1046 lines
32 KiB
C
1046 lines
32 KiB
C
/*
|
|
* This file is part of the Serial Flash Universal Driver Library.
|
|
*
|
|
* Copyright (c) 2016-2018, Armink, <armink.ztl@gmail.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* 'Software'), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
|
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
|
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
|
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Function: serial flash operate functions by SFUD lib.
|
|
* Created on: 2016-04-23
|
|
*/
|
|
|
|
#include "../inc/sfud.h"
|
|
#include <string.h>
|
|
|
|
/* send dummy data for read data */
|
|
#define DUMMY_DATA 0xFF
|
|
|
|
#ifndef SFUD_FLASH_DEVICE_TABLE
|
|
#error "Please configure the flash device information table in (in sfud_cfg.h)."
|
|
#endif
|
|
|
|
/* user configured flash device information table */
|
|
static sfud_flash flash_table[] = SFUD_FLASH_DEVICE_TABLE;
|
|
/* supported manufacturer information table */
|
|
static const sfud_mf mf_table[] = SFUD_MF_TABLE;
|
|
|
|
#ifdef SFUD_USING_FLASH_INFO_TABLE
|
|
/* supported flash chip information table */
|
|
static const sfud_flash_chip flash_chip_table[] = SFUD_FLASH_CHIP_TABLE;
|
|
#endif
|
|
|
|
#ifdef SFUD_USING_QSPI
|
|
/**
|
|
* flash read data mode
|
|
*/
|
|
enum sfud_qspi_read_mode {
|
|
NORMAL_SPI_READ = 1 << 0, /**< mormal spi read mode */
|
|
DUAL_OUTPUT = 1 << 1, /**< qspi fast read dual output */
|
|
DUAL_IO = 1 << 2, /**< qspi fast read dual input/output */
|
|
QUAD_OUTPUT = 1 << 3, /**< qspi fast read quad output */
|
|
QUAD_IO = 1 << 4, /**< qspi fast read quad input/output */
|
|
};
|
|
|
|
/* QSPI flash chip's extended information table */
|
|
static const sfud_qspi_flash_ext_info qspi_flash_ext_info_table[] = SFUD_FLASH_EXT_INFO_TABLE;
|
|
#endif /* SFUD_USING_QSPI */
|
|
|
|
static sfud_err software_init(const sfud_flash *flash);
|
|
static sfud_err hardware_init(sfud_flash *flash);
|
|
static sfud_err page256_or_1_byte_write(const sfud_flash *flash, uint32_t addr, size_t size, uint16_t write_gran,
|
|
const uint8_t *data);
|
|
static sfud_err aai_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data);
|
|
static sfud_err wait_busy(const sfud_flash *flash);
|
|
static sfud_err reset(const sfud_flash *flash);
|
|
static sfud_err read_jedec_id(sfud_flash *flash);
|
|
static sfud_err set_write_enabled(const sfud_flash *flash, bool enabled);
|
|
static sfud_err set_4_byte_address_mode(sfud_flash *flash, bool enabled);
|
|
static void make_address_byte_array(const sfud_flash *flash, uint32_t addr, uint8_t *array);
|
|
|
|
/* ../port/sfup_port.c */
|
|
extern void sfud_log_debug(const char *file, const long line, const char *format, ...);
|
|
extern void sfud_log_info(const char *format, ...);
|
|
|
|
/**
|
|
* SFUD initialize by flash device
|
|
*
|
|
* @param flash flash device
|
|
*
|
|
* @return result
|
|
*/
|
|
sfud_err sfud_device_init(sfud_flash *flash) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
|
|
/* hardware initialize */
|
|
result = hardware_init(flash);
|
|
if (result == SFUD_SUCCESS) {
|
|
result = software_init(flash);
|
|
}
|
|
if (result == SFUD_SUCCESS) {
|
|
flash->init_ok = true;
|
|
SFUD_INFO("%s flash device initialized successfully.", flash->name);
|
|
} else {
|
|
flash->init_ok = false;
|
|
SFUD_INFO("Error: %s flash device initialization failed.", flash->name);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* SFUD library initialize.
