2017-10-28 10:04:39 +08:00

685 lines
20 KiB
C

/*
* Copyright (c) 2017, NXP Semiconductors, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_csi.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Two frame buffer loaded to CSI register at most. */
#define CSI_MAX_ACTIVE_FRAME_NUM 2
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the instance from the base address
*
* @param base CSI peripheral base address
*
* @return The CSI module instance
*/
static uint32_t CSI_GetInstance(CSI_Type *base);
/*!
* @brief Get the delta value of two index in queue.
*
* @param startIdx Start index.
* @param endIdx End index.
*
* @return The delta between startIdx and endIdx in queue.
*/
static uint32_t CSI_TransferGetQueueDelta(uint32_t startIdx, uint32_t endIdx);
/*!
* @brief Increase a index value in queue.
*
* This function increases the index value in the queue, if the index is out of
* the queue range, it is reset to 0.
*
* @param idx The index value to increase.
*
* @return The index value after increase.
*/
static uint32_t CSI_TransferIncreaseQueueIdx(uint32_t idx);
/*!
* @brief Get the empty frame buffer count in queue.
*
* @param base CSI peripheral base address
* @param handle Pointer to CSI driver handle.
*
* @return Number of the empty frame buffer count in queue.
*/
static uint32_t CSI_TransferGetEmptyBufferCount(CSI_Type *base, csi_handle_t *handle);
/*!
* @brief Load one empty frame buffer in queue to CSI module.
*
* Load one empty frame in queue to CSI module, this function could only be called
* when there is empty frame buffer in queue.
*
* @param base CSI peripheral base address
* @param handle Pointer to CSI driver handle.
*/
static void CSI_TransferLoadBufferToDevice(CSI_Type *base, csi_handle_t *handle);
/* Typedef for interrupt handler. */
typedef void (*csi_isr_t)(CSI_Type *base, csi_handle_t *handle);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to CSI bases for each instance. */
static CSI_Type *const s_csiBases[] = CSI_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to CSI clocks for each CSI submodule. */
static const clock_ip_name_t s_csiClocks[] = CSI_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Array for the CSI driver handle. */
static csi_handle_t *s_csiHandle[ARRAY_SIZE(s_csiBases)];
/* Array of CSI IRQ number. */
static const IRQn_Type s_csiIRQ[] = CSI_IRQS;
/* CSI ISR for transactional APIs. */
static csi_isr_t s_csiIsr;
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t CSI_GetInstance(CSI_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_csiBases); instance++)
{
if (s_csiBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_csiBases));
return instance;
}
static uint32_t CSI_TransferGetQueueDelta(uint32_t startIdx, uint32_t endIdx)
{
if (endIdx >= startIdx)
{
return endIdx - startIdx;
}
else
{
return startIdx + CSI_DRIVER_ACTUAL_QUEUE_SIZE - endIdx;
}
}
static uint32_t CSI_TransferIncreaseQueueIdx(uint32_t idx)
{
uint32_t ret;
/*
* Here not use the method:
* ret = (idx+1) % CSI_DRIVER_ACTUAL_QUEUE_SIZE;
*
* Because the mod function might be slow.
*/
ret = idx + 1;
if (ret >= CSI_DRIVER_ACTUAL_QUEUE_SIZE)
{
ret = 0;
}
return ret;
}
static uint32_t CSI_TransferGetEmptyBufferCount(CSI_Type *base, csi_handle_t *handle)
{
return CSI_TransferGetQueueDelta(handle->queueDrvReadIdx, handle->queueUserWriteIdx);
}
static void CSI_TransferLoadBufferToDevice(CSI_Type *base, csi_handle_t *handle)
{
/* Load the frame buffer address to CSI register. */
CSI_SetRxBufferAddr(base, handle->nextBufferIdx, handle->frameBufferQueue[handle->queueDrvReadIdx]);
handle->queueDrvReadIdx = CSI_TransferIncreaseQueueIdx(handle->queueDrvReadIdx);
handle->activeBufferNum++;
/* There are two CSI buffers, so could use XOR to get the next index. */
handle->nextBufferIdx ^= 1U;
}
status_t CSI_Init(CSI_Type *base, const csi_config_t *config)
{
assert(config);
uint32_t reg;
uint32_t imgWidth_Bytes;
imgWidth_Bytes = config->width * config->bytesPerPixel;
/* The image width and frame buffer pitch should be multiple of 8-bytes. */
if ((imgWidth_Bytes & 0x07) | ((uint32_t)config->linePitch_Bytes & 0x07))
{
return kStatus_InvalidArgument;
}
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = CSI_GetInstance(base);
CLOCK_EnableClock(s_csiClocks[instance]);
#endif
CSI_Reset(base);
/* Configure CSICR1. CSICR1 has been reset to the default value, so could write it directly. */
reg = ((uint32_t)config->workMode) | config->polarityFlags | CSI_CSICR1_FCC_MASK;
if (config->useExtVsync)
{
reg |= CSI_CSICR1_EXT_VSYNC_MASK;
}
base->CSICR1 = reg;
/*
* Generally, CSIIMAG_PARA[IMAGE_WIDTH] indicates how many data bus cycles per line.
