2024-11-15 15:35:46 +08:00

3607 lines
107 KiB
C

/*
* Copyright (c) 2006-2024 RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-08-16 zhujiale first version
*/
#include <rtthread.h>
#include "sdhci.h"
#include <string.h>
#define DBG_TAG "SDHCI"
#ifdef DRV_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* DRV_DEBUG */
#include <rtdbg.h>
static unsigned int debug_quirks = 0;
static unsigned int debug_quirks2;
/********************************************************* */
/* cmd */
/********************************************************* */
void read_reg(struct sdhci_host *host)
{
rt_kprintf("0x00 addddddddddddd = %x \n", sdhci_readl(host, 0x00));
rt_kprintf("0x04 EMMC_BLOCKSIZE = %x \n", sdhci_readw(host, 0x04));
rt_kprintf("0x06 EMMC_BLOCKCOUNT = %x \n", sdhci_readw(host, 0x06));
rt_kprintf("0x08 SDHCI_ARGUMENT = %x \n", sdhci_readl(host, 0x08));
rt_kprintf("0x0c EMMC_XFER_MODE = %x \n", sdhci_readw(host, 0x0c));
rt_kprintf("0x0e SDHCI_COMMAND = %x \n", sdhci_readw(host, 0x0e));
rt_kprintf("0x24 SDHCI_PRESENT_STATE = %x \n", sdhci_readl(host, 0x24));
rt_kprintf("0x28 SDHCI_HOST_CONTROL = %x \n", sdhci_readb(host, 0x28));
rt_kprintf("0x29 SDHCI_POWER_CONTROL = %x \n", sdhci_readb(host, 0x29));
rt_kprintf("0x2a EMMC_BGAP_CTRL = %x \n", sdhci_readb(host, 0x2a));
rt_kprintf("0x2c EMMC_CLK_CTRL = %x \n", sdhci_readw(host, 0x2c));
rt_kprintf("0x2e EMMC_TOUT_CTRL = %x \n", sdhci_readb(host, 0x2e));
rt_kprintf("0x2f EMMC_SW_RST = %x \n", sdhci_readb(host, 0x2f));
rt_kprintf("0x30 SDHCI_INT_STATUS = %x \n", sdhci_readw(host, 0x30));
rt_kprintf("0x32 SDHCI_ERR_INT_STATUS = %x \n", sdhci_readw(host, 0x32));
rt_kprintf("0x34 SDHCI_INT_ENABLE = %x \n", sdhci_readw(host, 0x34));
rt_kprintf("0x36 EMMC ERROR INT STATEN = %x \n", sdhci_readw(host, 0x36));
rt_kprintf("0x38 EMMC NORMAL INT SIGNAL EN= %x \n", sdhci_readw(host, 0x38));
rt_kprintf("0x3a EMMC ERROR INT SIGNAL EN = %x \n", sdhci_readw(host, 0x3a));
rt_kprintf("0x3c EMMC_AUTO_CMD_STAT = %x \n", sdhci_readw(host, 0x3c));
rt_kprintf("0x3e EMMC_HOST_CTRL2 = %x \n", sdhci_readw(host, 0x3e));
rt_kprintf("0x40 EMMC_CAPABILITIES1 = %x \n", sdhci_readl(host, 0x40));
rt_kprintf("0x44 EMMC_CAPABILITIES2 = %x \n", sdhci_readl(host, 0x44));
rt_kprintf("0x52 EMMC_FORC_ERR_INT_STAT = %x \n", sdhci_readw(host, 0x52));
rt_kprintf("0x54 EMMC_ADMA_ERR_STAT = %x \n", sdhci_readb(host, 0x54));
rt_kprintf("0x58 EMMC_ADMA_SA = %x \n", sdhci_readl(host, 0x58));
rt_kprintf("0x66 EMMC_PRESET_SDR12 = %x \n", sdhci_readw(host, 0x66));
rt_kprintf("0x68 EMMC_PRESET_SDR25 = %x \n", sdhci_readw(host, 0x68));
rt_kprintf("0x6a EMMC_PRESET_SDR50 = %x \n", sdhci_readw(host, 0x6a));
rt_kprintf("0x6c EMMC_PRESET_SDR104 = %x \n", sdhci_readw(host, 0x6c));
rt_kprintf("0x6e EMMC_PRESET_DDR50 = %x \n", sdhci_readw(host, 0x6e));
rt_kprintf("0x78 EMMC_ADMA_ID = %x \n", sdhci_readl(host, 0x78));
rt_kprintf("0xfe EMMC_HOST_CNTRL_VERS = %x \n", sdhci_readw(host, 0xfe));
}
static inline rt_bool_t sdhci_has_requests(struct sdhci_host *host)
{
return host->cmd || host->data_cmd;
}
static inline rt_bool_t sdhci_auto_cmd23(struct sdhci_host *host,
struct rt_mmcsd_req *mrq)
{
return mrq->sbc && (host->flags & SDHCI_AUTO_CMD23);
}
static inline rt_bool_t sdhci_auto_cmd12(struct sdhci_host *host,
struct rt_mmcsd_req *mrq)
{
return !mrq->sbc && (host->flags & SDHCI_AUTO_CMD12) && !mrq->cap_cmd_during_tfr;
}
static inline rt_bool_t sdhci_manual_cmd23(struct sdhci_host *host,
struct rt_mmcsd_req *mrq)
{
return mrq->sbc && !(host->flags & SDHCI_AUTO_CMD23);
}
static inline rt_bool_t sdhci_data_line_cmd(struct rt_mmcsd_cmd *cmd)
{
return cmd->data || cmd->flags & MMC_RSP_BUSY;
}
void sdhci_set_data_timeout_irq(struct sdhci_host *host, rt_bool_t enable)
{
if (enable)
host->ier |= SDHCI_INT_DATA_TIMEOUT;
else
host->ier &= ~SDHCI_INT_DATA_TIMEOUT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
void sdhci_set_uhs_signaling(struct sdhci_host *host, unsigned timing)
{
rt_uint16_t ctrl_2;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
if ((timing == MMC_TIMING_MMC_HS200) || (timing == MMC_TIMING_UHS_SDR104))
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
else if (timing == MMC_TIMING_UHS_SDR12)
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
else if (timing == MMC_TIMING_UHS_SDR25)
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
else if (timing == MMC_TIMING_UHS_SDR50)
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
else if ((timing == MMC_TIMING_UHS_DDR50) || (timing == MMC_TIMING_MMC_DDR52))
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
else if (timing == MMC_TIMING_MMC_HS400)
ctrl_2 |= SDHCI_CTRL_HS400; /* Non-standard */
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
}
void sdhci_set_bus_width(struct sdhci_host *host, int width)
{
rt_uint8_t ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (width == MMC_BUS_WIDTH_8)
{
ctrl &= ~SDHCI_CTRL_4BITBUS;
ctrl |= SDHCI_CTRL_8BITBUS;
}
else
{
if (host->mmc->caps & MMC_CAP_8_BIT_DATA)
ctrl &= ~SDHCI_CTRL_8BITBUS;
if (width == MMC_BUS_WIDTH_4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static inline rt_bool_t sdhci_can_64bit_dma(struct sdhci_host *host)
{
/*
* According to SD Host Controller spec v4.10, bit[27] added from
* version 4.10 in Capabilities Register is used as 64-bit System
* Address support for V4 mode.
*/
if (host->version >= SDHCI_SPEC_410 && host->v4_mode)
return host->caps & SDHCI_CAN_64BIT_V4;
return host->caps & SDHCI_CAN_64BIT;
}
static void sdhci_do_enable_v4_mode(struct sdhci_host *host)
{
rt_uint16_t ctrl2;
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (ctrl2 & SDHCI_CTRL_V4_MODE)
return;
ctrl2 |= SDHCI_CTRL_V4_MODE;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
}
void sdhci_cleanup_host(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
if (host->sdhci_core_to_disable_vqmmc)
regulator_disable(mmc->supply.vqmmc);
if (host->align_buffer)
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz + host->adma_table_sz, host->align_buffer,
host->align_addr);
host->adma_table = NULL;
host->align_buffer = NULL;
}
static void sdhci_set_default_irqs(struct sdhci_host *host)
{
host->ier = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT | SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE;
if (host->tuning_mode == SDHCI_TUNING_MODE_2 || host->tuning_mode == SDHCI_TUNING_MODE_3)
host->ier |= SDHCI_INT_RETUNE;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static inline void sdhci_auto_cmd_select(struct sdhci_host *host,
struct rt_mmcsd_cmd *cmd,
rt_uint16_t *mode)
{
rt_bool_t use_cmd12 = sdhci_auto_cmd12(host, cmd->mrq) && (cmd->cmd_code != SD_IO_RW_EXTENDED);
rt_bool_t use_cmd23 = sdhci_auto_cmd23(host, cmd->mrq);
rt_uint16_t ctrl2;
/*
* In case of Version 4.10 or later, use of 'Auto CMD Auto
* Select' is recommended rather than use of 'Auto CMD12
* Enable' or 'Auto CMD23 Enable'. We require Version 4 Mode
* here because some controllers (e.g sdhci-of-dwmshc) expect it.
*/
if (host->version >= SDHCI_SPEC_410 && host->v4_mode && (use_cmd12 || use_cmd23))
{
*mode |= SDHCI_TRNS_AUTO_SEL;
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (use_cmd23)
ctrl2 |= SDHCI_CMD23_ENABLE;
else
ctrl2 &= ~SDHCI_CMD23_ENABLE;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
return;
}
/*
* If we are sending CMD23, CMD12 never gets sent
* on successful completion (so no Auto-CMD12).