|
|
*
|
|
* @return result
|
|
*/
|
|
sfud_err sfud_init(void) {
|
|
sfud_err cur_flash_result = SFUD_SUCCESS, all_flash_result = SFUD_SUCCESS;
|
|
size_t i;
|
|
|
|
SFUD_DEBUG("Start initialize Serial Flash Universal Driver(SFUD) V%s.", SFUD_SW_VERSION);
|
|
SFUD_DEBUG("You can get the latest version on https://github.com/armink/SFUD .");
|
|
/* initialize all flash device in flash device table */
|
|
for (i = 0; i < sizeof(flash_table) / sizeof(sfud_flash); i++) {
|
|
/* initialize flash device index of flash device information table */
|
|
flash_table[i].index = i;
|
|
cur_flash_result = sfud_device_init(&flash_table[i]);
|
|
|
|
if (cur_flash_result != SFUD_SUCCESS) {
|
|
all_flash_result = cur_flash_result;
|
|
}
|
|
}
|
|
|
|
return all_flash_result;
|
|
}
|
|
|
|
/**
|
|
* get flash device by its index which in the flash information table
|
|
*
|
|
* @param index the index which in the flash information table @see flash_table
|
|
*
|
|
* @return flash device
|
|
*/
|
|
sfud_flash *sfud_get_device(size_t index) {
|
|
if (index < sfud_get_device_num()) {
|
|
return &flash_table[index];
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* get flash device total number on flash device information table @see flash_table
|
|
*
|
|
* @return flash device total number
|
|
*/
|
|
size_t sfud_get_device_num(void) {
|
|
return sizeof(flash_table) / sizeof(sfud_flash);
|
|
}
|
|
|
|
/**
|
|
* get flash device information table @see flash_table
|
|
*
|
|
* @return flash device table pointer
|
|
*/
|
|
const sfud_flash *sfud_get_device_table(void) {
|
|
return flash_table;
|
|
}
|
|
|
|
#ifdef SFUD_USING_QSPI
|
|
static void qspi_set_read_cmd_format(sfud_flash *flash, uint8_t ins, uint8_t ins_lines, uint8_t addr_lines,
|
|
uint8_t dummy_cycles, uint8_t data_lines) {
|
|
/* if medium size greater than 16Mb, use 4-Byte address, instruction should be added one */
|
|
if (flash->chip.capacity <= 0x1000000) {
|
|
flash->read_cmd_format.instruction = ins;
|
|
flash->read_cmd_format.address_size = 24;
|
|
} else {
|
|
if(ins == SFUD_CMD_READ_DATA){
|
|
flash->read_cmd_format.instruction = ins + 0x10;
|
|
}
|
|
else{
|
|
flash->read_cmd_format.instruction = ins + 1;
|
|
}
|
|
flash->read_cmd_format.address_size = 32;
|
|
}
|
|
|
|
flash->read_cmd_format.instruction_lines = ins_lines;
|
|
flash->read_cmd_format.address_lines = addr_lines;
|
|
flash->read_cmd_format.alternate_bytes_lines = 0;
|
|
flash->read_cmd_format.dummy_cycles = dummy_cycles;
|
|
flash->read_cmd_format.data_lines = data_lines;
|
|
}
|
|
|
|
/**
|
|
* Enbale the fast read mode in QSPI flash mode. Default read mode is normal SPI mode.
|
|
*
|
|
* it will find the appropriate fast-read instruction to replace the read instruction(0x03)
|
|
* fast-read instruction @see SFUD_FLASH_EXT_INFO_TABLE
|
|
*
|
|
* @note When Flash is in QSPI mode, the method must be called after sfud_device_init().
|
|
*
|
|
* @param flash flash device
|
|
* @param data_line_width the data lines max width which QSPI bus supported, such as 1, 2, 4
|
|
*
|
|
* @return result
|
|
*/
|
|
sfud_err sfud_qspi_fast_read_enable(sfud_flash *flash, uint8_t data_line_width) {
|
|
size_t i = 0;
|
|
uint8_t read_mode = NORMAL_SPI_READ;
|
|
sfud_err result = SFUD_SUCCESS;
|
|
|
|
SFUD_ASSERT(flash);
|
|
SFUD_ASSERT(data_line_width == 1 || data_line_width == 2 || data_line_width == 4);
|
|
|
|
/* get read_mode, If don't found, the default is SFUD_QSPI_NORMAL_SPI_READ */
|
|
for (i = 0; i < sizeof(qspi_flash_ext_info_table) / sizeof(sfud_qspi_flash_ext_info); i++) {
|
|
if ((qspi_flash_ext_info_table[i].mf_id == flash->chip.mf_id)
|
|
&& (qspi_flash_ext_info_table[i].type_id == flash->chip.type_id)
|
|
&& (qspi_flash_ext_info_table[i].capacity_id == flash->chip.capacity_id)) {
|
|
read_mode = qspi_flash_ext_info_table[i].read_mode;
|
|
}
|
|
}
|
|
|
|
/* determine qspi supports which read mode and set read_cmd_format struct */
|
|
switch (data_line_width) {
|
|
case 1:
|
|
qspi_set_read_cmd_format(flash, SFUD_CMD_READ_DATA, 1, 1, 0, 1);
|
|
break;
|
|
case 2:
|
|
if (read_mode & DUAL_IO) {
|
|
qspi_set_read_cmd_format(flash, SFUD_CMD_DUAL_IO_READ_DATA, 1, 2, 4, 2);
|
|
} else if (read_mode & DUAL_OUTPUT) {