* One special case is when receiving 24-bit pixels through 8-bit data bus, and
* CSICR3[ZERO_PACK_EN] is enabled, in this case, the CSIIMAG_PARA[IMAGE_WIDTH]
* should be set to the pixel number per line.
*
* Currently the CSI driver only support 8-bit data bus, so generally the
* CSIIMAG_PARA[IMAGE_WIDTH] is bytes number per line. When the CSICR3[ZERO_PACK_EN]
* is enabled, CSIIMAG_PARA[IMAGE_WIDTH] is pixel number per line.
*
* NOTE: The CSIIMAG_PARA[IMAGE_WIDTH] setting code should be updated if the
* driver is upgraded to support other data bus width.
*/
if (4U == config->bytesPerPixel)
{
/* Enable zero pack. */
base->CSICR3 |= CSI_CSICR3_ZERO_PACK_EN_MASK;
/* Image parameter. */
base->CSIIMAG_PARA = ((uint32_t)(config->width) << CSI_CSIIMAG_PARA_IMAGE_WIDTH_SHIFT) |
((uint32_t)(config->height) << CSI_CSIIMAG_PARA_IMAGE_HEIGHT_SHIFT);
}
else
{
/* Image parameter. */
base->CSIIMAG_PARA = ((uint32_t)(imgWidth_Bytes) << CSI_CSIIMAG_PARA_IMAGE_WIDTH_SHIFT) |
((uint32_t)(config->height) << CSI_CSIIMAG_PARA_IMAGE_HEIGHT_SHIFT);
}
/* The CSI frame buffer bus is 8-byte width. */
base->CSIFBUF_PARA = (uint32_t)((config->linePitch_Bytes - imgWidth_Bytes) / 8U)
<< CSI_CSIFBUF_PARA_FBUF_STRIDE_SHIFT;
/* Enable auto ECC. */
base->CSICR3 |= CSI_CSICR3_ECC_AUTO_EN_MASK;
/*
* For better performance.
* The DMA burst size could be set to 16 * 8 byte, 8 * 8 byte, or 4 * 8 byte,
* choose the best burst size based on bytes per line.