*/
if (use_cmd12)
*mode |= SDHCI_TRNS_AUTO_CMD12;
else if (use_cmd23)
*mode |= SDHCI_TRNS_AUTO_CMD23;
}
static rt_bool_t sdhci_present_error(struct sdhci_host *host,
struct rt_mmcsd_cmd *cmd, rt_bool_t present)
{
if (!present || host->flags & SDHCI_DEVICE_DEAD)
{
cmd->err = -ENOMEDIUM;
return RT_TRUE;
}
return RT_FALSE;
}
static rt_uint16_t sdhci_get_preset_value(struct sdhci_host *host)
{
rt_uint16_t preset = 0;
switch (host->timing)
{
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_HIGH_SPEED);
break;
case MMC_TIMING_UHS_SDR12:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
case MMC_TIMING_UHS_SDR25:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR25);
break;
case MMC_TIMING_UHS_SDR50:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR50);
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR104);
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_DDR50);
break;
case MMC_TIMING_MMC_HS400:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_HS400);
break;
default:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
}
return preset;
}
static void sdhci_set_card_detection(struct sdhci_host *host, rt_bool_t enable)
{
rt_uint32_t present;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) || !mmc_card_is_removable(host->mmc))
return;
if (enable)
{
present = sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT;
host->ier |= present ? SDHCI_INT_CARD_REMOVE : SDHCI_INT_CARD_INSERT;
}
else
{
host->ier &= ~(SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT);
}
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_enable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, RT_TRUE);
}
static inline int sdhci_external_dma_init(struct sdhci_host *host)
{
return -EOPNOTSUPP;
}
static inline void sdhci_external_dma_release(struct sdhci_host *host)
{
}
static inline void sdhci_external_dma_prepare_data(struct sdhci_host *host,
struct rt_mmcsd_cmd *cmd)
{
/* This should never happen */
}
static inline void sdhci_external_dma_pre_transfer(struct sdhci_host *host,
struct rt_mmcsd_cmd *cmd)
{
}
static inline struct dma_chan *sdhci_external_dma_channel(struct sdhci_host *host,
struct rt_mmcsd_data *data)
{
return NULL;
}
/********************************************************* */
/* reset */
/********************************************************* */
enum sdhci_reset_reason
{
SDHCI_RESET_FOR_INIT,
SDHCI_RESET_FOR_REQUEST_ERROR,
SDHCI_RESET_FOR_REQUEST_ERROR_DATA_ONLY,
SDHCI_RESET_FOR_TUNING_ABORT,
SDHCI_RESET_FOR_CARD_REMOVED,
SDHCI_RESET_FOR_CQE_RECOVERY,
};
static rt_bool_t sdhci_needs_reset(struct sdhci_host *host, struct rt_mmcsd_req *mrq)
{
return (!(host->flags & SDHCI_DEVICE_DEAD) && ((mrq->cmd && mrq->cmd->err) || (mrq->sbc && mrq->sbc->err) || (mrq->data && mrq->data->stop && mrq->data->stop->err) || (host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)));
}
static rt_bool_t sdhci_do_reset(struct sdhci_host *host, rt_uint8_t mask)
{
if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET)
{
struct mmc_host *mmc = host->mmc;
if (!mmc->ops->get_cd(mmc))
return RT_FALSE;
}
if (host->ops->reset)
{
host->ops->reset(host, mask);
}
return RT_TRUE;
}
static void sdhci_reset_for_reason(struct sdhci_host *host, enum sdhci_reset_reason reason)
{
if (host->quirks2 & SDHCI_QUIRK2_ISSUE_CMD_DAT_RESET_TOGETHER)
{
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
return;
}
switch (reason)
{
case SDHCI_RESET_FOR_INIT:
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
break;
case SDHCI_RESET_FOR_REQUEST_ERROR:
case SDHCI_RESET_FOR_TUNING_ABORT:
case SDHCI_RESET_FOR_CARD_REMOVED:
case SDHCI_RESET_FOR_CQE_RECOVERY:
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
break;
case SDHCI_RESET_FOR_REQUEST_ERROR_DATA_ONLY:
sdhci_do_reset(host, SDHCI_RESET_DATA);
break;
}
}
#define sdhci_reset_for(h, r) sdhci_reset_for_reason((h), SDHCI_RESET_FOR_##r)
static void sdhci_reset_for_all(struct sdhci_host *host)
{
if (sdhci_do_reset(host, SDHCI_RESET_ALL))
{
if (host->flags & (SDHCI_USE_SDMA))
{
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
/* Resetting the controller clears many */
host->preset_enabled = RT_FALSE;
}
}
static void sdhci_runtime_pm_bus_on(struct sdhci_host *host)
{
if (host->bus_on)
return;
host->bus_on = RT_TRUE;
}
static void sdhci_runtime_pm_bus_off(struct sdhci_host *host)
{
if (!host->bus_on)
return;
host->bus_on = RT_FALSE;
}
void sdhci_reset(struct sdhci_host *host, rt_uint8_t mask)
{
ssize_t timeout;
sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET);
if (mask & SDHCI_RESET_ALL)
{
host->clock = 0;
/* Reset-all turns off SD Bus Power */
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
}
timeout = rt_tick_from_millisecond(150);
while (1)
{
timeout = timeout - rt_tick_get();
if (!(sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask))
break;
if (timeout < 0)
{
rt_kprintf("%s: Reset 0x%x never completed.\n",
mmc_hostname(host->mmc), (int)mask);
sdhci_dumpregs(host);
return;
}
rt_hw_us_delay(10);
}
}
/********************************************************* */
/* data */
/********************************************************* */
static void sdhci_initialize_data(struct sdhci_host *host,
struct rt_mmcsd_data *data)
{
/* Sanity checks */
LOG_D(data->blksize * data->blks > 524288);
LOG_D(data->blksize > host->mmc->max_blk_size);
LOG_D(data->blks > 65535);
host->data = data;
host->data_early = 0;
host->data->bytes_xfered = 0;
}
static rt_ubase_t sdhci_sdma_address(struct sdhci_host *host)
{
return (rt_ubase_t)rt_kmem_v2p(host->data->buf);
}
static void sdhci_set_adma_addr(struct sdhci_host *host, rt_uint32_t addr)
{
sdhci_writel(host, lower_32_bits(addr), SDHCI_ADMA_ADDRESS);
if (host->flags & SDHCI_USE_64_BIT_DMA)
sdhci_writel(host, upper_32_bits(addr), SDHCI_ADMA_ADDRESS_HI);
}
static void sdhci_set_sdma_addr(struct sdhci_host *host, rt_uint32_t addr)
{
if (host->v4_mode)
sdhci_set_adma_addr(host, addr);
else
sdhci_writel(host, addr, SDHCI_DMA_ADDRESS);
}
static void sdhci_config_dma(struct sdhci_host *host)
{
rt_uint8_t ctrl;
rt_uint16_t ctrl2;
if (host->version < SDHCI_SPEC_200)
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
/*
* Always adjust the DMA selection as some controllers
* (e.g. JMicron) can't do PIO properly when the selection
* is ADMA.
*/
ctrl &= ~SDHCI_CTRL_DMA_MASK;
if (!(host->flags & SDHCI_REQ_USE_DMA))
goto out;
/* Note if DMA Select is zero then SDMA is selected */
if (host->flags & SDHCI_USE_64_BIT_DMA)
{
/*
* If v4 mode, all supported DMA can be 64-bit addressing if
* controller supports 64-bit system address, otherwise only
* ADMA can support 64-bit addressing.
*/
if (host->v4_mode)
{
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl2 |= SDHCI_CTRL_64BIT_ADDR;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
}
}
out:
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static inline void sdhci_set_block_info(struct sdhci_host *host,
struct rt_mmcsd_data *data)
{
/* Set the DMA boundary value and block size */
sdhci_writew(host,
SDHCI_MAKE_BLKSZ(7, data->blksize),
SDHCI_BLOCK_SIZE);
/*
* For Version 4.10 onwards, if v4 mode is enabled, 32-bit Block Count
* can be supported, in that case 16-bit block count register must be 0.
*/
if (host->version >= SDHCI_SPEC_410 && host->v4_mode && (host->quirks2 & SDHCI_QUIRK2_USE_32BIT_BLK_CNT))
{
if (sdhci_readw(host, SDHCI_BLOCK_COUNT))
sdhci_writew(host, 0, SDHCI_BLOCK_COUNT);
sdhci_writew(host, data->blks, SDHCI_32BIT_BLK_CNT);
}
else
{
sdhci_writew(host, data->blks, SDHCI_BLOCK_COUNT);
}
}
static void sdhci_set_transfer_irqs(struct sdhci_host *host)
{
rt_uint32_t pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL;
rt_uint32_t dma_irqs = SDHCI_INT_DMA_END;
if (host->flags & SDHCI_REQ_USE_DMA)
host->ier = (host->ier & ~pio_irqs) | dma_irqs;
else
host->ier = (host->ier & ~dma_irqs) | pio_irqs;
if (host->flags & (SDHCI_AUTO_CMD23 | SDHCI_AUTO_CMD12))
host->ier |= SDHCI_INT_AUTO_CMD_ERR;
else
host->ier &= ~SDHCI_INT_AUTO_CMD_ERR;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_prepare_data(struct sdhci_host *host, struct rt_mmcsd_cmd *cmd)
{
struct rt_mmcsd_data *data = cmd->data;
sdhci_initialize_data(host, data);
if (host->flags & SDHCI_USE_SDMA)
{
unsigned int length_mask, offset_mask;
host->flags |= SDHCI_REQ_USE_DMA;
/*
* FIXME: This doesn't account for merging when mapping the
* scatterlist.
*
* The assumption here being that alignment and lengths are
* the same after DMA mapping to device address space.
*/
length_mask = 0;
offset_mask = 0;
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE)
length_mask = 3;
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR)
offset_mask = 3;
if (length_mask | offset_mask)
{
host->flags &= ~SDHCI_REQ_USE_DMA;
}
}
sdhci_config_dma(host);
if (host->flags & SDHCI_REQ_USE_DMA)
{
if (mmc_get_dma_dir(data) == DMA_FROM_DEVICE)
rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, data->buf, data->blks * data->blksize);
else
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, data->buf, data->blks * data->blksize);
sdhci_set_sdma_addr(host, sdhci_sdma_address(host));
}
if (!(host->flags & SDHCI_REQ_USE_DMA))
{
host->blocks = data->blks;
}
sdhci_set_transfer_irqs(host);
sdhci_set_block_info(host, data);
}
static void sdhci_set_mrq_done(struct sdhci_host *host, struct rt_mmcsd_req *mrq)
{
int i;
for (i = 0; i < SDHCI_MAX_MRQS; i++)
{
if (host->mrqs_done[i] == mrq)
{
LOG_D(1);
return;
}
}
for (i = 0; i < SDHCI_MAX_MRQS; i++)
{
if (!host->mrqs_done[i])
{
host->mrqs_done[i] = mrq;
break;
}
}
LOG_D(i >= SDHCI_MAX_MRQS);
}
static inline rt_bool_t sdhci_defer_done(struct sdhci_host *host,
struct rt_mmcsd_req *mrq)
{
struct rt_mmcsd_data *data = mrq->data;
return host->pending_reset || host->always_defer_done || ((host->flags & SDHCI_REQ_USE_DMA) && data && data->host_cookie == COOKIE_MAPPED);
}
/********************************************************* */
/* pio */
/********************************************************* */
static void sdhci_read_block_pio(struct sdhci_host *host,void **buf)
{
rt_uint32_t scratch;
size_t len;
rt_uint32_t blksize = host->data->blksize;
while (blksize)
{
len = min(4U, blksize);
scratch = sdhci_readl(host, SDHCI_BUFFER);
rt_memcpy(*buf, &scratch, len);
*buf += len;
blksize -= len;
}
}
static void sdhci_write_block_pio(struct sdhci_host *host,void **buf)
{
size_t blksize, len;
rt_uint32_t scratch;
LOG_D("PIO writing\n");
blksize = host->data->blksize;
scratch = 0;
while (blksize)
{
len = min(4U, blksize);
rt_memcpy(&scratch, *buf, len);
*buf += len;
blksize -= len;
sdhci_writel(host, scratch, SDHCI_BUFFER);
}
}
static void sdhci_transfer_pio(struct sdhci_host *host)
{
rt_uint32_t mask;
if (host->blocks == 0)
return;
if (host->data->flags & DATA_DIR_READ)
mask = SDHCI_DATA_AVAILABLE;
else
mask = SDHCI_SPACE_AVAILABLE;
/*
* Some controllers (JMicron JMB38x) mess up the buffer bits
* for transfers < 4 bytes. As long as it is just one block,
* we can ignore the bits.
*/
if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) && (host->data->blks == 1))
{
mask = ~0;
}
void *buf = (void *)host->data->buf;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask)
{
if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY)
rt_hw_us_delay(100);
if (host->data->flags & DATA_DIR_READ)
sdhci_read_block_pio(host,&buf);
else
sdhci_write_block_pio(host,&buf);
host->data->blks--;
if (host->data->blks == 0)
break;
/* host->data->buf += host->data->blksize;*/
}
}
/********************************************************* */
/* config */
/********************************************************* */
static rt_bool_t sdhci_timing_has_preset(unsigned char timing)
{
switch (timing)
{
case MMC_TIMING_UHS_SDR12:
case MMC_TIMING_UHS_SDR25:
case MMC_TIMING_UHS_SDR50:
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
return RT_TRUE;
}
return RT_FALSE;
}
static rt_bool_t sdhci_preset_needed(struct sdhci_host *host, unsigned char timing)
{
return !(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN) && sdhci_timing_has_preset(timing);
}
static rt_bool_t sdhci_presetable_values_change(struct sdhci_host *host, struct rt_mmcsd_io_cfg *ios)
{
/*
* Preset Values are: Driver Strength, Clock Generator and SDCLK/RCLK
* Frequency. Check if preset values need to be enabled, or the Driver
* Strength needs updating. Note, clock changes are handled separately.
*/
return !host->preset_enabled && (sdhci_preset_needed(host, ios->timing) || host->drv_type != ios->drv_type);
}
static void sdhci_enable_preset_value(struct sdhci_host *host, rt_bool_t enable)
{
/* Host Controller v3.00 defines preset value registers */
if (host->version < SDHCI_SPEC_300)
return;
/*
* We only enable or disable Preset Value if they are not already
* enabled or disabled respectively. Otherwise, we bail out.
*/
if (host->preset_enabled != enable)
{
rt_uint16_t ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (enable)
ctrl |= SDHCI_CTRL_PRESET_VAL_ENABLE;
else
ctrl &= ~SDHCI_CTRL_PRESET_VAL_ENABLE;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (enable)
host->flags |= SDHCI_PV_ENABLED;
else
host->flags &= ~SDHCI_PV_ENABLED;
host->preset_enabled = enable;
}
}
static void sdhci_set_power_reg(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
struct mmc_host *mmc = host->mmc;
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd);
if (mode != MMC_POWER_OFF)
sdhci_writeb(host, SDHCI_POWER_ON, SDHCI_POWER_CONTROL);
else
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
}
void sdhci_set_power_noreg(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
rt_uint8_t pwr = 0;
if (mode != MMC_POWER_OFF)
{
switch (1 << vdd)
{
case MMC_VDD_165_195:
/*
* Without a regulator, SDHCI does not support 2.0v
* so we only get here if the driver deliberately
* added the 2.0v range to ocr_avail. Map it to 1.8v
* for the purpose of turning on the power.
*/
case MMC_VDD_20_21:
pwr = SDHCI_POWER_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
pwr = SDHCI_POWER_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
/*
* 3.4 ~ 3.6V are valid only for those platforms where it's
* known that the voltage range is supported by hardware.
*/
case MMC_VDD_34_35:
case MMC_VDD_35_36:
pwr = SDHCI_POWER_330;
break;
default:
break;
}
}
if (host->pwr == pwr)
return;
host->pwr = pwr;
if (pwr == 0)
{
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
}
else
{
/*
* Spec says that we should clear the power reg before setting
* a new value. Some controllers don't seem to like this though.
*/
if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE))
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
/*
* At least the Marvell CaFe chip gets confused if we set the
* voltage and set turn on power at the same time, so set the
* voltage first.
*/
if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER)
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
pwr |= SDHCI_POWER_ON;
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_on(host);
/*
* Some controllers need an extra 10ms delay of 10ms before
* they can apply clock after applying power
*/
if (host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER)
rt_thread_mdelay(10);
}
}
void sdhci_set_power(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
if (!host->mmc->supply.vmmc)
sdhci_set_power_noreg(host, mode, vdd);
else
sdhci_set_power_reg(host, mode, vdd);
}
int sdhci_start_signal_voltage_switch(struct mmc_host *mmc,
struct rt_mmcsd_io_cfg *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
rt_uint16_t ctrl;
int ret;
/*
* Signal Voltage Switching is only applicable for Host Controllers
* v3.00 and above.
*/
if (host->version < SDHCI_SPEC_300)
return 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
switch (ios->signal_voltage)
{
case MMC_SIGNAL_VOLTAGE_330:
if (!(host->flags & SDHCI_SIGNALING_330))
return -EINVAL;
/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
ctrl &= ~SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (!mmc->supply.vqmmc)
{
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0)
{
return -EIO;
}
}
/* Wait for 5ms */
rt_thread_mdelay(5);
/* 3.3V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_VDD_180))
return 0;
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_180:
if (!(host->flags & SDHCI_SIGNALING_180))
return -EINVAL;
if (!mmc->supply.vqmmc)
{
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0)
{
LOG_D("%s: Switching to 1.8V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
/*
* Enable 1.8V Signal Enable in the Host Control2
* register
*/
ctrl |= SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/* Some controller need to do more when switching */
if (host->ops->voltage_switch)
host->ops->voltage_switch(host);
/* 1.8V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (ctrl & SDHCI_CTRL_VDD_180)
return 0;
LOG_D("%s: 1.8V regulator output did not become stable\n",
mmc_hostname(mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_120:
if (!(host->flags & SDHCI_SIGNALING_120))
return -EINVAL;
if (!mmc->supply.vqmmc)
{
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0)
{
LOG_D("%s: Switching to 1.2V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
return 0;
default:
/* No signal voltage switch required */
return 0;
}
}
static int sdhci_get_cd(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int gpio_cd = mmc_gpio_get_cd(mmc);
if (host->flags & SDHCI_DEVICE_DEAD)
return 0;
/* If nonremovable, assume that the card is always present. */
if (!mmc_card_is_removable(mmc))
return 1;
/*
* Try slot gpio detect, if defined it take precedence
* over build in controller functionality
*/
if (gpio_cd >= 0)
return !!gpio_cd;
/* If polling, assume that the card is always present. */
if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION)
return 1;
/* Host native card detect */
return !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
}
static int sdhci_check_ro(struct sdhci_host *host)
{
int is_readonly;
rt_base_t flags;
flags = rt_spin_lock_irqsave(&host->lock);
if (host->flags & SDHCI_DEVICE_DEAD)
is_readonly = 0;
else if (host->ops->get_ro)
is_readonly = host->ops->get_ro(host);
else if (mmc_can_gpio_ro(host->mmc))
is_readonly = mmc_gpio_get_ro(host->mmc);
else
is_readonly = !(sdhci_readl(host, SDHCI_PRESENT_STATE)
& SDHCI_WRITE_PROTECT);
rt_spin_unlock_irqrestore(&host->lock, flags);
/* This quirk needs to be replaced by a callback-function later */
return host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT ? !is_readonly : is_readonly;
}
#define SAMPLE_COUNT 5
static int sdhci_get_ro(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int i, ro_count;
if (!(host->quirks & SDHCI_QUIRK_UNSTABLE_RO_DETECT))
return sdhci_check_ro(host);
ro_count = 0;
for (i = 0; i < SAMPLE_COUNT; i++)
{
if (sdhci_check_ro(host))
{
if (++ro_count > SAMPLE_COUNT / 2)
return 1;
}
rt_thread_mdelay(30);
}
return 0;
}
static void sdhci_enable_sdio_irq_nolock(struct sdhci_host *host, int enable)
{
if (!(host->flags & SDHCI_DEVICE_DEAD))
{
if (enable)
host->ier |= SDHCI_INT_CARD_INT;
else
host->ier &= ~SDHCI_INT_CARD_INT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
}
static void sdhci_ack_sdio_irq(struct mmc_host *mmc)
{
rt_base_t flags;
struct sdhci_host *host = mmc_priv(mmc);
flags = rt_spin_lock_irqsave(&host->lock);
sdhci_enable_sdio_irq_nolock(host, RT_TRUE);
rt_spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_del_timer(struct sdhci_host *host, struct rt_mmcsd_req *mrq)
{
if (sdhci_data_line_cmd(mrq->cmd))
rt_timer_stop(&host->data_timer);
else
rt_timer_stop(&host->timer);
}
static unsigned int sdhci_target_timeout(struct sdhci_host *host,
struct rt_mmcsd_cmd *cmd,
struct rt_mmcsd_data *data)
{
unsigned int target_timeout;
/* timeout in us */
if (!data)
{
target_timeout = cmd->busy_timeout * 1000;
}
else
{
target_timeout = DIV_ROUND_UP(data->timeout_ns, 1000);
if (host->clock && data->timeout_clks)
{
rt_uint32_t val;
/*
* data->timeout_clks is in units of clock cycles.
* host->clock is in Hz. target_timeout is in us.
* Hence, us = 1000000 * cycles / Hz. Round up.
*/
val = 1000000ULL * data->timeout_clks;
if (do_div(val, host->clock))
target_timeout++;
target_timeout += val;
}
}
return target_timeout;
}
static rt_uint8_t sdhci_calc_timeout(struct sdhci_host *host, struct rt_mmcsd_cmd *cmd,
rt_bool_t *too_big)
{
rt_uint8_t count;
struct rt_mmcsd_data *data;
unsigned target_timeout, current_timeout;
*too_big = RT_FALSE;
/*
* If the host controller provides us with an incorrect timeout
* value, just skip the check and use the maximum. The hardware may take
* longer to time out, but that's much better than having a too-short
* timeout value.
*/
if (host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL)
return host->max_timeout_count;
/* Unspecified command, assume max */
if (cmd == NULL)
return host->max_timeout_count;
data = cmd->data;
/* Unspecified timeout, assume max */
if (!data && !cmd->busy_timeout)
return host->max_timeout_count;
/* timeout in us */
target_timeout = sdhci_target_timeout(host, cmd, data);
/*
* Figure out needed cycles.
* We do this in steps in order to fit inside a 32 bit int.
* The first step is the minimum timeout, which will have a
* minimum resolution of 6 bits:
* (1) 2^13*1000 > 2^22,
* (2) host->timeout_clk < 2^16
* =>
* (1) / (2) > 2^6
*/
count = 0;
current_timeout = (1 << 13) * 1000 / host->timeout_clk;
while (current_timeout < target_timeout)
{
count++;
current_timeout <<= 1;
if (count > host->max_timeout_count)
{
if (!(host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT))
LOG_D("Too large timeout 0x%x requested for CMD%d!\n",
count, cmd->cmd_code);
count = host->max_timeout_count;
*too_big = RT_TRUE;
break;
}
}
return count;
}
static void sdhci_calc_sw_timeout(struct sdhci_host *host,
struct rt_mmcsd_cmd *cmd)
{
struct rt_mmcsd_data *data = cmd->data;
struct mmc_host *mmc = host->mmc;
struct rt_mmcsd_io_cfg *ios = &mmc->ios;
unsigned char bus_width = 1 << ios->bus_width;
unsigned int blksz;
unsigned int freq;
rt_uint64_t target_timeout;
rt_uint64_t transfer_time;
target_timeout = sdhci_target_timeout(host, cmd, data);
target_timeout *= 1000L;
if (data)
{
blksz = data->blksize;
freq = mmc->actual_clock ?: host->clock;
transfer_time = (rt_uint64_t)blksz * 1000000000L * (8 / bus_width);
do_div(transfer_time, freq);
/* multiply by '2' to account for any unknowns */
transfer_time = transfer_time * 2;
/* calculate timeout for the entire data */
host->data_timeout = data->blks * target_timeout + transfer_time;
}
else
{
host->data_timeout = target_timeout;
}
if (host->data_timeout)
host->data_timeout += MMC_CMD_TRANSFER_TIME;
}
void __sdhci_set_timeout(struct sdhci_host *host, struct rt_mmcsd_cmd *cmd)
{
rt_bool_t too_big = RT_FALSE;
rt_uint8_t count = sdhci_calc_timeout(host, cmd, &too_big);
if (too_big && host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT)
{
sdhci_calc_sw_timeout(host, cmd);
sdhci_set_data_timeout_irq(host, RT_FALSE);
}
else if (!(host->ier & SDHCI_INT_DATA_TIMEOUT))
{
sdhci_set_data_timeout_irq(host, RT_FALSE);
}
sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL);
}
static void sdhci_set_timeout(struct sdhci_host *host, struct rt_mmcsd_cmd *cmd)
{
if (host->ops->set_timeout)
host->ops->set_timeout(host, cmd);
else
__sdhci_set_timeout(host, cmd);
}
static void sdhci_mod_timer(struct sdhci_host *host, struct rt_mmcsd_req *mrq,
unsigned long timeout)
{
if (sdhci_data_line_cmd(mrq->cmd))
{
rt_tick_t tick = rt_tick_get();
if (timeout < tick)
{
timeout = tick;
}
tick = timeout - tick;
rt_timer_stop(&host->data_timer);
rt_timer_control(&host->data_timer, RT_TIMER_CTRL_SET_TIME, &tick);
rt_timer_start(&host->data_timer);
}
else
{
rt_tick_t tick = rt_tick_get();
if (timeout < tick)
{
timeout = tick;
}
tick = timeout - tick;
rt_timer_stop(&host->timer);
rt_timer_control(&host->timer, RT_TIMER_CTRL_SET_TIME, &tick);
rt_timer_start(&host->timer);
}
}
static void __sdhci_finish_mrq(struct sdhci_host *host, struct rt_mmcsd_req *mrq)
{
if (host->cmd && host->cmd->mrq == mrq)
host->cmd = NULL;
if (host->data_cmd && host->data_cmd->mrq == mrq)
host->data_cmd = NULL;
if (host->deferred_cmd && host->deferred_cmd->mrq == mrq)
host->deferred_cmd = NULL;
if (host->data && host->data->mrq == mrq)
host->data = NULL;
if (sdhci_needs_reset(host, mrq))
host->pending_reset = RT_TRUE;
sdhci_set_mrq_done(host, mrq);
sdhci_del_timer(host, mrq);
}
static void sdhci_finish_mrq(struct sdhci_host *host, struct rt_mmcsd_req *mrq)
{
__sdhci_finish_mrq(host, mrq);
rt_workqueue_submit_work(host->complete_wq, &host->complete_work, 0);
}
static void sdhci_error_out_mrqs(struct sdhci_host *host, int err)
{
if (host->data_cmd)
{
host->data_cmd->err = err;
sdhci_finish_mrq(host, host->data_cmd->mrq);
}
if (host->cmd)
{
host->cmd->err = err;
sdhci_finish_mrq(host, host->cmd->mrq);
}
}
static void sdhci_card_event(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
rt_uint32_t flags;
int present;
/* First check if client has provided their own card event */
if (host->ops->card_event)
host->ops->card_event(host);
present = mmc->ops->get_cd(mmc);
flags = rt_spin_lock_irqsave(&host->lock);
/* Check sdhci_has_requests() first in case we are runtime suspended */
if (sdhci_has_requests(host) && !present)
{
rt_kprintf("%s: Card removed during transfer!\n",
mmc_hostname(mmc));
rt_kprintf("%s: Resetting controller.\n",
mmc_hostname(mmc));
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
sdhci_error_out_mrqs(host, -ENOMEDIUM);
}
rt_spin_unlock_irqrestore(&host->lock, flags);
}
static int sdhci_card_busy(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
rt_uint32_t present_state;
/* Check whether DAT[0] is 0 */
present_state = sdhci_readl(host, SDHCI_PRESENT_STATE);
return !(present_state & SDHCI_DATA_0_LVL_MASK);
}
static int sdhci_prepare_hs400_tuning(struct mmc_host *mmc, struct rt_mmcsd_io_cfg *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
rt_uint32_t flags;
flags = rt_spin_lock_irqsave(&host->lock);
host->flags |= SDHCI_HS400_TUNING;
rt_spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
static void sdhci_set_transfer_mode(struct sdhci_host *host,
struct rt_mmcsd_cmd *cmd)
{
rt_uint16_t mode = 0;
struct rt_mmcsd_data *data = cmd->data;
if (data == NULL)
{
if (host->quirks2 & SDHCI_QUIRK2_CLEAR_TRANSFERMODE_REG_BEFORE_CMD)
{
/* must not clear SDHCI_TRANSFER_MODE when tuning */
if (!mmc_op_tuning(cmd->cmd_code))
sdhci_writew(host, 0x0, SDHCI_TRANSFER_MODE);
}
else
{
/* clear Auto CMD settings for no data CMDs */
mode = sdhci_readw(host, SDHCI_TRANSFER_MODE);
sdhci_writew(host, mode & ~(SDHCI_TRNS_AUTO_CMD12 | SDHCI_TRNS_AUTO_CMD23), SDHCI_TRANSFER_MODE);
}
return;
}
if (!(host->quirks2 & SDHCI_QUIRK2_SUPPORT_SINGLE))
mode = SDHCI_TRNS_BLK_CNT_EN;
if (mmc_op_multi(cmd->cmd_code) || data->blks > 1)
{
mode = SDHCI_TRNS_BLK_CNT_EN | SDHCI_TRNS_MULTI;
sdhci_auto_cmd_select(host, cmd, &mode);
if (sdhci_auto_cmd23(host, cmd->mrq))
sdhci_writel(host, cmd->mrq->sbc->arg, SDHCI_ARGUMENT2);
}
if (data->flags & DATA_DIR_READ)
mode |= SDHCI_TRNS_READ;
if (host->flags & SDHCI_REQ_USE_DMA)
mode |= SDHCI_TRNS_DMA;
sdhci_writew(host, mode, SDHCI_TRANSFER_MODE);
}
static rt_bool_t sdhci_send_command(struct sdhci_host *host, struct rt_mmcsd_cmd *cmd)
{
int flags;
rt_uint32_t mask;
unsigned long timeout;
/* Initially, a command has no error */
cmd->err = 0;
if ((host->quirks2 & SDHCI_QUIRK2_STOP_WITH_TC) && cmd->cmd_code == MMC_STOP_TRANSMISSION)
cmd->flags |= MMC_RSP_BUSY;
mask = SDHCI_CMD_INHIBIT;
if (sdhci_data_line_cmd(cmd))
mask |= SDHCI_DATA_INHIBIT;
/* We shouldn't wait for data inihibit for stop commands, even
though they might use busy signaling */
if (cmd->mrq->data && (cmd == cmd->mrq->data->stop))
mask &= ~SDHCI_DATA_INHIBIT;
if (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask)
return RT_FALSE;
host->cmd = cmd;
host->data_timeout = 0;
if (sdhci_data_line_cmd(cmd))
{
host->data_cmd = cmd;
sdhci_set_timeout(host, cmd);
}
if (cmd->data)
{
if (host->use_external_dma)
sdhci_external_dma_prepare_data(host, cmd);
else
sdhci_prepare_data(host, cmd);
}
sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT);
sdhci_set_transfer_mode(host, cmd);
if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY))
{
/*
* This does not happen in practice because 136-bit response
* commands never have busy waiting, so rather than complicate
* the error path, just remove busy waiting and continue.
*/
cmd->flags &= ~MMC_RSP_BUSY;
}
if (!(cmd->flags & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->flags & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->flags & MMC_RSP_BUSY)
flags = SDHCI_CMD_RESP_SHORT_BUSY;
else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->flags & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->flags & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
/* CMD19 is special in that the Data Present Select should be set */
if (cmd->data || mmc_op_tuning(cmd->cmd_code))
flags |= SDHCI_CMD_DATA;
timeout = rt_tick_get();
if (host->data_timeout)
timeout += rt_tick_from_millisecond(host->data_timeout * 1000);
else if (!cmd->data && cmd->busy_timeout > 9000)
timeout += DIV_ROUND_UP(cmd->busy_timeout, 1000) * RT_TICK_PER_SECOND + RT_TICK_PER_SECOND;
else
timeout += 10 * RT_TICK_PER_SECOND;
sdhci_mod_timer(host, cmd->mrq, timeout);
if (host->use_external_dma)
sdhci_external_dma_pre_transfer(host, cmd);
sdhci_writew(host, SDHCI_MAKE_CMD(cmd->cmd_code, flags), SDHCI_COMMAND);
return RT_TRUE;
}
/********************************************************* */
/* dma */
/********************************************************* */
static void __sdhci_finish_data(struct sdhci_host *host, rt_bool_t sw_data_timeout)
{
struct rt_mmcsd_cmd *data_cmd = host->data_cmd;
struct rt_mmcsd_data *data = host->data;
host->data = NULL;
host->data_cmd = NULL;
/*
* The controller needs a reset of internal state machines upon error
* conditions.
*/
if (data->err)
{
if (!host->cmd || host->cmd == data_cmd)
sdhci_reset_for(host, REQUEST_ERROR);
else
sdhci_reset_for(host, REQUEST_ERROR_DATA_ONLY);
}
/*
* The specification states that the block count register must
* be updated, but it does not specify at what point in the
* data flow. That makes the register entirely useless to read
* back so we have to assume that nothing made it to the card
* in the event of an error.
*/
if (data->err)
{
data->bytes_xfered = 0;
}
else
{
data->bytes_xfered = data->blksize * data->blks;
}
/*
* Need to send CMD12 if -
* a) open-ended multiblock transfer not using auto CMD12 (no CMD23)
* b) error in multiblock transfer
*/
if (data->stop && ((!data->mrq->sbc && !sdhci_auto_cmd12(host, data->mrq)) || data->err))
{
/*
* 'cap_cmd_during_tfr' request must not use the command line
* after mmc_command_done() has been called. It is upper layer's
* responsibility to send the stop command if required.
*/
if (data->mrq->cap_cmd_during_tfr)
{
__sdhci_finish_mrq(host, data->mrq);
}
else
{
/* Avoid triggering warning in sdhci_send_command() */
host->cmd = NULL;
if (!sdhci_send_command(host, data->stop))
{
if (sw_data_timeout)
{
/*
* This is anyway a sw data timeout, so
* give up now.
*/
data->stop->err = -EIO;
__sdhci_finish_mrq(host, data->mrq);
}
else
{
host->deferred_cmd = data->stop;
}
}
}
}
else
{
__sdhci_finish_mrq(host, data->mrq);
}
}
static void sdhci_finish_data(struct sdhci_host *host)
{
__sdhci_finish_data(host, RT_FALSE);
}
/********************************************************* */
/* irq */
/********************************************************* */
static void sdhci_data_irq(struct sdhci_host *host, rt_uint32_t intmask)
{
rt_uint32_t command;
/*
* CMD19 generates _only_ Buffer Read Ready interrupt if
* use sdhci_send_tuning.
* Need to exclude this case: PIO mode and use mmc_send_tuning,
* If not, sdhci_transfer_pio will never be called, make the
* SDHCI_INT_DATA_AVAIL always there, stuck in irq storm.
*/
if (intmask & SDHCI_INT_DATA_AVAIL && !host->data)
{
command = SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND));
if (command == MMC_SEND_TUNING_BLOCK || command == MMC_SEND_TUNING_BLOCK_HS200)
{
host->tuning_done = 1;
rt_wqueue_wakeup(&host->buf_ready_int, 0);
return;
}
}
if (!host->data)
{
struct rt_mmcsd_cmd *data_cmd = host->data_cmd;
/*
* The "data complete" interrupt is also used to
* indicate that a busy state has ended. See comment
* above in sdhci_cmd_irq().
*/
if (data_cmd && (data_cmd->flags & MMC_RSP_BUSY))
{
if (intmask & SDHCI_INT_DATA_TIMEOUT)
{
host->data_cmd = NULL;
data_cmd->err = -ETIMEDOUT;
__sdhci_finish_mrq(host, data_cmd->mrq);
return;
}
if (intmask & SDHCI_INT_DATA_END)
{
host->data_cmd = NULL;
/*
* Some cards handle busy-end interrupt
* before the command completed, so make
* sure we do things in the proper order.
*/
if (host->cmd == data_cmd)
return;
__sdhci_finish_mrq(host, data_cmd->mrq);
return;
}
}
/*
* SDHCI recovers from errors by resetting the cmd and data
* circuits. Until that is done, there very well might be more
* interrupts, so ignore them in that case.
*/
if (host->pending_reset)
return;
rt_kprintf("%s: Got data interrupt 0x%08x even though no data operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & SDHCI_INT_DATA_TIMEOUT)
host->data->err = -ETIMEDOUT;
else if (intmask & SDHCI_INT_DATA_END_BIT)
host->data->err = -EILSEQ;
else if ((intmask & SDHCI_INT_DATA_CRC) && SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND)) != MMC_BUS_TEST_R)
{
host->data->err = -EILSEQ;
}
if (host->data->err)
{
sdhci_finish_data(host);
}
else
{
if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL))
sdhci_transfer_pio(host);
/*
* We currently don't do anything fancy with DMA
* boundaries, but as we can't disable the feature
* we need to at least restart the transfer.
*
* According to the spec sdhci_readl(host, SDHCI_DMA_ADDRESS)
* should return a valid address to continue from, but as
* some controllers are faulty, don't trust them.
*/
if (intmask & SDHCI_INT_DMA_END)
{
rt_uint32_t dmastart, dmanow;
dmastart = sdhci_sdma_address(host);
dmanow = dmastart + host->data->bytes_xfered;
/*
* Force update to the next DMA block boundary.
*/
dmanow = (dmanow & ~((rt_uint32_t)SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) + SDHCI_DEFAULT_BOUNDARY_SIZE;
host->data->bytes_xfered = dmanow - dmastart;
LOG_D("DMA base %pad, transferred 0x%06x bytes, next %pad\n",
&dmastart, host->data->bytes_xfered, &dmanow);
sdhci_set_sdma_addr(host, dmanow);
}
if (intmask & SDHCI_INT_DATA_END)
{
if (host->cmd == host->data_cmd)
{
/*
* Data managed to finish before the
* command completed. Make sure we do
* things in the proper order.
*/
host->data_early = 1;
}
else
{
sdhci_finish_data(host);
}
}
}
}
static void sdhci_read_rsp_136(struct sdhci_host *host, struct rt_mmcsd_cmd *cmd)
{
int i, reg;
for (i = 0; i < 4; i++)
{
reg = SDHCI_RESPONSE + (3 - i) * 4;
cmd->resp[i] = sdhci_readl(host, reg);
}
if (host->quirks2 & SDHCI_QUIRK2_RSP_136_HAS_CRC)
return;
/* CRC is stripped so we need to do some shifting */
for (i = 0; i < 4; i++)
{
cmd->resp[i] <<= 8;
if (i != 3)
cmd->resp[i] |= cmd->resp[i + 1] >> 24;
}
}
static void sdhci_finish_command(struct sdhci_host *host)
{
struct rt_mmcsd_cmd *cmd = host->cmd;
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT)
{
if (cmd->flags & MMC_RSP_136)
{
sdhci_read_rsp_136(host, cmd);
}
else
{
cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE);
}
}
/*
* The host can send and interrupt when the busy state has
* ended, allowing us to wait without wasting CPU cycles.
* The busy signal uses DAT0 so this is similar to waiting
* for data to complete.
*
* Note: The 1.0 specification is a bit ambiguous about this
* feature so there might be some problems with older
* controllers.
*/
if (cmd->flags & MMC_RSP_BUSY)
{
if (cmd->data)
{
LOG_D("Cannot wait for busy signal when also doing a data transfer");
}
else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) && cmd == host->data_cmd)
{
/* Command complete before busy is ended */
return;
}
}
/* Finished CMD23, now send actual command. */
if (cmd == cmd->mrq->sbc)
{
if (!sdhci_send_command(host, cmd->mrq->cmd))
{
host->deferred_cmd = cmd->mrq->cmd;
}
}
else
{
/* Processed actual command. */
if (host->data && host->data_early)
sdhci_finish_data(host);
if (!cmd->data)
__sdhci_finish_mrq(host, cmd->mrq);
}
}
static void sdhci_cmd_irq(struct sdhci_host *host, rt_uint32_t intmask, rt_uint32_t *intmask_p)
{
/* Handle auto-CMD12 error */
if (intmask & SDHCI_INT_AUTO_CMD_ERR && host->data_cmd)
{
struct rt_mmcsd_req *mrq = host->data_cmd->mrq;
rt_uint16_t auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS);
int data_err_bit = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ? SDHCI_INT_DATA_TIMEOUT : SDHCI_INT_DATA_CRC;
/* Treat auto-CMD12 error the same as data error */
if (!mrq->sbc && (host->flags & SDHCI_AUTO_CMD12))
{
*intmask_p |= data_err_bit;
return;
}
}
if (!host->cmd)
{
/*
* SDHCI recovers from errors by resetting the cmd and data
* circuits. Until that is done, there very well might be more
* interrupts, so ignore them in that case.