|
|
qspi_set_read_cmd_format(flash, SFUD_CMD_DUAL_OUTPUT_READ_DATA, 1, 1, 8, 2);
|
|
} else {
|
|
qspi_set_read_cmd_format(flash, SFUD_CMD_READ_DATA, 1, 1, 0, 1);
|
|
}
|
|
break;
|
|
case 4:
|
|
if (read_mode & QUAD_IO) {
|
|
qspi_set_read_cmd_format(flash, SFUD_CMD_QUAD_IO_READ_DATA, 1, 4, 6, 4);
|
|
} else if (read_mode & QUAD_OUTPUT) {
|
|
qspi_set_read_cmd_format(flash, SFUD_CMD_QUAD_OUTPUT_READ_DATA, 1, 1, 8, 4);
|
|
} else {
|
|
qspi_set_read_cmd_format(flash, SFUD_CMD_READ_DATA, 1, 1, 0, 1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
#endif /* SFUD_USING_QSPI */
|
|
|
|
/**
|
|
* hardware initialize
|
|
*/
|
|
static sfud_err hardware_init(sfud_flash *flash) {
|
|
extern sfud_err sfud_spi_port_init(sfud_flash * flash);
|
|
|
|
sfud_err result = SFUD_SUCCESS;
|
|
size_t i;
|
|
|
|
SFUD_ASSERT(flash);
|
|
|
|
result = sfud_spi_port_init(flash);
|
|
if (result != SFUD_SUCCESS) {
|
|
return result;
|
|
}
|
|
|
|
#ifdef SFUD_USING_QSPI
|
|
/* set default read instruction */
|
|
flash->read_cmd_format.instruction = SFUD_CMD_READ_DATA;
|
|
#endif /* SFUD_USING_QSPI */
|
|
|
|
/* SPI write read function must be initialize */
|
|
SFUD_ASSERT(flash->spi.wr);
|
|
/* if the user don't configure flash chip information then using SFDP parameter or static flash parameter table */
|
|
if (flash->chip.capacity == 0 || flash->chip.write_mode == 0 || flash->chip.erase_gran == 0
|
|
|| flash->chip.erase_gran_cmd == 0) {
|
|
/* read JEDEC ID include manufacturer ID, memory type ID and flash capacity ID */
|
|
result = read_jedec_id(flash);
|
|
if (result != SFUD_SUCCESS) {
|
|
return result;
|
|
}
|
|
|
|
#ifdef SFUD_USING_SFDP
|
|
extern bool sfud_read_sfdp(sfud_flash *flash);
|
|
/* read SFDP parameters */
|
|
if (sfud_read_sfdp(flash)) {
|
|
flash->chip.name = NULL;
|
|
flash->chip.capacity = flash->sfdp.capacity;
|
|
/* only 1 byte or 256 bytes write mode for SFDP */
|
|
if (flash->sfdp.write_gran == 1) {
|
|
flash->chip.write_mode = SFUD_WM_BYTE;
|
|
} else {
|
|
flash->chip.write_mode = SFUD_WM_PAGE_256B;
|
|
}
|
|
/* find the the smallest erase sector size for eraser. then will use this size for erase granularity */
|
|
flash->chip.erase_gran = flash->sfdp.eraser[0].size;
|
|
flash->chip.erase_gran_cmd = flash->sfdp.eraser[0].cmd;
|
|
for (i = 1; i < SFUD_SFDP_ERASE_TYPE_MAX_NUM; i++) {
|
|
if (flash->sfdp.eraser[i].size != 0 && flash->chip.erase_gran > flash->sfdp.eraser[i].size) {
|
|
flash->chip.erase_gran = flash->sfdp.eraser[i].size;
|
|
flash->chip.erase_gran_cmd = flash->sfdp.eraser[i].cmd;
|
|
}
|
|
}
|
|
} else {
|
|
#endif
|
|
|
|
#ifdef SFUD_USING_FLASH_INFO_TABLE
|
|
/* read SFDP parameters failed then using SFUD library provided static parameter */
|
|
for (i = 0; i < sizeof(flash_chip_table) / sizeof(sfud_flash_chip); i++) {
|
|
if ((flash_chip_table[i].mf_id == flash->chip.mf_id)
|
|
&& (flash_chip_table[i].type_id == flash->chip.type_id)
|
|
&& (flash_chip_table[i].capacity_id == flash->chip.capacity_id)) {
|
|
flash->chip.name = flash_chip_table[i].name;
|
|
flash->chip.capacity = flash_chip_table[i].capacity;
|
|
flash->chip.write_mode = flash_chip_table[i].write_mode;
|
|
flash->chip.erase_gran = flash_chip_table[i].erase_gran;
|
|
flash->chip.erase_gran_cmd = flash_chip_table[i].erase_gran_cmd;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SFUD_USING_SFDP
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
if (flash->chip.capacity == 0 || flash->chip.write_mode == 0 || flash->chip.erase_gran == 0
|
|
|| flash->chip.erase_gran_cmd == 0) {
|
|
SFUD_INFO("Warning: This flash device is not found or not supported.");
|
|
return SFUD_ERR_NOT_FOUND;
|
|
} else {
|
|
const char *flash_mf_name = NULL;
|
|
/* find the manufacturer information */
|
|
for (i = 0; i < sizeof(mf_table) / sizeof(sfud_mf); i++) {
|
|
if (mf_table[i].id == flash->chip.mf_id) {
|
|
flash_mf_name = mf_table[i].name;
|
|
break;
|
|
}
|
|
}
|
|
/* print manufacturer and flash chip name */
|
|
if (flash_mf_name && flash->chip.name) {
|
|
SFUD_INFO("Found a %s %s flash chip. Size is %ld bytes.", flash_mf_name, flash->chip.name,
|
|
flash->chip.capacity);
|
|
} else if (flash_mf_name) {
|
|