*/
if (!(imgWidth_Bytes % (8 * 16)))
{
base->CSICR2 = CSI_CSICR2_DMA_BURST_TYPE_RFF(3U);
base->CSICR3 = (CSI->CSICR3 & ~CSI_CSICR3_RxFF_LEVEL_MASK) | ((2U << CSI_CSICR3_RxFF_LEVEL_SHIFT));
}
else if (!(imgWidth_Bytes % (8 * 8)))
{
base->CSICR2 = CSI_CSICR2_DMA_BURST_TYPE_RFF(2U);
base->CSICR3 = (CSI->CSICR3 & ~CSI_CSICR3_RxFF_LEVEL_MASK) | ((1U << CSI_CSICR3_RxFF_LEVEL_SHIFT));
}
else
{
base->CSICR2 = CSI_CSICR2_DMA_BURST_TYPE_RFF(1U);
base->CSICR3 = (CSI->CSICR3 & ~CSI_CSICR3_RxFF_LEVEL_MASK) | ((0U << CSI_CSICR3_RxFF_LEVEL_SHIFT));
}
CSI_ReflashFifoDma(base, kCSI_RxFifo);
return kStatus_Success;
}
void CSI_Deinit(CSI_Type *base)
{
/* Disable transfer first. */
CSI_Stop(base);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = CSI_GetInstance(base);
CLOCK_DisableClock(s_csiClocks[instance]);
#endif
}
void CSI_Reset(CSI_Type *base)
{
uint32_t csisr;
/* Disable transfer first. */
CSI_Stop(base);
/* Disable DMA request. */
base->CSICR3 = 0U;
/* Reset the fame count. */
base->CSICR3 |= CSI_CSICR3_FRMCNT_RST_MASK;
while (base->CSICR3 & CSI_CSICR3_FRMCNT_RST_MASK)
{
}
/* Clear the RX FIFO. */
CSI_ClearFifo(base, kCSI_AllFifo);
/* Reflash DMA. */
CSI_ReflashFifoDma(base, kCSI_AllFifo);
/* Clear the status. */
csisr = base->CSISR;
base->CSISR = csisr;
/* Set the control registers to default value. */
base->CSICR1 = CSI_CSICR1_HSYNC_POL_MASK | CSI_CSICR1_EXT_VSYNC_MASK;
base->CSICR2 = 0U;
base->CSICR3 = 0U;
#if defined(CSI_CSICR18_CSI_LCDIF_BUFFER_LINES)
base->CSICR18 = CSI_CSICR18_AHB_HPROT(0x0DU) | CSI_CSICR18_CSI_LCDIF_BUFFER_LINES(0x02U);
#else
base->CSICR18 = CSI_CSICR18_AHB_HPROT(0x0DU);
#endif
base->CSIFBUF_PARA = 0U;
base->CSIIMAG_PARA = 0U;
}
void CSI_GetDefaultConfig(csi_config_t *config)
{
assert(config);
config->width = 320U;
config->height = 240U;
config->polarityFlags = kCSI_HsyncActiveHigh | kCSI_DataLatchOnRisingEdge;
config->bytesPerPixel = 2U;
config->linePitch_Bytes = 320U * 2U;
config->workMode = kCSI_GatedClockMode;
config->dataBus = kCSI_DataBus8Bit;
config->useExtVsync = true;
}
void CSI_SetRxBufferAddr(CSI_Type *base, uint8_t index, uint32_t addr)
{
if (index)
{
base->CSIDMASA_FB2 = addr;
}
else
{
base->CSIDMASA_FB1 = addr;
}
}
void CSI_ClearFifo(CSI_Type *base, csi_fifo_t fifo)
{
uint32_t cr1;
uint32_t mask = 0U;
/* The FIFO could only be cleared when CSICR1[FCC] = 0, so first clear the FCC. */
cr1 = base->CSICR1;
base->CSICR1 = (cr1 & ~CSI_CSICR1_FCC_MASK);
if ((uint32_t)fifo & (uint32_t)kCSI_RxFifo)
{
mask |= CSI_CSICR1_CLR_RXFIFO_MASK;
}
if ((uint32_t)fifo & (uint32_t)kCSI_StatFifo)
{
mask |= CSI_CSICR1_CLR_STATFIFO_MASK;
}
base->CSICR1 = (cr1 & ~CSI_CSICR1_FCC_MASK) | mask;
/* Wait clear completed. */
while (base->CSICR1 & mask)
{
}
/* Recover the FCC. */
base->CSICR1 = cr1;
}
void CSI_ReflashFifoDma(CSI_Type *base, csi_fifo_t fifo)
{
uint32_t cr3 = 0U;
if ((uint32_t)fifo & (uint32_t)kCSI_RxFifo)
{
cr3 |= CSI_CSICR3_DMA_REFLASH_RFF_MASK;
}
if ((uint32_t)fifo & (uint32_t)kCSI_StatFifo)
{
cr3 |= CSI_CSICR3_DMA_REFLASH_SFF_MASK;
}
base->CSICR3 |= cr3;
/* Wait clear completed. */
while (base->CSICR3 & cr3)
{
}
}
void CSI_EnableFifoDmaRequest(CSI_Type *base, csi_fifo_t fifo, bool enable)
{
uint32_t cr3 = 0U;
if ((uint32_t)fifo & (uint32_t)kCSI_RxFifo)
{
cr3 |= CSI_CSICR3_DMA_REQ_EN_RFF_MASK;
}
if ((uint32_t)fifo & (uint32_t)kCSI_StatFifo)
{
cr3 |= CSI_CSICR3_DMA_REQ_EN_SFF_MASK;
