fic.NB_ADDR_CR;
p_ddr_subsys_regs->fic.NBRWB_SIZE_CR = p_ddr_subsys_cfg->fic.NBRWB_SIZE_CR;
p_ddr_subsys_regs->fic.WB_TIMEOUT_CR = p_ddr_subsys_cfg->fic.WB_TIMEOUT_CR;
p_ddr_subsys_regs->fic.HPD_SW_RW_EN_CR = p_ddr_subsys_cfg->fic.HPD_SW_RW_EN_CR;
p_ddr_subsys_regs->fic.HPD_SW_RW_INVAL_CR = p_ddr_subsys_cfg->fic.HPD_SW_RW_INVAL_CR;
p_ddr_subsys_regs->fic.SW_WR_ERCLR_CR = p_ddr_subsys_cfg->fic.SW_WR_ERCLR_CR;
p_ddr_subsys_regs->fic.ERR_INT_ENABLE_CR = p_ddr_subsys_cfg->fic.ERR_INT_ENABLE_CR;
p_ddr_subsys_regs->fic.NUM_AHB_MASTERS_CR = p_ddr_subsys_cfg->fic.NUM_AHB_MASTERS_CR;
p_ddr_subsys_regs->fic.LOCK_TIMEOUTVAL_CR[0] = p_ddr_subsys_cfg->fic.LOCK_TIMEOUTVAL_1_CR;
p_ddr_subsys_regs->fic.LOCK_TIMEOUTVAL_CR[1] = p_ddr_subsys_cfg->fic.LOCK_TIMEOUTVAL_2_CR;
p_ddr_subsys_regs->fic.LOCK_TIMEOUT_EN_CR = p_ddr_subsys_cfg->fic.LOCK_TIMEOUT_EN_CR;
/*--------------------------------------------------------------------------
* Enable DDR.
*/
p_ddr_subsys_regs->ddrc.DYN_SOFT_RESET_CR = 0x01u;
while(0x0000u == p_ddr_subsys_regs->ddrc.DDRC_SR)
{
;
}
}
#endif
/***************************************************************************//**
* Configure SERDES interfaces.
*/
#if MSS_SYS_SERDES_CONFIG_BY_CORTEX
static void configure_serdes_intf(void)
{
#if MSS_SYS_SERDES_0_CONFIG_BY_CORTEX
config_by_addr_value(g_m2s_serdes_0_config, SERDES_0_CFG_NB_OF_PAIRS);
#endif
#if MSS_SYS_SERDES_1_CONFIG_BY_CORTEX
config_by_addr_value(g_m2s_serdes_1_config, SERDES_1_CFG_NB_OF_PAIRS);
#endif
#if MSS_SYS_SERDES_2_CONFIG_BY_CORTEX
config_by_addr_value(g_m2s_serdes_2_config, SERDES_2_CFG_NB_OF_PAIRS);
#endif
#if MSS_SYS_SERDES_3_CONFIG_BY_CORTEX
config_by_addr_value(g_m2s_serdes_3_config, SERDES_3_CFG_NB_OF_PAIRS);
#endif
}
/***************************************************************************//**
* Configure PCIe interfaces.
*/
static void configure_pcie_intf(void)
{
#if MSS_SYS_SERDES_0_CONFIG_BY_CORTEX
configure_pcie_block(g_m2s_serdes_0_config, SERDES_0_CFG_NB_OF_PAIRS, 0u);
#endif
#if MSS_SYS_SERDES_1_CONFIG_BY_CORTEX
configure_pcie_block(g_m2s_serdes_1_config, SERDES_1_CFG_NB_OF_PAIRS, 1u);
#endif
#if MSS_SYS_SERDES_2_CONFIG_BY_CORTEX
configure_pcie_block(g_m2s_serdes_2_config, SERDES_2_CFG_NB_OF_PAIRS, 2u);
#endif
#if MSS_SYS_SERDES_3_CONFIG_BY_CORTEX
configure_pcie_block(g_m2s_serdes_3_config, SERDES_3_CFG_NB_OF_PAIRS, 3u);
#endif
}
/*------------------------------------------------------------------------------
Configure one individual PCIe block.
*/
static void configure_pcie_block
(
const cfg_addr_value_pair_t * p_addr_value_pair,
uint32_t nb_of_cfg_pairs,
uint32_t serdes_id
)
{
uint32_t inc;
const uint32_t PMA_READY_MASK = 0x00000080u;
const uint32_t PCIE_CTRL_REG_LENGTH = 0x1000u;
const uint32_t PCIE_CTLR_SOFTRESET_MASK = 0x00000001;
const uint32_t PCIE2_CTLR_SOFTRESET_MASK = 0x00000040;
SERDESIF_TypeDef * const serdes_lut[4] =
{
SERDES0, SERDES1, SERDES2, SERDES3
};
const uint32_t pcie_ctrl_top_addr_lut[4] =
{
SERDES0_CFG_BASE + PCIE_CTRL_REG_LENGTH,
SERDES1_CFG_BASE + PCIE_CTRL_REG_LENGTH,
SERDES2_CFG_BASE + PCIE_CTRL_REG_LENGTH,
SERDES3_CFG_BASE + PCIE_CTRL_REG_LENGTH
};
/*
* Poll for PMA_READY.