SFUD_INFO("Found a %s flash chip. Size is %ld bytes.", flash_mf_name, flash->chip.capacity);
|
|
} else {
|
|
SFUD_INFO("Found a flash chip. Size is %ld bytes.", flash->chip.capacity);
|
|
}
|
|
}
|
|
|
|
/* reset flash device */
|
|
result = reset(flash);
|
|
if (result != SFUD_SUCCESS) {
|
|
return result;
|
|
}
|
|
|
|
/* The flash all blocks is protected,so need change the flash status to unprotected before write and erase operate. */
|
|
if (flash->chip.write_mode & SFUD_WM_AAI) {
|
|
result = sfud_write_status(flash, true, 0x00);
|
|
} else {
|
|
/* MX25L3206E */
|
|
if ((0xC2 == flash->chip.mf_id) && (0x20 == flash->chip.type_id) && (0x16 == flash->chip.capacity_id)) {
|
|
result = sfud_write_status(flash, false, 0x00);
|
|
}
|
|
}
|
|
if (result != SFUD_SUCCESS) {
|
|
return result;
|
|
}
|
|
|
|
/* if the flash is large than 16MB (256Mb) then enter in 4-Byte addressing mode */
|
|
if (flash->chip.capacity > (1L << 24)) {
|
|
result = set_4_byte_address_mode(flash, true);
|
|
} else {
|
|
flash->addr_in_4_byte = false;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* software initialize
|
|
*
|
|
* @param flash flash device
|
|
*
|
|
* @return result
|
|
*/
|
|
static sfud_err software_init(const sfud_flash *flash) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
|
|
SFUD_ASSERT(flash);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* read flash data
|
|
*
|
|
* @param flash flash device
|
|
* @param addr start address
|
|
* @param size read size
|
|
* @param data read data pointer
|
|
*
|
|
* @return result
|
|
*/
|
|
sfud_err sfud_read(const sfud_flash *flash, uint32_t addr, size_t size, uint8_t *data) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
const sfud_spi *spi = &flash->spi;
|
|
uint8_t cmd_data[5], cmd_size;
|
|
|
|
SFUD_ASSERT(flash);
|
|
SFUD_ASSERT(data);
|
|
/* must be call this function after initialize OK */
|
|
SFUD_ASSERT(flash->init_ok);
|
|
/* check the flash address bound */
|
|
if (addr + size > flash->chip.capacity) {
|
|
SFUD_INFO("Error: Flash address is out of bound.");
|
|
return SFUD_ERR_ADDR_OUT_OF_BOUND;
|
|
}
|
|
/* lock SPI */
|
|
if (spi->lock) {
|
|
spi->lock(spi);
|
|
}
|
|
|
|
result = wait_busy(flash);
|
|
|
|
if (result == SFUD_SUCCESS) {
|
|
#ifdef SFUD_USING_QSPI
|
|
if (flash->read_cmd_format.instruction != SFUD_CMD_READ_DATA) {
|
|
result = spi->qspi_read(spi, addr, (sfud_qspi_read_cmd_format *)&flash->read_cmd_format, data, size);
|
|
} else
|
|
#endif
|
|
{
|
|
cmd_data[0] = SFUD_CMD_READ_DATA;
|
|
make_address_byte_array(flash, addr, &cmd_data[1]);
|
|
cmd_size = flash->addr_in_4_byte ? 5 : 4;
|
|
result = spi->wr(spi, cmd_data, cmd_size, data, size);
|
|
}
|
|
}
|
|
/* unlock SPI */
|
|
if (spi->unlock) {
|
|
spi->unlock(spi);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* erase all flash data
|
|
*
|
|
* @param flash flash device
|
|
*
|
|
* @return result
|
|
*/
|
|
sfud_err sfud_chip_erase(const sfud_flash *flash) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
const sfud_spi *spi = &flash->spi;
|
|
uint8_t cmd_data[4];
|
|
|
|
SFUD_ASSERT(flash);
|
|
/* must be call this function after initialize OK */
|
|
SFUD_ASSERT(flash->init_ok);
|
|
/* lock SPI */
|
|
if (spi->lock) {
|
|
spi->lock(spi);
|
|
}
|
|
|
|
/* set the flash write enable */
|
|
result = set_write_enabled(flash, true);
|
|
if (result != SFUD_SUCCESS) {
|
|
goto __exit;
|
|
}
|
|
|
|
cmd_data[0] = SFUD_CMD_ERASE_CHIP;
|
|
/* dual-buffer write, like AT45DB series flash chip erase operate is different for other flash */
|
|
if (flash->chip.write_mode & SFUD_WM_DUAL_BUFFER) {
|
|
cmd_data[1] = 0x94;
|
|
cmd_data[2] = 0x80;
|
|
cmd_data[3] = 0x9A;
|
|
result = spi->wr(spi, cmd_data, 4, NULL, 0);
|
|
} else {
|
|
result = spi->wr(spi, cmd_data, 1, NULL, 0);
|
|
}
|
|
if (result != SFUD_SUCCESS) {
|
|
SFUD_INFO("Error: Flash chip erase SPI communicate error.");
|
|
goto __exit;
|
|
}
|
|
result = wait_busy(flash);
|
|
|
|
__exit:
|
|
/* set the flash write disable */
|
|
set_write_enabled(flash, false);
|
|
/* unlock SPI */
|
|
if (spi->unlock) {
|
|
spi->unlock(spi);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* erase flash data
|
|
*
|
|
* @note It will erase align by erase granularity.