}
if (enable)
{
base->CSICR3 |= cr3;
}
else
{
base->CSICR3 &= ~cr3;
}
}
void CSI_EnableInterrupts(CSI_Type *base, uint32_t mask)
{
base->CSICR1 |= (mask & CSI_CSICR1_INT_EN_MASK);
base->CSICR3 |= (mask & CSI_CSICR3_INT_EN_MASK);
base->CSICR18 |= ((mask & CSI_CSICR18_INT_EN_MASK) >> 6U);
}
void CSI_DisableInterrupts(CSI_Type *base, uint32_t mask)
{
base->CSICR1 &= ~(mask & CSI_CSICR1_INT_EN_MASK);
base->CSICR3 &= ~(mask & CSI_CSICR3_INT_EN_MASK);
base->CSICR18 &= ~((mask & CSI_CSICR18_INT_EN_MASK) >> 6U);
}
status_t CSI_TransferCreateHandle(CSI_Type *base,
csi_handle_t *handle,
csi_transfer_callback_t callback,
void *userData)
{
assert(handle);
uint32_t instance;
memset(handle, 0, sizeof(*handle));
/* Set the callback and user data. */
handle->callback = callback;
handle->userData = userData;
/* Get instance from peripheral base address. */
instance = CSI_GetInstance(base);
/* Save the handle in global variables to support the double weak mechanism. */
s_csiHandle[instance] = handle;
s_csiIsr = CSI_TransferHandleIRQ;
/* Enable interrupt. */
EnableIRQ(s_csiIRQ[instance]);
return kStatus_Success;
}
status_t CSI_TransferStart(CSI_Type *base, csi_handle_t *handle)
{
assert(handle);
uint32_t emptyBufferCount;
emptyBufferCount = CSI_TransferGetEmptyBufferCount(base, handle);
if (emptyBufferCount < 2U)
{
return kStatus_CSI_NoEmptyBuffer;
}
handle->nextBufferIdx = 0U;
handle->activeBufferNum = 0U;
/* Write to memory from second completed frame. */
base->CSICR18 = (base->CSICR18 & ~CSI_CSICR18_MASK_OPTION_MASK) | CSI_CSICR18_MASK_OPTION(2);
/* Load the frame buffer to CSI register, there are at least two empty buffers. */
CSI_TransferLoadBufferToDevice(base, handle);
CSI_TransferLoadBufferToDevice(base, handle);
/* After reflash DMA, the CSI saves frame to frame buffer 0. */
CSI_ReflashFifoDma(base, kCSI_RxFifo);
handle->transferStarted = true;
handle->transferOnGoing = true;
CSI_EnableInterrupts(base, kCSI_RxBuffer1DmaDoneInterruptEnable | kCSI_RxBuffer0DmaDoneInterruptEnable);
CSI_Start(base);
return kStatus_Success;
}
status_t CSI_TransferStop(CSI_Type *base, csi_handle_t *handle)
{
assert(handle);
CSI_Stop(base);
CSI_DisableInterrupts(base, kCSI_RxBuffer1DmaDoneInterruptEnable | kCSI_RxBuffer0DmaDoneInterruptEnable);
handle->transferStarted = false;
handle->transferOnGoing = false;
/* Stoped, reset the state flags. */
handle->queueDrvReadIdx = handle->queueDrvWriteIdx;
handle->activeBufferNum = 0U;
return kStatus_Success;
}
status_t CSI_TransferSubmitEmptyBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t frameBuffer)
{
uint32_t csicr1;
if (CSI_DRIVER_QUEUE_SIZE == CSI_TransferGetQueueDelta(handle->queueUserReadIdx, handle->queueUserWriteIdx))
{
return kStatus_CSI_QueueFull;
}
/* Disable the interrupt to protect the index information in handle. */
csicr1 = base->CSICR1;
base->CSICR1 = (csicr1 & ~(CSI_CSICR1_FB2_DMA_DONE_INTEN_MASK | CSI_CSICR1_FB1_DMA_DONE_INTEN_MASK));
/* Save the empty frame buffer address to queue. */
handle->frameBufferQueue[handle->queueUserWriteIdx] = frameBuffer;
handle->queueUserWriteIdx = CSI_TransferIncreaseQueueIdx(handle->queueUserWriteIdx);
base->CSICR1 = csicr1;
if (handle->transferStarted)
{
/*
* If user has started transfer using @ref CSI_TransferStart, and the CSI is
* stopped due to no empty frame buffer in queue, then start the CSI.