*/
if (host->pending_reset)
return;
rt_kprintf("%s: Got command interrupt 0x%08x even though no command operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & (SDHCI_INT_TIMEOUT | SDHCI_INT_CRC | SDHCI_INT_END_BIT | SDHCI_INT_INDEX))
{
if (intmask & SDHCI_INT_TIMEOUT)
host->cmd->err = -ETIMEDOUT;
else
host->cmd->err = -EILSEQ;
/* Treat data command CRC error the same as data CRC error */
if (host->cmd->data && (intmask & (SDHCI_INT_CRC | SDHCI_INT_TIMEOUT)) == SDHCI_INT_CRC)
{
host->cmd = NULL;
*intmask_p |= SDHCI_INT_DATA_CRC;
return;
}
__sdhci_finish_mrq(host, host->cmd->mrq);
return;
}
/* Handle auto-CMD23 error */
if (intmask & SDHCI_INT_AUTO_CMD_ERR)
{
struct rt_mmcsd_req *mrq = host->cmd->mrq;
rt_uint16_t auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS);
int err = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ? -ETIMEDOUT : -EILSEQ;
if (mrq->sbc && (host->flags & SDHCI_AUTO_CMD23))
{
mrq->sbc->err = err;
__sdhci_finish_mrq(host, mrq);
return;
}
}
if (intmask & SDHCI_INT_RESPONSE)
sdhci_finish_command(host);
}
static void sdhci_irq(int irq, void *dev_id)
{
struct rt_mmcsd_req *mrqs_done[SDHCI_MAX_MRQS] = {0};
struct sdhci_host *host = dev_id;
rt_uint32_t intmask, mask, unexpected = 0;
int max_loops = 16;
int i, result;
rt_spin_lock(&host->lock);
if (host->runtime_suspended)
{
rt_spin_unlock(&host->lock);
}
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
if (!intmask || intmask == 0xffffffff)
{
result = 0;
goto out;
}
do {
LOG_D("IRQ status 0x%08x\n", intmask);
if (host->ops->irq)
{
intmask = host->ops->irq(host, intmask);
if (!intmask)
goto cont;
}
/* Clear selected interrupts. */
mask = intmask & (SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK | SDHCI_INT_BUS_POWER);
sdhci_writel(host, mask, SDHCI_INT_STATUS);
if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE))
{
rt_uint32_t present = sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT;
/*
* There is a observation on i.mx esdhc. INSERT
* bit will be immediately set again when it gets
* cleared, if a card is inserted. We have to mask
* the irq to prevent interrupt storm which will
* freeze the system. And the REMOVE gets the
* same situation.
*
* More testing are needed here to ensure it works
* for other platforms though.
*/
host->ier &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
host->ier |= present ? SDHCI_INT_CARD_REMOVE : SDHCI_INT_CARD_INSERT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS);
host->thread_isr |= intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
result = RT_EOK;
}
if (intmask & SDHCI_INT_CMD_MASK)
sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK, &intmask);
if (intmask & SDHCI_INT_DATA_MASK)
sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK);
if (intmask & SDHCI_INT_BUS_POWER)
rt_kprintf("%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK | SDHCI_INT_ERROR | SDHCI_INT_BUS_POWER | SDHCI_INT_RETUNE | SDHCI_INT_CARD_INT);
if (intmask)
{
unexpected |= intmask;
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
}
cont:
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
} while (intmask && --max_loops);
/* Determine if mrqs can be completed immediately */
for (i = 0; i < SDHCI_MAX_MRQS; i++)
{
struct rt_mmcsd_req *mrq = host->mrqs_done[i];
if (!mrq)
continue;
if (sdhci_defer_done(host, mrq))
{
result = RT_EOK;
}
else
{
mrqs_done[i] = mrq;
host->mrqs_done[i] = NULL;
}
}
out:
if (host->deferred_cmd)
result = RT_EOK;
rt_spin_unlock(&host->lock);
/* Process mrqs ready for immediate completion */
for (i = 0; i < SDHCI_MAX_MRQS; i++)
{
if (!mrqs_done[i])
continue;
if (host->ops->request_done)
host->ops->request_done(host, mrqs_done[i]);
else
mmc_request_done(host->mmc, mrqs_done[i]);
}
if (unexpected)
{
sdhci_dumpregs(host);
}
if (result == RT_EOK)
{
rt_workqueue_submit_work(host->irq_wq, &host->irq_work, 0);
}
}
static rt_bool_t sdhci_send_command_retry(struct sdhci_host *host,
struct rt_mmcsd_cmd *cmd,
unsigned long flags)
{
struct rt_mmcsd_cmd *deferred_cmd = host->deferred_cmd;
int timeout = 10; /* Approx. 10 ms */
rt_bool_t present;
while (!sdhci_send_command(host, cmd))
{
if (!timeout--)
{
rt_kprintf("%s: Controller never released inhibit bit(s).\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
cmd->err = -EIO;
return RT_FALSE;
}
rt_spin_unlock_irqrestore(&host->lock, flags);
rt_thread_mdelay(1);
present = host->mmc->ops->get_cd(host->mmc);
flags = rt_spin_lock_irqsave(&host->lock);
/* A deferred command might disappear, handle that */
if (cmd == deferred_cmd && cmd != host->deferred_cmd)
return RT_TRUE;
if (sdhci_present_error(host, cmd, present))
return RT_FALSE;
}
if (cmd == host->deferred_cmd)
host->deferred_cmd = NULL;
return RT_TRUE;
}
static rt_bool_t sdhci_request_done(struct sdhci_host *host)
{
rt_base_t flags;
struct rt_mmcsd_req *mrq;
int i;
flags = rt_spin_lock_irqsave(&host->lock);
for (i = 0; i < SDHCI_MAX_MRQS; i++)
{
mrq = host->mrqs_done[i];
if (mrq)
break;
}
if (!mrq)
{
rt_spin_unlock_irqrestore(&host->lock, flags);
return RT_TRUE;
}
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (sdhci_needs_reset(host, mrq))
{
/*
* Do not finish until command and data lines are available for
* reset. Note there can only be one other mrq, so it cannot
* also be in mrqs_done, otherwise host->cmd and host->data_cmd
* would both be null.
*/
if (host->cmd || host->data_cmd)
{
rt_spin_unlock_irqrestore(&host->lock, flags);
return RT_TRUE;
}
/* Some controllers need this kick or reset won't work here */
if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)
/* This is to force an update */
host->ops->set_clock(host, host->clock);
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
host->pending_reset = RT_FALSE;
}
/*
* Always unmap the data buffers if they were mapped by
* sdhci_prepare_data() whenever we finish with a request.
* This avoids leaking DMA mappings on error.
*/
if (host->flags & SDHCI_REQ_USE_DMA)
{
struct rt_mmcsd_data *data = mrq->data;
if (host->use_external_dma && data && (mrq->cmd->err || data->err))
{
host->mrqs_done[i] = NULL;
sdhci_set_mrq_done(host, mrq);
}
}
host->mrqs_done[i] = NULL;
rt_spin_unlock_irqrestore(&host->lock, flags);
if (host->ops->request_done)
host->ops->request_done(host, mrq);
else
mmc_request_done(host->mmc, mrq);
return RT_FALSE;
}
static void sdhci_thread_irq(struct rt_work *work, void *work_data)
{
struct sdhci_host *host = work_data;
struct rt_mmcsd_cmd *cmd;
rt_base_t flags;
rt_uint32_t isr;
while (!sdhci_request_done(host));
flags = rt_spin_lock_irqsave(&host->lock);
isr = host->thread_isr;
host->thread_isr = 0;
cmd = host->deferred_cmd;
if (cmd && !sdhci_send_command_retry(host, cmd, flags))
sdhci_finish_mrq(host, cmd->mrq);
rt_spin_unlock_irqrestore(&host->lock, flags);
if (isr & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE))
{
struct mmc_host *mmc = host->mmc;
mmc->ops->card_event(mmc);
}
}
void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sdhci_host *host = mmc_priv(mmc);
rt_uint32_t flags;
flags = rt_spin_lock_irqsave(&host->lock);
sdhci_enable_sdio_irq_nolock(host, enable);
rt_spin_unlock_irqrestore(&host->lock, flags);
}
/********************************************************* */
/* request */
/********************************************************* */
void sdhci_request(struct mmc_host *mmc, struct rt_mmcsd_req *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
struct rt_mmcsd_cmd *cmd;
rt_base_t flags;
rt_bool_t present;
/* Firstly check card presence */
present = mmc->ops->get_cd(mmc);
flags = rt_spin_lock_irqsave(&host->lock);
if (sdhci_present_error(host, mrq->cmd, present))
goto out_finish;
cmd = sdhci_manual_cmd23(host, mrq) ? mrq->sbc : mrq->cmd;
if (!sdhci_send_command_retry(host, cmd, flags))
goto out_finish;
rt_spin_unlock_irqrestore(&host->lock, flags);
return;
out_finish:
sdhci_finish_mrq(host, mrq);
rt_spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_complete_work(struct rt_work *work, void *work_data)
{
struct sdhci_host *host = work_data;
while (!sdhci_request_done(host));
}
/********************************************************* */
/* timer */
/********************************************************* */
static void sdhci_timeout_timer(void *parameter)
{
struct sdhci_host *host = parameter;
rt_base_t flags;
flags = rt_spin_lock_irqsave(&host->lock);
if (host->cmd && !sdhci_data_line_cmd(host->cmd))
{
rt_kprintf("%s: Timeout waiting for hardware cmd interrupt.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
host->cmd->err = -ETIMEDOUT;
sdhci_finish_mrq(host, host->cmd->mrq);
}
rt_spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_timeout_data_timer(void *parameter)
{
struct sdhci_host *host = parameter;
rt_base_t flags;
flags = rt_spin_lock_irqsave(&host->lock);
if (host->data || host->data_cmd || (host->cmd && sdhci_data_line_cmd(host->cmd)))
{
rt_kprintf("%s: Timeout waiting for hardware interrupt.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
if (host->data)
{
host->data->err = -ETIMEDOUT;
__sdhci_finish_data(host, RT_TRUE);
rt_workqueue_submit_work(host->complete_wq, &host->complete_work, 0);
}
else if (host->data_cmd)
{
host->data_cmd->err = -ETIMEDOUT;
sdhci_finish_mrq(host, host->data_cmd->mrq);
}
else
{
host->cmd->err = -ETIMEDOUT;
sdhci_finish_mrq(host, host->cmd->mrq);
}
}
rt_spin_unlock_irqrestore(&host->lock, flags);
}
/********************************************************* */
/* tuning */
/********************************************************* */
int sdhci_execute_tuning(struct mmc_host *mmc, rt_uint32_t opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int err = 0;
unsigned int tuning_count = 0;
rt_bool_t hs400_tuning;
hs400_tuning = host->flags & SDHCI_HS400_TUNING;
if (host->tuning_mode == SDHCI_TUNING_MODE_1)
tuning_count = host->tuning_count;
/*
* The Host Controller needs tuning in case of SDR104 and DDR50
* mode, and for SDR50 mode when Use Tuning for SDR50 is set in
* the Capabilities register.
* If the Host Controller supports the HS200 mode then the
* tuning function has to be executed.
*/
switch (host->timing)
{
/* HS400 tuning is done in HS200 mode */
case MMC_TIMING_MMC_HS400:
err = -EINVAL;
goto out;
case MMC_TIMING_MMC_HS200:
/*
* Periodic re-tuning for HS400 is not expected to be needed, so
* disable it here.
*/
if (hs400_tuning)
tuning_count = 0;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_UHS_DDR50:
break;
case MMC_TIMING_UHS_SDR50:
if (host->flags & SDHCI_SDR50_NEEDS_TUNING)
break;
fallthrough;
default:
goto out;
}
if (host->ops->platform_execute_tuning)
{
err = host->ops->platform_execute_tuning(host, opcode);
goto out;
}
mmc->retune_period = tuning_count;
if (host->tuning_delay < 0)
host->tuning_delay = opcode == MMC_SEND_TUNING_BLOCK;
sdhci_start_tuning(host);
host->tuning_err = __sdhci_execute_tuning(host, opcode);
sdhci_end_tuning(host);
out:
host->flags &= ~SDHCI_HS400_TUNING;
return err;
}
int __sdhci_execute_tuning(struct sdhci_host *host, rt_uint32_t opcode)
{
int i;
/*
* Issue opcode repeatedly till Execute Tuning is set to 0 or the number
* of loops reaches tuning loop count.
*/
for (i = 0; i < host->tuning_loop_count; i++)
{
rt_uint16_t ctrl;
sdhci_send_tuning(host, opcode);
if (!host->tuning_done)
{
sdhci_abort_tuning(host, opcode);
return -ETIMEDOUT;
}
/* Spec does not require a delay between tuning cycles */
if (host->tuning_delay > 0)
rt_thread_mdelay(host->tuning_delay);
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_EXEC_TUNING))
{
if (ctrl & SDHCI_CTRL_TUNED_CLK)
return 0; /* Success! */
break;
}
}
LOG_D("%s: Tuning failed, falling back to fixed sampling clock\n",
mmc_hostname(host->mmc));
sdhci_reset_tuning(host);
return -EAGAIN;
}
void sdhci_start_tuning(struct sdhci_host *host)
{
rt_uint16_t ctrl;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl |= SDHCI_CTRL_EXEC_TUNING;
if (host->quirks2 & SDHCI_QUIRK2_TUNING_WORK_AROUND)
ctrl |= SDHCI_CTRL_TUNED_CLK;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/*
* As per the Host Controller spec v3.00, tuning command
* generates Buffer Read Ready interrupt, so enable that.
*
* Note: The spec clearly says that when tuning sequence
* is being performed, the controller does not generate
* interrupts other than Buffer Read Ready interrupt. But
* to make sure we don't hit a controller bug, we _only_
* enable Buffer Read Ready interrupt here.
*/
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE);
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE);
}
void sdhci_end_tuning(struct sdhci_host *host)
{
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
void sdhci_abort_tuning(struct sdhci_host *host, rt_uint32_t opcode)
{
sdhci_reset_tuning(host);
sdhci_reset_for(host, TUNING_ABORT);
sdhci_end_tuning(host);
}
void sdhci_send_tuning(struct sdhci_host *host, rt_uint32_t opcode)
{
struct mmc_host *mmc = host->mmc;
struct rt_mmcsd_cmd cmd = {};
struct rt_mmcsd_req mrq = {};
unsigned long flags;
rt_uint32_t b = host->sdma_boundary;
flags = rt_spin_lock_irqsave(&host->lock);
cmd.cmd_code = opcode;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.mrq = &mrq;
mrq.cmd = &cmd;
/*
* In response to CMD19, the card sends 64 bytes of tuning
* block to the Host Controller. So we set the block size
* to 64 here.
*/
if (cmd.cmd_code == MMC_SEND_TUNING_BLOCK_HS200 && mmc->ios.bus_width == MMC_BUS_WIDTH_8)
sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 128), SDHCI_BLOCK_SIZE);
else
sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 64), SDHCI_BLOCK_SIZE);
/*
* The tuning block is sent by the card to the host controller.
* So we set the TRNS_READ bit in the Transfer Mode register.
* This also takes care of setting DMA Enable and Multi Block
* Select in the same register to 0.
*/
sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE);
if (!sdhci_send_command_retry(host, &cmd, flags))
{
rt_spin_unlock_irqrestore(&host->lock, flags);
host->tuning_done = 0;
return;
}
host->cmd = NULL;
sdhci_del_timer(host, &mrq);
host->tuning_done = 0;
rt_spin_unlock_irqrestore(&host->lock, flags);
}
void sdhci_reset_tuning(struct sdhci_host *host)
{
rt_uint16_t ctrl;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
ctrl &= ~SDHCI_CTRL_EXEC_TUNING;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
}
/********************************************************* */
/* error */
/********************************************************* */
void sdhci_dumpregs(struct sdhci_host *host)
{
#define SDHCI_DUMP rt_kprintf
SDHCI_DUMP("============ SDHCI REGISTER DUMP ===========\n");
SDHCI_DUMP("Sys addr: 0x%08x | Version: 0x%08x\n",
sdhci_readl(host, SDHCI_DMA_ADDRESS),
sdhci_readw(host, SDHCI_HOST_VERSION));
SDHCI_DUMP("Blk size: 0x%08x | Blk cnt: 0x%08x\n",
sdhci_readw(host, SDHCI_BLOCK_SIZE),
sdhci_readw(host, SDHCI_BLOCK_COUNT));
SDHCI_DUMP("Argument: 0x%08x | Trn mode: 0x%08x\n",
sdhci_readl(host, SDHCI_ARGUMENT),
sdhci_readw(host, SDHCI_TRANSFER_MODE));
SDHCI_DUMP("Present: 0x%08x | Host ctl: 0x%08x\n",
sdhci_readl(host, SDHCI_PRESENT_STATE),
sdhci_readb(host, SDHCI_HOST_CONTROL));
SDHCI_DUMP("Power: 0x%08x | Blk gap: 0x%08x\n",
sdhci_readb(host, SDHCI_POWER_CONTROL),
sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL));
SDHCI_DUMP("Wake-up: 0x%08x | Clock: 0x%08x\n",
sdhci_readb(host, SDHCI_WAKE_UP_CONTROL),
sdhci_readw(host, SDHCI_CLOCK_CONTROL));
SDHCI_DUMP("Timeout: 0x%08x | Int stat: 0x%08x\n",
sdhci_readb(host, SDHCI_TIMEOUT_CONTROL),
sdhci_readl(host, SDHCI_INT_STATUS));
SDHCI_DUMP("Int enab: 0x%08x | Sig enab: 0x%08x\n",
sdhci_readl(host, SDHCI_INT_ENABLE),
sdhci_readl(host, SDHCI_SIGNAL_ENABLE));
SDHCI_DUMP("ACmd stat: 0x%08x | Slot int: 0x%08x\n",
sdhci_readw(host, SDHCI_AUTO_CMD_STATUS),
sdhci_readw(host, SDHCI_SLOT_INT_STATUS));
SDHCI_DUMP("Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
SDHCI_DUMP("Cmd: 0x%08x | Max curr: 0x%08x\n",
sdhci_readw(host, SDHCI_COMMAND),
sdhci_readl(host, SDHCI_MAX_CURRENT));
SDHCI_DUMP("Resp[0]: 0x%08x | Resp[1]: 0x%08x\n",
sdhci_readl(host, SDHCI_RESPONSE),
sdhci_readl(host, SDHCI_RESPONSE + 4));
SDHCI_DUMP("Resp[2]: 0x%08x | Resp[3]: 0x%08x\n",
sdhci_readl(host, SDHCI_RESPONSE + 8),
sdhci_readl(host, SDHCI_RESPONSE + 12));
SDHCI_DUMP("Host ctl2: 0x%08x\n",
sdhci_readw(host, SDHCI_HOST_CONTROL2));
if (host->ops->dump_vendor_regs)
host->ops->dump_vendor_regs(host);
SDHCI_DUMP("============================================\n");
}
static const struct mmc_host_ops sdhci_ops = {
.request = sdhci_request,
.set_ios = sdhci_set_ios,
.get_cd = sdhci_get_cd,
.get_ro = sdhci_get_ro,
.enable_sdio_irq = sdhci_enable_sdio_irq,
.ack_sdio_irq = sdhci_ack_sdio_irq,
.start_signal_voltage_switch = sdhci_start_signal_voltage_switch,
.prepare_hs400_tuning = sdhci_prepare_hs400_tuning,
.execute_tuning = sdhci_execute_tuning,
.card_event = sdhci_card_event,
.card_busy = sdhci_card_busy,
};
void sdhci_remove_host(struct sdhci_host *host, int dead)
{
struct mmc_host *mmc = host->mmc;
unsigned long flags;
if (dead)
{
flags = rt_spin_lock_irqsave(&host->lock);
host->flags |= SDHCI_DEVICE_DEAD;
if (sdhci_has_requests(host))
{
rt_kprintf("%s: Controller removed during "
" transfer!\n",
mmc_hostname(mmc));
sdhci_error_out_mrqs(host, -ENOMEDIUM);
}
rt_spin_unlock_irqrestore(&host->lock, flags);
}
sdhci_set_card_detection(host, RT_FALSE);
mmc_remove_host(mmc);
if (!dead)
sdhci_reset_for_all(host);
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
rt_timer_delete(&host->timer);
rt_timer_delete(&host->data_timer);
rt_workqueue_destroy(host->complete_wq);
if (host->use_external_dma)
sdhci_external_dma_release(host);
host->align_buffer = NULL;
}
rt_uint16_t sdhci_calc_clk(struct sdhci_host *host, unsigned int clock,
unsigned int *actual_clock)
{
int div = 0; /* Initialized for compiler warning */
int real_div = div, clk_mul = 1;
rt_uint16_t clk = 0;
rt_bool_t switch_base_clk = RT_FALSE;
if (host->version >= SDHCI_SPEC_300)
{
if (host->preset_enabled)
{
rt_uint16_t pre_val;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
pre_val = sdhci_get_preset_value(host);
div = FIELD_GET(SDHCI_PRESET_SDCLK_FREQ_MASK, pre_val);
if (host->clk_mul && (pre_val & SDHCI_PRESET_CLKGEN_SEL))
{
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div + 1;
clk_mul = host->clk_mul;
}
else
{
real_div = max_t(int, 1, div << 1);
}
goto clock_set;
}
/*
* Check if the Host Controller supports Programmable Clock
* Mode.
*/
if (host->clk_mul)
{
for (div = 1; div <= 1024; div++)
{
if ((host->max_clk * host->clk_mul / div)
<= clock)
break;
}
if ((host->max_clk * host->clk_mul / div) <= clock)
{
/*
* Set Programmable Clock Mode in the Clock
* Control register.
*/
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div;
clk_mul = host->clk_mul;
div--;
}
else
{
/*
* Divisor can be too small to reach clock
* speed requirement. Then use the base clock.
*/
switch_base_clk = RT_TRUE;
}
}
if (!host->clk_mul || switch_base_clk)
{
/* Version 3.00 divisors must be a multiple of 2. */
if (host->max_clk <= clock)
div = 1;
else
{
for (div = 2; div < SDHCI_MAX_DIV_SPEC_300;
div += 2)
{
if ((host->max_clk / div) <= clock)
break;
}
}
real_div = div;
div >>= 1;
if ((host->quirks2 & SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN)
&& !div && host->max_clk <= 25000000)
div = 1;
}
}
else
{
/* Version 2.00 divisors must be a power of 2. */
for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2)
{
if ((host->max_clk / div) <= clock)
break;
}
real_div = div;
div >>= 1;
}
clock_set:
if (real_div)
*actual_clock = (host->max_clk * clk_mul) / real_div;
clk |= (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT;
clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN)
<< SDHCI_DIVIDER_HI_SHIFT;
return clk;
}
void sdhci_enable_clk(struct sdhci_host *host, rt_uint16_t clk)
{
long timeout;
clk |= SDHCI_CLOCK_INT_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 150 ms */
timeout = rt_tick_from_millisecond(150);
while (1)
{
timeout = timeout - rt_tick_get();
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (clk & SDHCI_CLOCK_INT_STABLE)
break;
if (timeout < 0)
{
rt_kprintf("%s: Internal clock never stabilised.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
return;
}
rt_hw_us_delay(10);
}
if (host->version >= SDHCI_SPEC_410 && host->v4_mode)
{
clk |= SDHCI_CLOCK_PLL_EN;
clk &= ~SDHCI_CLOCK_INT_STABLE;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 150 ms */
timeout = rt_tick_from_millisecond(150);
while (1)
{
timeout = timeout - rt_tick_get();
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (clk & SDHCI_CLOCK_INT_STABLE)
break;
if (timeout < 0)
{
rt_kprintf("%s: PLL clock never stabilised.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
return;
}
rt_hw_us_delay(10);
}
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
}
void sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
rt_uint16_t clk;
host->mmc->actual_clock = 0;
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
clk = sdhci_calc_clk(host, clock, &host->mmc->actual_clock);
sdhci_enable_clk(host, clk);
}
void __sdhci_read_caps(struct sdhci_host *host, const rt_uint16_t *ver,
const rt_uint32_t *caps, const rt_uint32_t *caps1)
{
rt_uint16_t v;
rt_uint64_t dt_caps_mask = 0;
rt_uint64_t dt_caps = 0;
if (host->read_caps)
return;
host->read_caps = RT_TRUE;
if (debug_quirks)
host->quirks = debug_quirks;
if (debug_quirks2)
host->quirks2 = debug_quirks2;
sdhci_reset_for_all(host);
if (host->v4_mode)
sdhci_do_enable_v4_mode(host);
#ifdef RT_USING_OFW
rt_ofw_prop_read_u64(mmc_dev(host->mmc)->ofw_node,
"sdhci-caps-mask", &dt_caps_mask);
rt_ofw_prop_read_u64(mmc_dev(host->mmc)->ofw_node,
"sdhci-caps", &dt_caps);
#endif
v = ver ? *ver : sdhci_readw(host, SDHCI_HOST_VERSION);
host->version = (v & SDHCI_SPEC_VER_MASK) >> SDHCI_SPEC_VER_SHIFT;
if (caps)
{
host->caps = *caps;
}
else
{
host->caps = sdhci_readl(host, SDHCI_CAPABILITIES);
host->caps &= ~lower_32_bits(dt_caps_mask);
host->caps |= lower_32_bits(dt_caps);
}
if (host->version < SDHCI_SPEC_300)
return;
if (caps1)
{
host->caps1 = *caps1;
}
else
{
host->caps1 = sdhci_readl(host, SDHCI_CAPABILITIES_1);
host->caps1 &= ~upper_32_bits(dt_caps_mask);
host->caps1 |= upper_32_bits(dt_caps);
}
}
struct sdhci_host *sdhci_alloc_host(struct rt_device *dev,
size_t priv_size)
{
struct mmc_host *mmc;
struct sdhci_host *host;
mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev);
if (!mmc)
return NULL;
host = mmc_priv(mmc);
host->mmc = mmc;
host->mmc_host_ops = sdhci_ops;
mmc->ops = &host->mmc_host_ops;
host->flags = SDHCI_SIGNALING_330;
host->cqe_ier = SDHCI_CQE_INT_MASK;
host->cqe_err_ier = SDHCI_CQE_INT_ERR_MASK;
host->tuning_delay = -1;
host->tuning_loop_count = MAX_TUNING_LOOP;
host->sdma_boundary = SDHCI_DEFAULT_BOUNDARY_ARG;
/*
* The DMA table descriptor count is calculated as the maximum
* number of segments times 2, to allow for an alignment
* descriptor for each segment, plus 1 for a nop end descriptor.
*/
host->max_timeout_count = 0xE;
return host;
}
int sdhci_setup_host(struct sdhci_host *host)
{
struct mmc_host *mmc;
size_t max_current_caps;
unsigned int ocr_avail;
unsigned int override_timeout_clk;
size_t max_clk;
int ret = 0;
bool enable_vqmmc = RT_FALSE;
RT_ASSERT(host != NULL);
mmc = host->mmc;
/*
* If there are external regulators, get them. Note this must be done
* early before resetting the host and reading the capabilities so that
* the host can take the appropriate action if regulators are not
* available.
*/
if (!mmc->supply.vqmmc)
{
if (ret)
return ret;
enable_vqmmc = RT_TRUE;
}
LOG_D("Version: 0x%08x | Present: 0x%08x\n",
sdhci_readw(host, SDHCI_HOST_VERSION),
sdhci_readl(host, SDHCI_PRESENT_STATE));
LOG_D("Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
sdhci_read_caps(host);
override_timeout_clk = host->timeout_clk;
if (host->version > SDHCI_SPEC_420)
{
rt_kprintf("%s: Unknown controller version (%d). You may experience problems.\n",
mmc_hostname(mmc), host->version);
}
if (host->quirks & SDHCI_QUIRK_FORCE_DMA)
host->flags |= SDHCI_USE_SDMA;
else if (!(host->caps & SDHCI_CAN_DO_SDMA))
LOG_D("Controller doesn't have SDMA capability\n");
else
host->flags |= SDHCI_USE_SDMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_DMA) && (host->flags & SDHCI_USE_SDMA))
{
LOG_D("Disabling DMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_SDMA;
}
if (sdhci_can_64bit_dma(host))
host->flags |= SDHCI_USE_64_BIT_DMA;
if (host->flags & SDHCI_USE_SDMA)
{
if (host->ops->set_dma_mask)
ret = host->ops->set_dma_mask(host);
if (!ret && host->ops->enable_dma)
ret = host->ops->enable_dma(host);
if (ret)
{
rt_kprintf("%s: No suitable DMA available - falling back to PIO\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_SDMA;
ret = 0;
}
}
/* SDMA does not support 64-bit DMA if v4 mode not set */
if ((host->flags & SDHCI_USE_64_BIT_DMA) && !host->v4_mode)
host->flags &= ~SDHCI_USE_SDMA;
/*
* If we use DMA, then it's up to the caller to set the DMA
* mask, but PIO does not need the hw shim so we set a new
* mask here in that case.
*/
if (!(host->flags & SDHCI_USE_SDMA))
{
host->dma_mask = DMA_BIT_MASK(64);
}
if (host->version >= SDHCI_SPEC_300)
host->max_clk = FIELD_GET(SDHCI_CLOCK_V3_BASE_MASK, host->caps);
else
host->max_clk = FIELD_GET(SDHCI_CLOCK_BASE_MASK, host->caps);
host->max_clk *= 1000000;
if (host->max_clk == 0 || host->quirks & SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN)
{
if (!host->ops->get_max_clock)
{
rt_kprintf("%s: Hardware doesn't specify base clock frequency. %p \n",
mmc_hostname(mmc), host->ops->get_max_clock);
ret = -ENODEV;
goto undma;
}
host->max_clk = host->ops->get_max_clock(host);
}
/*
* In case of Host Controller v3.00, find out whether clock
* multiplier is supported.
*/
host->clk_mul = FIELD_GET(SDHCI_CLOCK_MUL_MASK, host->caps1);
/*
* In case the value in Clock Multiplier is 0, then programmable
* clock mode is not supported, otherwise the actual clock
* multiplier is one more than the value of Clock Multiplier
* in the Capabilities Register.
*/
if (host->clk_mul)
host->clk_mul += 1;
/*
* Set host parameters.
*/
max_clk = host->max_clk;
if (host->ops->get_min_clock)
mmc->f_min = host->ops->get_min_clock(host);
else if (host->version >= SDHCI_SPEC_300)
{
if (host->clk_mul)
max_clk = host->max_clk * host->clk_mul;
/*
* Divided Clock Mode minimum clock rate is always less than
* Programmable Clock Mode minimum clock rate.
*/
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_300;
}
else
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_200;
if (!mmc->f_max || mmc->f_max > max_clk)
mmc->f_max = max_clk;
if (!(host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK))
{
host->timeout_clk = FIELD_GET(SDHCI_TIMEOUT_CLK_MASK, host->caps);
if (host->caps & SDHCI_TIMEOUT_CLK_UNIT)
host->timeout_clk *= 1000;
if (host->timeout_clk == 0)
{
if (!host->ops->get_timeout_clock)
{
rt_kprintf("%s: Hardware doesn't specify timeout clock frequency.\n",
mmc_hostname(mmc));
ret = -ENODEV;
goto undma;
}
host->timeout_clk =
DIV_ROUND_UP(host->ops->get_timeout_clock(host),
1000);
}
if (override_timeout_clk)
host->timeout_clk = override_timeout_clk;
mmc->max_busy_timeout = host->ops->get_max_timeout_count ? host->ops->get_max_timeout_count(host) : 1 << 27;
mmc->max_busy_timeout /= host->timeout_clk;
}
if (host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT && !host->ops->get_max_timeout_count)
mmc->max_busy_timeout = 0;
mmc->caps |= MMC_CAP_SDIO_IRQ | MMC_CAP_CMD23;
mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
if (host->quirks & SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12)
host->flags |= SDHCI_AUTO_CMD12;
/*
* For v3 mode, Auto-CMD23 stuff only works in ADMA or PIO.
* For v4 mode, SDMA may use Auto-CMD23 as well.
*/
if ((host->version >= SDHCI_SPEC_300) && (!(host->flags & SDHCI_USE_SDMA) || host->v4_mode) && !(host->quirks2 & SDHCI_QUIRK2_ACMD23_BROKEN))
{
host->flags |= SDHCI_AUTO_CMD23;
LOG_D("Auto-CMD23 available\n");
}
else
{
LOG_D("Auto-CMD23 unavailable\n");
}
/*
* A controller may support 8-bit width, but the board itself
* might not have the pins brought out. Boards that support
* 8-bit width must set "mmc->caps |= MMC_CAP_8_BIT_DATA;" in
* their platform code before calling sdhci_add_host(), and we
* won't assume 8-bit width for hosts without that CAP.
*/
if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA))
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (host->quirks2 & SDHCI_QUIRK2_HOST_NO_CMD23)
mmc->caps &= ~MMC_CAP_CMD23;
if (host->caps & SDHCI_CAN_DO_HISPD)
mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) && mmc_card_is_removable(mmc) && mmc_gpio_get_cd(mmc) < 0)
mmc->caps |= MMC_CAP_NEEDS_POLL;
if (mmc->supply.vqmmc)
{
if (enable_vqmmc)
{
host->sdhci_core_to_disable_vqmmc = !ret;
}
/* If vqmmc provides no 1.8V signalling, then there's no UHS */
if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 1700000,
1950000))
host->caps1 &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50);
/* In eMMC case vqmmc might be a fixed 1.8V regulator */
if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 2700000,
3600000))
host->flags &= ~SDHCI_SIGNALING_330;
if (ret)
{
rt_kprintf("%s: Failed to enable vqmmc regulator: %d\n",
mmc_hostname(mmc), ret);
mmc->supply.vqmmc = (void *)-EINVAL;
}
}
if (host->quirks2 & SDHCI_QUIRK2_NO_1_8_V)
{
host->caps1 &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50);
/*
* The SDHCI controller in a SoC might support HS200/HS400
* (indicated using mmc-hs200-1_8v/mmc-hs400-1_8v dt property),
* but if the board is modeled such that the IO lines are not
* connected to 1.8v then HS200/HS400 cannot be supported.
* Disable HS200/HS400 if the board does not have 1.8v connected
* to the IO lines. (Applicable for other modes in 1.8v)
*/
mmc->caps2 &= ~(MMC_CAP2_HSX00_1_8V | MMC_CAP2_HS400_ES);
mmc->caps &= ~(MMC_CAP_1_8V_DDR | MMC_CAP_UHS);
}
/* Any UHS-I mode in caps implies SDR12 and SDR25 support. */
if (host->caps1 & (SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_DDR50))
mmc->caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
/* SDR104 supports also implies SDR50 support */
if (host->caps1 & SDHCI_SUPPORT_SDR104)
{
mmc->caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
/* SD3.0: SDR104 is supported so (for eMMC) the caps2
* field can be promoted to support HS200.
*/
if (!(host->quirks2 & SDHCI_QUIRK2_BROKEN_HS200))
mmc->caps2 |= MMC_CAP2_HS200;
}
else if (host->caps1 & SDHCI_SUPPORT_SDR50)
{
mmc->caps |= MMC_CAP_UHS_SDR50;
}
if (host->quirks2 & SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 && (host->caps1 & SDHCI_SUPPORT_HS400))
mmc->caps2 |= MMC_CAP2_HS400;
if ((mmc->caps2 & MMC_CAP2_HSX00_1_2V) && (!mmc->supply.vqmmc || !regulator_is_supported_voltage(mmc->supply.vqmmc, 1100000, 1300000)))
mmc->caps2 &= ~MMC_CAP2_HSX00_1_2V;
if ((host->caps1 & SDHCI_SUPPORT_DDR50) && !(host->quirks2 & SDHCI_QUIRK2_BROKEN_DDR50))
mmc->caps |= MMC_CAP_UHS_DDR50;
/* Does the host need tuning for SDR50? */
if (host->caps1 & SDHCI_USE_SDR50_TUNING)
host->flags |= SDHCI_SDR50_NEEDS_TUNING;
/* Driver Type(s) (A, C, D) supported by the host */
if (host->caps1 & SDHCI_DRIVER_TYPE_A)
mmc->caps |= MMC_CAP_DRIVER_TYPE_A;
if (host->caps1 & SDHCI_DRIVER_TYPE_C)
mmc->caps |= MMC_CAP_DRIVER_TYPE_C;
if (host->caps1 & SDHCI_DRIVER_TYPE_D)
mmc->caps |= MMC_CAP_DRIVER_TYPE_D;
/* Initial value for re-tuning timer count */
host->tuning_count = FIELD_GET(SDHCI_RETUNING_TIMER_COUNT_MASK,
host->caps1);
/*
* In case Re-tuning Timer is not disabled, the actual value of
* re-tuning timer will be 2 ^ (n - 1).
*/
if (host->tuning_count)
host->tuning_count = 1 << (host->tuning_count - 1);
/* Re-tuning mode supported by the Host Controller */
host->tuning_mode = FIELD_GET(SDHCI_RETUNING_MODE_MASK, host->caps1);
ocr_avail = 0;
/*
* According to SD Host Controller spec v3.00, if the Host System
* can afford more than 150mA, Host Driver should set XPC to 1. Also
* the value is meaningful only if Voltage Support in the Capabilities
* register is set. The actual current value is 4 times the register
* value.
*/
max_current_caps = sdhci_readl(host, SDHCI_MAX_CURRENT);
if (!max_current_caps && mmc->supply.vmmc)
{
int curr = regulator_get_current_limit(mmc->supply.vmmc);
if (curr > 0)
{
/* convert to SDHCI_MAX_CURRENT format */
curr = curr / 1000; /* convert to mA */
curr = curr / SDHCI_MAX_CURRENT_MULTIPLIER;
curr = min_t(rt_uint32_t, curr, SDHCI_MAX_CURRENT_LIMIT);
max_current_caps =
FIELD_PREP(SDHCI_MAX_CURRENT_330_MASK, curr) | FIELD_PREP(SDHCI_MAX_CURRENT_300_MASK, curr) | FIELD_PREP(SDHCI_MAX_CURRENT_180_MASK, curr);
}
}
if (host->caps & SDHCI_CAN_VDD_330)
{
ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->max_current_330 = FIELD_GET(SDHCI_MAX_CURRENT_330_MASK,
max_current_caps)
* SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (host->caps & SDHCI_CAN_VDD_300)
{
ocr_avail |= MMC_VDD_29_30 | MMC_VDD_30_31;
mmc->max_current_300 = FIELD_GET(SDHCI_MAX_CURRENT_300_MASK,
max_current_caps)
* SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (host->caps & SDHCI_CAN_VDD_180)
{
ocr_avail |= MMC_VDD_165_195;
mmc->max_current_180 = FIELD_GET(SDHCI_MAX_CURRENT_180_MASK,
max_current_caps)
* SDHCI_MAX_CURRENT_MULTIPLIER;
}
/* If OCR set by host, use it instead. */
if (host->ocr_mask)
ocr_avail = host->ocr_mask;
/* If OCR set by external regulators, give it highest prio. */
if (mmc->ocr_avail)
ocr_avail = mmc->ocr_avail;
mmc->ocr_avail = ocr_avail;
mmc->ocr_avail_sdio = ocr_avail;
if (host->ocr_avail_sdio)
mmc->ocr_avail_sdio &= host->ocr_avail_sdio;
mmc->ocr_avail_sd = ocr_avail;
if (host->ocr_avail_sd)
mmc->ocr_avail_sd &= host->ocr_avail_sd;
else /* normal SD controllers don't support 1.8V */
mmc->ocr_avail_sd &= ~MMC_VDD_165_195;
mmc->ocr_avail_mmc = ocr_avail;
if (host->ocr_avail_mmc)
mmc->ocr_avail_mmc &= host->ocr_avail_mmc;
if (mmc->ocr_avail == 0)
{
rt_kprintf("%s: Hardware doesn't report any support voltages.\n",
mmc_hostname(mmc));
ret = -ENODEV;
goto unreg;
}
if ((mmc->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50 | MMC_CAP_1_8V_DDR)) || (mmc->caps2 & (MMC_CAP2_HS200_1_8V_SDR | MMC_CAP2_HS400_1_8V)))
host->flags |= SDHCI_SIGNALING_180;
if (mmc->caps2 & MMC_CAP2_HSX00_1_2V)
host->flags |= SDHCI_SIGNALING_120;
rt_spin_lock_init(&host->lock);
/*
* Maximum number of sectors in one transfer. Limited by SDMA boundary
* size (512KiB). Note some tuning modes impose a 4MiB limit, but this
* is less anyway.
*/
mmc->max_req_size = 524288;
/*
* Maximum number of segments. Depends on if the hardware
* can do scatter/gather or not.
*/
if (host->flags & SDHCI_USE_SDMA)
{
mmc->max_segs = 1;
}
else
{ /* PIO */
mmc->max_segs = SDHCI_MAX_SEGS;
}
/*
* Maximum segment size. Could be one segment with the maximum number
* of bytes. When doing hardware scatter/gather, each entry cannot
* be larger than 64 KiB though.
*/
mmc->max_seg_size = mmc->max_req_size;
/*
* Maximum block size. This varies from controller to controller and
* is specified in the capabilities register.
*/
if (host->quirks & SDHCI_QUIRK_FORCE_BLK_SZ_2048)
{
mmc->max_blk_size = 2;
}
else
{
mmc->max_blk_size = (host->caps & SDHCI_MAX_BLOCK_MASK) >> SDHCI_MAX_BLOCK_SHIFT;
if (mmc->max_blk_size >= 3)
{
rt_kprintf("%s: Invalid maximum block size, assuming 512 bytes\n",
mmc_hostname(mmc));
mmc->max_blk_size = 0;
}
}
mmc->max_blk_size = 512 << mmc->max_blk_size;
/*
* Maximum block count.
*/
mmc->max_blk_count = (host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535;
return 0;
unreg:
undma:
return ret;
}
static void sdhci_init(struct sdhci_host *host, int soft)
{
struct mmc_host *mmc = host->mmc;
rt_base_t flags;
if (soft)
{
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
}
else
{
sdhci_do_reset(host, SDHCI_RESET_ALL);
}
if (host->v4_mode)
{
sdhci_do_enable_v4_mode(host);
}
flags = rt_spin_lock_irqsave(&host->lock);
sdhci_set_default_irqs(host);
rt_spin_unlock_irqrestore(&host->lock, flags);
host->cqe_on = RT_FALSE;
if (soft)
{
/* force clock reconfiguration */
host->clock = 0;
host->reinit_uhs = RT_TRUE;
mmc->ops->set_ios(mmc, &mmc->ios);
}
}
static void sdhci_reinit(struct sdhci_host *host)
{
rt_uint32_t cd = host->ier & (SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT);
sdhci_init(host, 0);
sdhci_enable_card_detection(host);
/*
* A change to the card detect bits indicates a change in present state,
* refer sdhci_set_card_detection(). A card detect interrupt might have
* been missed while the host controller was being reset, so trigger a
* rescan to check.
*/
if (cd != (host->ier & (SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT)))
mmc_detect_change(host->mmc, rt_tick_from_millisecond(200));
}
int __sdhci_add_host(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
int ret;
if ((mmc->caps2 & MMC_CAP2_CQE) && (host->quirks & SDHCI_QUIRK_BROKEN_CQE))
{
mmc->caps2 &= ~MMC_CAP2_CQE;
}
host->complete_wq = rt_workqueue_create("sdhci", 4096, 20);
if (!host->complete_wq)
return -ENOMEM;
rt_work_init(&host->complete_work, sdhci_complete_work, host);
rt_timer_init(&host->timer, "sdhci_timer", sdhci_timeout_timer, host, 0, RT_TIMER_FLAG_SOFT_TIMER);
rt_timer_init(&host->data_timer, "sdhci_data_timer", sdhci_timeout_data_timer, host, 0, RT_TIMER_FLAG_SOFT_TIMER);
rt_wqueue_init(&host->buf_ready_int);
sdhci_init(host, 0);
host->irq_wq = rt_workqueue_create("sdhci_irq", 8192, 1);
rt_work_init(&host->irq_work, sdhci_thread_irq, host);
rt_hw_interrupt_install(host->irq, sdhci_irq, host, mmc_hostname(mmc));
rt_pic_irq_unmask(host->irq);
ret = mmc_add_host(mmc);
if (ret)
goto unirq;
rt_kprintf("%s: SDHCI controller on %s [%s] using %s\n",
mmc_hostname(mmc), host->hw_name, mmc_dev(mmc)->parent.name,
(host->flags & SDHCI_USE_SDMA) ? "DMA" : "PIO");
sdhci_enable_card_detection(host);
return 0;
unirq:
sdhci_reset_for_all(host);
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
return ret;
}
int sdhci_add_host(struct sdhci_host *host)
{
int ret;
ret = sdhci_setup_host(host);
if (ret)
return ret;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
return 0;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
void sdhci_set_ios(struct mmc_host *mmc, struct rt_mmcsd_io_cfg *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
rt_bool_t reinit_uhs = host->reinit_uhs;
rt_bool_t turning_on_clk = RT_FALSE;
rt_uint8_t ctrl;
host->reinit_uhs = RT_FALSE;
if (ios->power_mode == MMC_POWER_UNDEFINED)
return;
if (host->flags & SDHCI_DEVICE_DEAD)
{
if (mmc->supply.vmmc && ios->power_mode == MMC_POWER_OFF)
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
return;
}
/*
* Reset the chip on each power off.
* Should clear out any weird states.
*/
if (ios->power_mode == MMC_POWER_OFF)
{
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
sdhci_reinit(host);
}
if (host->version >= SDHCI_SPEC_300 && (ios->power_mode == MMC_POWER_UP) && !(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN))
sdhci_enable_preset_value(host, RT_FALSE);
if (!ios->clock || ios->clock != host->clock)
{
turning_on_clk = ios->clock && !host->clock;
host->ops->set_clock(host, ios->clock);
host->clock = ios->clock;
if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK && host->clock)
{
host->timeout_clk = mmc->actual_clock ? mmc->actual_clock / 1000 : host->clock / 1000;
mmc->max_busy_timeout =
host->ops->get_max_timeout_count ? host->ops->get_max_timeout_count(host) : 1 << 27;
mmc->max_busy_timeout /= host->timeout_clk;
}
}
if (host->ops->set_power)
host->ops->set_power(host, ios->power_mode, ios->vdd);
else
sdhci_set_power(host, ios->power_mode, ios->vdd);
if (host->ops->platform_send_init_74_clocks)
host->ops->platform_send_init_74_clocks(host, ios->power_mode);
host->ops->set_bus_width(host, ios->bus_width);
/*
* Special case to avoid multiple clock changes during voltage
* switching.
*/
if (!reinit_uhs && turning_on_clk && host->timing == ios->timing && host->version >= SDHCI_SPEC_300 && !sdhci_presetable_values_change(host, ios))
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (!(host->quirks & SDHCI_QUIRK_NO_HISPD_BIT))
{
if (ios->timing == MMC_TIMING_SD_HS || ios->timing == MMC_TIMING_MMC_HS || ios->timing == MMC_TIMING_MMC_HS400 || ios->timing == MMC_TIMING_MMC_HS200 || ios->timing == MMC_TIMING_MMC_DDR52 || ios->timing == MMC_TIMING_UHS_SDR50 || ios->timing == MMC_TIMING_UHS_SDR104 || ios->timing == MMC_TIMING_UHS_DDR50 || ios->timing == MMC_TIMING_UHS_SDR25)
ctrl |= SDHCI_CTRL_HISPD;
else
ctrl &= ~SDHCI_CTRL_HISPD;
}
if (host->version >= SDHCI_SPEC_300)
{
rt_uint16_t clk, ctrl_2;
/*
* According to SDHCI Spec v3.00, if the Preset Value
* Enable in the Host Control 2 register is set, we
* need to reset SD Clock Enable before changing High
* Speed Enable to avoid generating clock glitches.
*/
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (clk & SDHCI_CLOCK_CARD_EN)
{
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
if (!host->preset_enabled)
{
/*
* We only need to set Driver Strength if the
* preset value enable is not set.
*/
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl_2 &= ~SDHCI_CTRL_DRV_TYPE_MASK;
if (ios->drv_type == MMC_SET_DRIVER_TYPE_A)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_A;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_B)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_C)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_C;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_D)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_D;
else
{
LOG_D("%s: invalid driver type, default to driver type B\n",
mmc_hostname(mmc));
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B;
}
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
host->drv_type = ios->drv_type;
}
host->ops->set_uhs_signaling(host, ios->timing);
host->timing = ios->timing;
if (sdhci_preset_needed(host, ios->timing))
{
rt_uint16_t preset;
sdhci_enable_preset_value(host, RT_TRUE);
preset = sdhci_get_preset_value(host);
ios->drv_type = FIELD_GET(SDHCI_PRESET_DRV_MASK,
preset);
host->drv_type = ios->drv_type;
}
/* Re-enable SD Clock */
host->ops->set_clock(host, host->clock);
}
else
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
void sdhci_free_host(struct sdhci_host *host)
{
sdhci_cleanup_host(host);
rt_free(host);
}