|
|
*
|
|
* @param flash flash device
|
|
* @param addr start address
|
|
* @param size erase size
|
|
*
|
|
* @return result
|
|
*/
|
|
sfud_err sfud_erase(const sfud_flash *flash, uint32_t addr, size_t size) {
|
|
extern size_t sfud_sfdp_get_suitable_eraser(const sfud_flash *flash, uint32_t addr, size_t erase_size);
|
|
|
|
sfud_err result = SFUD_SUCCESS;
|
|
const sfud_spi *spi = &flash->spi;
|
|
uint8_t cmd_data[5], cmd_size, cur_erase_cmd;
|
|
size_t cur_erase_size;
|
|
|
|
SFUD_ASSERT(flash);
|
|
/* must be call this function after initialize OK */
|
|
SFUD_ASSERT(flash->init_ok);
|
|
/* check the flash address bound */
|
|
if (addr + size > flash->chip.capacity) {
|
|
SFUD_INFO("Error: Flash address is out of bound.");
|
|
return SFUD_ERR_ADDR_OUT_OF_BOUND;
|
|
}
|
|
|
|
if (addr == 0 && size == flash->chip.capacity) {
|
|
return sfud_chip_erase(flash);
|
|
}
|
|
|
|
/* lock SPI */
|
|
if (spi->lock) {
|
|
spi->lock(spi);
|
|
}
|
|
|
|
/* loop erase operate. erase unit is erase granularity */
|
|
while (size) {
|
|
/* if this flash is support SFDP parameter, then used SFDP parameter supplies eraser */
|
|
#ifdef SFUD_USING_SFDP
|
|
size_t eraser_index;
|
|
if (flash->sfdp.available) {
|
|
/* get the suitable eraser for erase process from SFDP parameter */
|
|
eraser_index = sfud_sfdp_get_suitable_eraser(flash, addr, size);
|
|
cur_erase_cmd = flash->sfdp.eraser[eraser_index].cmd;
|
|
cur_erase_size = flash->sfdp.eraser[eraser_index].size;
|
|
} else {
|
|
#else
|
|
{
|
|
#endif
|
|
cur_erase_cmd = flash->chip.erase_gran_cmd;
|
|
cur_erase_size = flash->chip.erase_gran;
|
|
}
|
|
/* set the flash write enable */
|
|
result = set_write_enabled(flash, true);
|
|
if (result != SFUD_SUCCESS) {
|
|
goto __exit;
|
|
}
|
|
|
|
cmd_data[0] = cur_erase_cmd;
|
|
make_address_byte_array(flash, addr, &cmd_data[1]);
|
|
cmd_size = flash->addr_in_4_byte ? 5 : 4;
|
|
result = spi->wr(spi, cmd_data, cmd_size, NULL, 0);
|
|
if (result != SFUD_SUCCESS) {
|
|
SFUD_INFO("Error: Flash erase SPI communicate error.");
|
|
goto __exit;
|
|
}
|
|
result = wait_busy(flash);
|
|
if (result != SFUD_SUCCESS) {
|
|
goto __exit;
|
|
}
|
|
/* make erase align and calculate next erase address */
|
|
if (addr % cur_erase_size != 0) {
|
|
if (size > cur_erase_size - (addr % cur_erase_size)) {
|
|
size -= cur_erase_size - (addr % cur_erase_size);
|
|
addr += cur_erase_size - (addr % cur_erase_size);
|
|
} else {
|
|
goto __exit;
|
|
}
|
|
} else {
|
|
if (size > cur_erase_size) {
|
|
size -= cur_erase_size;
|
|
addr += cur_erase_size;
|
|
} else {
|
|
goto __exit;
|
|
}
|
|
}
|
|
}
|
|
|
|
__exit:
|
|
/* set the flash write disable */
|
|
set_write_enabled(flash, false);
|
|
/* unlock SPI */
|
|
if (spi->unlock) {
|
|
spi->unlock(spi);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* write flash data (no erase operate) for write 1 to 256 bytes per page mode or byte write mode
|
|
*
|
|
* @param flash flash device
|
|
* @param addr start address
|
|
* @param size write size
|
|
* @param write_gran write granularity bytes, only support 1 or 256
|
|
* @param data write data
|
|
*
|
|
* @return result
|
|
*/
|
|
static sfud_err page256_or_1_byte_write(const sfud_flash *flash, uint32_t addr, size_t size, uint16_t write_gran,
|
|
const uint8_t *data) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
const sfud_spi *spi = &flash->spi;
|
|
static uint8_t cmd_data[5 + SFUD_WRITE_MAX_PAGE_SIZE];
|
|
uint8_t cmd_size;
|
|
size_t data_size;
|
|
|
|
SFUD_ASSERT(flash);
|
|
/* only support 1 or 256 */
|
|
SFUD_ASSERT(write_gran == 1 || write_gran == 256);
|
|
/* must be call this function after initialize OK */
|
|
SFUD_ASSERT(flash->init_ok);
|
|
/* check the flash address bound */
|
|
if (addr + size > flash->chip.capacity) {
|
|
SFUD_INFO("Error: Flash address is out of bound.");
|
|
return SFUD_ERR_ADDR_OUT_OF_BOUND;
|
|
}
|
|
/* lock SPI */
|
|
if (spi->lock) {
|
|
spi->lock(spi);
|
|
}
|
|
|
|
/* loop write operate. write unit is write granularity */
|
|
while (size) {
|
|
/* set the flash write enable */
|
|
result = set_write_enabled(flash, true);
|
|
if (result != SFUD_SUCCESS) {
|
|
goto __exit;
|
|
}
|
|
cmd_data[0] = SFUD_CMD_PAGE_PROGRAM;
|
|
make_address_byte_array(flash, addr, &cmd_data[1]);
|
|
cmd_size = flash->addr_in_4_byte ? 5 : 4;
|
|
|
|
/* make write align and calculate next write address */
|
|
if (addr % write_gran != 0) {
|
|
if (size > write_gran - (addr % write_gran)) {
|
|
data_size = write_gran - (addr % write_gran);
|
|
} else {
|
|
data_size = size;
|
|
}
|
|
} else {
|
|
if (size > write_gran) {
|
|
data_size = write_gran;
|
|
} else {
|
|
data_size = size;
|
|
}
|
|
}
|
|
size -= data_size;
|
|
addr += data_size;
|
|
|
|
rt_memcpy(&cmd_data[cmd_size], data, data_size);
|
|
|
|
result = spi->wr(spi, cmd_data, cmd_size + data_size, NULL, 0);
|
|
if (result != SFUD_SUCCESS) {
|
|
SFUD_INFO("Error: Flash write SPI communicate error.");
|
|
goto __exit;
|
|
}
|
|
result = wait_busy(flash);
|
|
if (result != SFUD_SUCCESS) {
|
|
goto __exit;
|
|
}
|
|
data += data_size;
|
|
}
|
|
|
|
__exit:
|
|
/* set the flash write disable */
|
|
set_write_enabled(flash, false);
|
|
/* unlock SPI */
|
|
if (spi->unlock) {
|
|
spi->unlock(spi);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* write flash data (no erase operate) for auto address increment mode
|
|
*
|
|
* If the address is odd number, it will place one 0xFF before the start of data for protect the old data.
|
|
* If the latest remain size is 1, it will append one 0xFF at the end of data for protect the old data.
|
|
*
|
|
* @param flash flash device
|
|
* @param addr start address
|
|
* @param size write size
|
|
* @param data write data
|
|
*
|
|
* @return result
|
|
*/
|
|
static sfud_err aai_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
const sfud_spi *spi = &flash->spi;
|
|
uint8_t cmd_data[8], cmd_size;
|
|
bool first_write = true;
|
|
|
|
SFUD_ASSERT(flash);
|
|
SFUD_ASSERT(flash->init_ok);
|
|
/* check the flash address bound */
|
|
if (addr + size > flash->chip.capacity) {
|
|
SFUD_INFO("Error: Flash address is out of bound.");
|
|
return SFUD_ERR_ADDR_OUT_OF_BOUND;
|
|
}
|
|
/* lock SPI */
|
|
if (spi->lock) {
|
|
spi->lock(spi);
|
|
}
|
|
/* The address must be even for AAI write mode. So it must write one byte first when address is odd. */
|
|
if (addr % 2 != 0) {
|
|
result = page256_or_1_byte_write(flash, addr++, 1, 1, data++);
|
|
if (result != SFUD_SUCCESS) {
|
|
goto __exit;
|
|
}
|
|
size--;
|
|
}
|
|
/* set the flash write enable */
|
|
result = set_write_enabled(flash, true);
|
|
if (result != SFUD_SUCCESS) {
|
|
goto __exit;
|
|
}
|
|
/* loop write operate. */
|
|
cmd_data[0] = SFUD_CMD_AAI_WORD_PROGRAM;
|
|
while (size >= 2) {
|
|
if (first_write) {
|
|
make_address_byte_array(flash, addr, &cmd_data[1]);
|
|
cmd_size = flash->addr_in_4_byte ? 5 : 4;
|
|
cmd_data[cmd_size] = *data;
|
|
cmd_data[cmd_size + 1] = *(data + 1);
|
|
first_write = false;
|
|
} else {
|
|
cmd_size = 1;
|
|
cmd_data[1] = *data;
|
|
cmd_data[2] = *(data + 1);
|
|
}
|
|
|
|
result = spi->wr(spi, cmd_data, cmd_size + 2, NULL, 0);
|
|
if (result != SFUD_SUCCESS) {
|
|
SFUD_INFO("Error: Flash write SPI communicate error.");
|
|
goto __exit;
|
|
}
|
|
|
|
result = wait_busy(flash);
|
|
if (result != SFUD_SUCCESS) {
|
|
goto __exit;
|
|
}
|
|
|
|
size -= 2;
|
|
addr += 2;
|
|
data += 2;
|
|
}
|
|
/* set the flash write disable for exit AAI mode */
|
|
result = set_write_enabled(flash, false);
|
|
/* write last one byte data when origin write size is odd */
|
|
if (result == SFUD_SUCCESS && size == 1) {
|
|
result = page256_or_1_byte_write(flash, addr, 1, 1, data);
|
|
}
|
|
|
|
__exit:
|
|
if (result != SFUD_SUCCESS) {
|
|
set_write_enabled(flash, false);
|
|
}
|
|
/* unlock SPI */
|
|
if (spi->unlock) {
|
|
spi->unlock(spi);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* write flash data (no erase operate)
|
|
*
|
|
* @param flash flash device
|
|
* @param addr start address
|
|
* @param size write size
|
|
* @param data write data
|
|
*
|
|
* @return result
|
|
*/
|
|
sfud_err sfud_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
|
|
if (flash->chip.write_mode & SFUD_WM_PAGE_256B) {
|
|
result = page256_or_1_byte_write(flash, addr, size, 256, data);
|
|
} else if (flash->chip.write_mode & SFUD_WM_AAI) {
|
|
result = aai_write(flash, addr, size, data);
|
|
} else if (flash->chip.write_mode & SFUD_WM_DUAL_BUFFER) {
|
|
//TODO dual-buffer write mode
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* erase and write flash data
|
|
*
|
|
* @param flash flash device
|
|
* @param addr start address
|
|
* @param size write size
|
|
* @param data write data
|
|
*
|
|
* @return result
|
|
*/
|
|
sfud_err sfud_erase_write(const sfud_flash *flash, uint32_t addr, size_t size, const uint8_t *data) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
|
|
result = sfud_erase(flash, addr, size);
|
|
|
|
if (result == SFUD_SUCCESS) {
|
|
result = sfud_write(flash, addr, size, data);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static sfud_err reset(const sfud_flash *flash) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
const sfud_spi *spi = &flash->spi;
|
|
uint8_t cmd_data[2];
|
|
|
|
SFUD_ASSERT(flash);
|
|
|
|
cmd_data[0] = SFUD_CMD_ENABLE_RESET;
|
|
result = spi->wr(spi, cmd_data, 1, NULL, 0);
|
|
if (result == SFUD_SUCCESS) {
|
|
result = wait_busy(flash);
|
|
} else {
|
|
SFUD_INFO("Error: Flash device reset failed.");
|
|
return result;
|
|
}
|
|
|
|
cmd_data[1] = SFUD_CMD_RESET;
|
|
result = spi->wr(spi, &cmd_data[1], 1, NULL, 0);
|
|
|
|
if (result == SFUD_SUCCESS) {
|
|
result = wait_busy(flash);
|
|
}
|
|
|
|
if (result == SFUD_SUCCESS) {
|
|
SFUD_DEBUG("Flash device reset success.");
|
|
} else {
|
|
SFUD_INFO("Error: Flash device reset failed.");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static sfud_err read_jedec_id(sfud_flash *flash) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
const sfud_spi *spi = &flash->spi;
|
|
uint8_t cmd_data[1], recv_data[3];
|
|
|
|
SFUD_ASSERT(flash);
|
|
|
|
cmd_data[0] = SFUD_CMD_JEDEC_ID;
|
|
result = spi->wr(spi, cmd_data, sizeof(cmd_data), recv_data, sizeof(recv_data));
|
|
if (result == SFUD_SUCCESS) {
|
|
flash->chip.mf_id = recv_data[0];
|
|
flash->chip.type_id = recv_data[1];
|
|
flash->chip.capacity_id = recv_data[2];
|
|
SFUD_DEBUG("The flash device manufacturer ID is 0x%02X, memory type ID is 0x%02X, capacity ID is 0x%02X.",
|
|
flash->chip.mf_id, flash->chip.type_id, flash->chip.capacity_id);
|
|
} else {
|
|
SFUD_INFO("Error: Read flash device JEDEC ID error.");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* set the flash write enable or write disable
|
|
*
|
|
* @param flash flash device
|
|
* @param enabled true: enable false: disable
|
|
*
|
|
* @return result
|
|
*/
|
|
static sfud_err set_write_enabled(const sfud_flash *flash, bool enabled) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
uint8_t cmd, register_status;
|
|
|
|
SFUD_ASSERT(flash);
|
|
|
|
if (enabled) {
|
|
cmd = SFUD_CMD_WRITE_ENABLE;
|
|
} else {
|
|
cmd = SFUD_CMD_WRITE_DISABLE;
|
|
}
|
|
|
|
result = flash->spi.wr(&flash->spi, &cmd, 1, NULL, 0);
|
|
|
|
if (result == SFUD_SUCCESS) {
|
|
result = sfud_read_status(flash, ®ister_status);
|
|
}
|
|
|
|
if (result == SFUD_SUCCESS) {
|
|
if (enabled && (register_status & SFUD_STATUS_REGISTER_WEL) == 0) {
|
|
SFUD_INFO("Error: Can't enable write status.");
|
|
return SFUD_ERR_WRITE;
|
|
} else if (!enabled && (register_status & SFUD_STATUS_REGISTER_WEL) != 0) {
|
|
SFUD_INFO("Error: Can't disable write status.");
|
|
return SFUD_ERR_WRITE;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* enable or disable 4-Byte addressing for flash
|
|
*
|
|
* @note The 4-Byte addressing just supported for the flash capacity which is large then 16MB (256Mb).
|
|
*
|
|
* @param flash flash device
|
|
* @param enabled true: enable false: disable
|
|
*
|
|
* @return result
|
|
*/
|
|
static sfud_err set_4_byte_address_mode(sfud_flash *flash, bool enabled) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
uint8_t cmd;
|
|
|
|
SFUD_ASSERT(flash);
|
|
|
|
/* set the flash write enable */
|
|
result = set_write_enabled(flash, true);
|
|
if (result != SFUD_SUCCESS) {
|
|
return result;
|
|
}
|
|
|
|
if (enabled) {
|
|
cmd = SFUD_CMD_ENTER_4B_ADDRESS_MODE;
|
|
} else {
|
|
cmd = SFUD_CMD_EXIT_4B_ADDRESS_MODE;
|
|
}
|
|
|
|
result = flash->spi.wr(&flash->spi, &cmd, 1, NULL, 0);
|
|
|
|
if (result == SFUD_SUCCESS) {
|
|
flash->addr_in_4_byte = enabled ? true : false;
|
|
SFUD_DEBUG("%s 4-Byte addressing mode success.", enabled ? "Enter" : "Exit");
|
|
} else {
|
|
SFUD_INFO("Error: %s 4-Byte addressing mode failed.", enabled ? "Enter" : "Exit");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* read flash register status
|
|
*
|
|
* @param flash flash device
|
|
* @param status register status
|
|
*
|
|
* @return result
|
|
*/
|
|
sfud_err sfud_read_status(const sfud_flash *flash, uint8_t *status) {
|
|
uint8_t cmd = SFUD_CMD_READ_STATUS_REGISTER;
|
|
|
|
SFUD_ASSERT(flash);
|
|
SFUD_ASSERT(status);
|
|
|
|
return flash->spi.wr(&flash->spi, &cmd, 1, status, 1);
|
|
}
|
|
|
|
static sfud_err wait_busy(const sfud_flash *flash) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
uint8_t status;
|
|
size_t retry_times = flash->retry.times;
|
|
|
|
SFUD_ASSERT(flash);
|
|
|
|
while (true) {
|
|
result = sfud_read_status(flash, &status);
|
|
if (result == SFUD_SUCCESS && ((status & SFUD_STATUS_REGISTER_BUSY)) == 0) {
|
|
break;
|
|
}
|
|
/* retry counts */
|
|
SFUD_RETRY_PROCESS(flash->retry.delay, retry_times, result);
|
|
}
|
|
|
|
if (result != SFUD_SUCCESS || ((status & SFUD_STATUS_REGISTER_BUSY)) != 0) {
|
|
SFUD_INFO("Error: Flash wait busy has an error.");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void make_address_byte_array(const sfud_flash *flash, uint32_t addr, uint8_t *array) {
|
|
uint8_t len, i;
|
|
|
|
SFUD_ASSERT(flash);
|
|
SFUD_ASSERT(array);
|
|
|
|
len = flash->addr_in_4_byte ? 4 : 3;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
array[i] = (addr >> ((len - (i + 1)) * 8)) & 0xFF;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* write status register
|
|
*
|
|
* @param flash flash device
|
|
* @param is_volatile true: volatile mode, false: non-volatile mode
|
|
* @param status register status
|
|
*
|
|
* @return result
|
|
*/
|
|
sfud_err sfud_write_status(const sfud_flash *flash, bool is_volatile, uint8_t status) {
|
|
sfud_err result = SFUD_SUCCESS;
|
|
const sfud_spi *spi = &flash->spi;
|
|
uint8_t cmd_data[2];
|
|
|
|
SFUD_ASSERT(flash);
|
|
|
|
if (is_volatile) {
|
|
cmd_data[0] = SFUD_VOLATILE_SR_WRITE_ENABLE;
|
|
result = spi->wr(spi, cmd_data, 1, NULL, 0);
|
|
} else {
|
|
result = set_write_enabled(flash, true);
|
|
}
|
|
|
|
if (result == SFUD_SUCCESS) {
|
|
cmd_data[0] = SFUD_CMD_WRITE_STATUS_REGISTER;
|
|
cmd_data[1] = status;
|
|
result = spi->wr(spi, cmd_data, 2, NULL, 0);
|
|
}
|
|
|
|
if (result != SFUD_SUCCESS) {
|
|
SFUD_INFO("Error: Write_status register failed.");
|
|
}
|
|
|
|
return result;
|
|
}
|