*/
inc = 0U;
while(g_pcie_lane_cfg_lut[serdes_id][inc].config_reg_lane_sel != 0)
{
uint32_t pma_ready;
uint32_t config_phy_mode_1;
/* select lane */
config_phy_mode_1 = g_pcie_lane_cfg_lut[serdes_id][inc].serdes->sys_regs.CONFIG_PHY_MODE_1;
config_phy_mode_1 &= ~CONFIG_REG_LANE_SEL_MASK;
config_phy_mode_1 |= (uint32_t)g_pcie_lane_cfg_lut[serdes_id][inc].config_reg_lane_sel;
g_pcie_lane_cfg_lut[serdes_id][inc].serdes->sys_regs.CONFIG_PHY_MODE_1 = config_phy_mode_1;
/* Wait for PMA to become ready. */
do
{
pma_ready = g_pcie_lane_cfg_lut[serdes_id][inc].lane->PMA_STATUS & PMA_READY_MASK;
}
while (0u == pma_ready);
++inc;
}
/*
* Configure the PCIe controller registers.
*/
for(inc = 0u; inc < nb_of_cfg_pairs; ++inc)
{
uint32_t reg_addr;
reg_addr = (uint32_t)p_addr_value_pair[inc].p_reg;
if(reg_addr < pcie_ctrl_top_addr_lut[serdes_id])
{
*p_addr_value_pair[inc].p_reg = p_addr_value_pair[inc].value;
}
}
/*
* Issue a soft-reset to the PCIe controller
*/
inc = 0U;
while(g_pcie_lane_cfg_lut[serdes_id][inc].config_reg_lane_sel != 0)
{
if(FIRST_PCIE_CTRL == g_pcie_lane_cfg_lut[serdes_id][inc].pcie_ctrl_id)
{
serdes_lut[serdes_id]->sys_regs.SERDESIF_SOFT_RESET &= ~PCIE_CTLR_SOFTRESET_MASK;
serdes_lut[serdes_id]->sys_regs.SERDESIF_SOFT_RESET |= PCIE_CTLR_SOFTRESET_MASK;
}
else
{
serdes_lut[serdes_id]->sys_regs.SERDESIF_SOFT_RESET &= ~PCIE2_CTLR_SOFTRESET_MASK;
serdes_lut[serdes_id]->sys_regs.SERDESIF_SOFT_RESET |= PCIE2_CTLR_SOFTRESET_MASK;
}
++inc;
}
}
#endif
/*------------------------------------------------------------------------------
Retrieve silicon revision from system registers.
*/
static uint32_t get_silicon_revision(void)
{
uint32_t silicon_revision;
uint32_t device_version;
device_version = SYSREG->DEVICE_VERSION;
switch(device_version)
{
case 0x0000F802:
silicon_revision = M2S050_REV_A_SILICON;
break;
case 0x0001F802:
silicon_revision = M2S050_REV_B_SILICON;
break;
default:
silicon_revision = UNKNOWN_SILICON_REV;
break;
}
return silicon_revision;
}
/*------------------------------------------------------------------------------
Workarounds for various silicon versions.
*/
static void silicon_workarounds(void)
{
uint32_t silicon_revision;
silicon_revision = get_silicon_revision();
switch(silicon_revision)
{
case M2S050_REV_A_SILICON:
m2s050_rev_a_workarounds();
break;
case M2S050_REV_B_SILICON:
/* Fall through. */
case UNKNOWN_SILICON_REV:
/* Fall through. */
default:
break;
}
}
/*------------------------------------------------------------------------------
Silicon workarounds for M2S050 rev A.
*/
static void m2s050_rev_a_workarounds(void)
{
/*--------------------------------------------------------------------------
* Work around a couple of silicon issues:
*/
/* DDR_CLK_EN <- 1 */
SYSREG->MSSDDR_FACC1_CR |= (uint32_t)1 << DDR_CLK_EN_SHIFT;
/* CONTROLLER_PLL_INIT <- 0 */
SYSREG->MSSDDR_FACC1_CR = SYSREG->MSSDDR_FACC1_CR & ~CONTROLLER_PLL_INIT_MASK;
}
/*------------------------------------------------------------------------------
Complete clock configuration if requested by Libero.
*/
#if (MSS_SYS_FACC_INIT_BY_CORTEX == 1)
static void complete_clock_config(void)
{
uint32_t pll_locked;
/* Wait for fabric PLL to lock. */
do {
pll_locked = SYSREG->MSSDDR_PLL_STATUS & FAB_PLL_LOCK_MASK;
} while(!pll_locked);
/* Negate MPLL bypass. */
SYSREG->MSSDDR_PLL_STATUS_HIGH_CR &= ~FACC_PLL_BYPASS_MASK;
/* Wait for MPLL to lock. */
do {
pll_locked = SYSREG->MSSDDR_PLL_STATUS & MPLL_LOCK_MASK;
} while(!pll_locked);
/* Switch FACC from standby to run mode. */
SYSREG->MSSDDR_FACC1_CR &= ~FACC_GLMUX_SEL_MASK;
/* Negate FPGA_SOFTRESET to de-assert MSS_RESET_N_M2F in the fabric */
SYSREG->SOFT_RST_CR &= ~SYSREG_FPGA_SOFTRESET_MASK;
}
#endif