*/
if ((!handle->transferOnGoing) && (CSI_TransferGetEmptyBufferCount(base, handle) >= 2U))
{
handle->transferOnGoing = true;
handle->nextBufferIdx = 0U;
/* Load the frame buffers to CSI module. */
CSI_TransferLoadBufferToDevice(base, handle);
CSI_TransferLoadBufferToDevice(base, handle);
CSI_ReflashFifoDma(base, kCSI_RxFifo);
CSI_Start(base);
}
}
return kStatus_Success;
}
status_t CSI_TransferGetFullBuffer(CSI_Type *base, csi_handle_t *handle, uint32_t *frameBuffer)
{
uint32_t csicr1;
/* No full frame buffer. */
if (handle->queueUserReadIdx == handle->queueDrvWriteIdx)
{
return kStatus_CSI_NoFullBuffer;
}
/* Disable the interrupt to protect the index information in handle. */
csicr1 = base->CSICR1;
base->CSICR1 = (csicr1 & ~(CSI_CSICR1_FB2_DMA_DONE_INTEN_MASK | CSI_CSICR1_FB1_DMA_DONE_INTEN_MASK));
*frameBuffer = handle->frameBufferQueue[handle->queueUserReadIdx];
handle->queueUserReadIdx = CSI_TransferIncreaseQueueIdx(handle->queueUserReadIdx);
base->CSICR1 = csicr1;
return kStatus_Success;
}
void CSI_TransferHandleIRQ(CSI_Type *base, csi_handle_t *handle)
{
uint32_t queueDrvWriteIdx;
uint32_t csisr = base->CSISR;
/* Clear the error flags. */
base->CSISR = csisr;
/*
* If both frame buffer 0 and frame buffer 1 flags assert, driver does not
* know which frame buffer ready just now, so reset the CSI transfer to
* start from frame buffer 0.
*/
if ((csisr & (CSI_CSISR_DMA_TSF_DONE_FB2_MASK | CSI_CSISR_DMA_TSF_DONE_FB1_MASK)) ==
(CSI_CSISR_DMA_TSF_DONE_FB2_MASK | CSI_CSISR_DMA_TSF_DONE_FB1_MASK))
{
CSI_Stop(base);
/* Reset the active buffers. */
if (1 <= handle->activeBufferNum)
{
queueDrvWriteIdx = handle->queueDrvWriteIdx;
base->CSIDMASA_FB1 = handle->frameBufferQueue[queueDrvWriteIdx];
if (2U == handle->activeBufferNum)
{
queueDrvWriteIdx = CSI_TransferIncreaseQueueIdx(queueDrvWriteIdx);
base->CSIDMASA_FB2 = handle->frameBufferQueue[queueDrvWriteIdx];
handle->nextBufferIdx = 0U;
}
else
{
handle->nextBufferIdx = 1U;
}
}
CSI_ReflashFifoDma(base, kCSI_RxFifo);
CSI_Start(base);
}
else if (csisr & (CSI_CSISR_DMA_TSF_DONE_FB2_MASK | CSI_CSISR_DMA_TSF_DONE_FB1_MASK))
{
handle->queueDrvWriteIdx = CSI_TransferIncreaseQueueIdx(handle->queueDrvWriteIdx);
handle->activeBufferNum--;
if (handle->callback)
{
handle->callback(base, handle, kStatus_CSI_FrameDone, handle->userData);
}
/* No frame buffer to save incoming data, then stop the CSI module. */
if (!(handle->activeBufferNum))
{
CSI_Stop(base);
handle->transferOnGoing = false;
}
else
{
if (CSI_TransferGetEmptyBufferCount(base, handle))
{
CSI_TransferLoadBufferToDevice(base, handle);
}
}
}
else
{
}
}
#if defined(CSI)
void CSI_DriverIRQHandler(void)
{
s_csiIsr(CSI, s_csiHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(CSI0)
void CSI0_DriverIRQHandler(void)
{
s_csiIsr(CSI, s_csiHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif