huanghe 50a4e8c662
[bsp][phytium]适配rt-thread5.0.0 版本 (#7441)
Co-authored-by: 朱耿宇 <zhugengyu@phytium.com.cn>
2023-05-11 10:25:21 +08:00

595 lines
20 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Email: opensource_embedded@phytium.com.cn
*
* Change Logs:
* Date Author Notes
* 2023-03-20 zhangyan first version
*
*/
#include "drv_can.h"
#include "sdkconfig.h"
#ifdef RT_USING_CAN
#include "fdebug.h"
#include "fpinctrl.h"
#define FCAN_TEST_DEBUG_TAG "FCAN_TEST"
#define FCAN_TEST_DEBUG(format, ...) FT_DEBUG_PRINT_D(FCAN_TEST_DEBUG_TAG, format, ##__VA_ARGS__)
#define FCAN_TEST_INFO(format, ...) FT_DEBUG_PRINT_I(FCAN_TEST_DEBUG_TAG, format, ##__VA_ARGS__)
#define FCAN_TEST_WARN(format, ...) FT_DEBUG_PRINT_W(FCAN_TEST_DEBUG_TAG, format, ##__VA_ARGS__)
#define FCAN_TEST_ERROR(format, ...) FT_DEBUG_PRINT_E(FCAN_TEST_DEBUG_TAG, format, ##__VA_ARGS__)
struct phytium_can
{
const char *name;
FCanCtrl can_handle;
FCanIdMaskConfig filter;
struct rt_can_device device; /* inherit from can device */
};
static struct phytium_can drv_can[FCAN_NUM] =
{
{
.name = "CAN0",
.can_handle.config.instance_id = 0,
},
{
.name = "CAN1",
.can_handle.config.instance_id = 1,
},
#if defined(CONFIG_TARGET_F2000_4) || defined(CONFIG_TARGET_D2000)
{
.name = "CAN2",
.can_handle.config.instance_id = 2,
},
#endif
};
static void CanRxIrqCallback(void *args)
{
FCanCtrl *instance_p = (FCanCtrl *)args;
rt_hw_can_isr(&drv_can[instance_p->config.instance_id].device, RT_CAN_EVENT_RX_IND);
FCAN_TEST_DEBUG("CAN%d irq recv frame callback.", instance_p->config.instance_id);
}
static void CanErrorCallback(void *args)
{
FCanCtrl *instance_p = (FCanCtrl *)args;
uintptr base_addr = instance_p->config.base_address;
FCAN_TEST_DEBUG("CAN %d is under error.", instance_p->config.instance_id);
FCAN_TEST_DEBUG("error_status is %x.", FCAN_READ_REG32(base_addr, FCAN_INTR_OFFSET));
FCAN_TEST_DEBUG("rxerr_cnt is %x.", FCAN_ERR_CNT_RFN_GET(FCAN_READ_REG32(base_addr, FCAN_ERR_CNT_OFFSET)));
FCAN_TEST_DEBUG("txerr_cnt is %x.", FCAN_ERR_CNT_TFN_GET(FCAN_READ_REG32(base_addr, FCAN_ERR_CNT_OFFSET)));
}
static void CanTxIrqCallback(void *args)
{
FCanCtrl *instance_p = (FCanCtrl *)args;
rt_hw_can_isr(&drv_can[instance_p->config.instance_id].device, RT_CAN_EVENT_TX_DONE);
FCAN_TEST_DEBUG("CAN%d irq send frame callback.", instance_p->config.instance_id);
}
static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg)
{
RT_ASSERT(can);
RT_ASSERT(cfg);
struct phytium_can *drv_can;
drv_can = (struct phytium_can *)can->parent.user_data;
RT_ASSERT(drv_can);
FError status = FT_SUCCESS;
rt_kprintf("CAN%d begin to config.\n", drv_can->can_handle.config.instance_id);
#if defined(CONFIG_TARGET_F2000_4) || defined(CONFIG_TARGET_D2000)
if(drv_can->can_handle.config.instance_id == FCAN_INSTANCE_0)
{
FPinSetFunc(FIOCTRL_TJTAG_TDI_PAD, FPIN_FUNC1); /* can0-tx: func 1 */
FPinSetFunc(FIOCTRL_SWDITMS_SWJ_PAD, FPIN_FUNC1); /* can0-rx: func 1 */
}
else if(drv_can->can_handle.config.instance_id == FCAN_INSTANCE_1)
{
FPinSetFunc(FIOCTRL_NTRST_SWJ_PAD, FPIN_FUNC1); /* can1-tx: func 1 */
FPinSetFunc(FIOCTRL_SWDO_SWJ_PAD, FPIN_FUNC1); /* can1-rx: func 1 */
}
else
{
FCAN_TEST_ERROR("CAN id is under error.");
return RT_ERROR;
}
#elif defined(CONFIG_TARGET_E2000)
FIOPadSetCanMux(drv_can->can_handle.config.instance_id);
#endif
/*CAN config init*/
status = FCanCfgInitialize(&(drv_can->can_handle), FCanLookupConfig(drv_can->can_handle.config.instance_id));
if (status != FT_SUCCESS)
{
FCAN_TEST_DEBUG("CAN %d initialize error, status = %#x.", drv_can->can_handle.config.instance_id, status);
return RT_ERROR;
}
/*Set the baudrate*/
FCanBaudrateConfig arb_segment_config;
FCanBaudrateConfig data_segment_config;
memset(&arb_segment_config, 0, sizeof(arb_segment_config));
memset(&data_segment_config, 0, sizeof(data_segment_config));
#if defined(RT_CAN_USING_CANFD)
arb_segment_config.auto_calc = TRUE;
arb_segment_config.baudrate = CAN1MBaud; /*CANFD arb baud defaults to 1M ,allowed to be modified*/
arb_segment_config.segment = FCAN_ARB_SEGMENT;
status = FCanBaudrateSet(&(drv_can->can_handle), &arb_segment_config);
if (status != RT_EOK)
{
FCAN_TEST_DEBUG("CAN%d set arb segment baudrate failed.", drv_can->can_handle.config.instance_id);
return RT_ERROR;
}
data_segment_config.auto_calc = TRUE;
data_segment_config.baudrate = cfg->baud_rate_fd;
data_segment_config.segment = FCAN_DATA_SEGMENT;
status = FCanBaudrateSet(&(drv_can->can_handle), &data_segment_config);
if (status != RT_EOK)
{
FCAN_TEST_DEBUG("CAN%d set data segment baudrate failed.", drv_can->can_handle.config.instance_id);
return RT_ERROR;
}
#else
arb_segment_config.auto_calc = TRUE;
arb_segment_config.baudrate = cfg->baud_rate;
arb_segment_config.segment = FCAN_ARB_SEGMENT;
status = FCanBaudrateSet(&(drv_can->can_handle), &arb_segment_config);
if (status != FT_SUCCESS)
{
FCAN_TEST_DEBUG("CAN%d set arb segment baudrate failed.", drv_can->can_handle.config.instance_id);
return RT_ERROR;
}
data_segment_config.auto_calc = TRUE;
data_segment_config.baudrate = cfg->baud_rate;
data_segment_config.segment = FCAN_DATA_SEGMENT;
status = FCanBaudrateSet(&(drv_can->can_handle), &data_segment_config);
if (status != FT_SUCCESS)
{
FCAN_TEST_DEBUG("CAN%d set data segment baudrate failed.", drv_can->can_handle.config.instance_id);
return RT_ERROR;
}
#endif
/*CAN filter function init*/
for (int i = 0; i < FCAN_ACC_ID_REG_NUM; i++)
{
drv_can->filter.filter_index = i;
drv_can->filter.id = 0;
drv_can->filter.mask = FCAN_ACC_IDN_MASK;
status |= FCanIdMaskFilterSet(&(drv_can->can_handle), &(drv_can->filter));
}
if (status != FT_SUCCESS)
{
FCAN_TEST_ERROR("CAN%d set mask filter failed.", drv_can->can_handle.config.instance_id);
return RT_ERROR;
}
/* Identifier mask enable */
FCanIdMaskFilterEnable(&(drv_can->can_handle));
/* Transmit mode init , the default setting is normal mode */
FCanSetMode(&(drv_can->can_handle), FCAN_PROBE_NORMAL_MODE);
/* enable can transfer */
FCanEnable(&(drv_can->can_handle), RT_TRUE);
return RT_EOK;
}
static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg)
{
RT_ASSERT(can);
rt_uint32_t argval;
struct phytium_can *drv_can;
drv_can = (struct phytium_can *)can->parent.user_data;
RT_ASSERT(drv_can != RT_NULL);
rt_uint32_t cpu_id;
FCanIntrEventConfig intr_event;
FError status = FT_SUCCESS;
#ifdef RT_CAN_USING_HDR
struct rt_can_filter_config *filter_cfg;
#endif
switch (cmd)
{
case RT_DEVICE_CTRL_SET_INT:
GetCpuId(&cpu_id);
rt_hw_interrupt_set_target_cpus(drv_can->can_handle.config.irq_num, cpu_id);
argval = (rt_uint32_t) arg;
/*Open different interrupts*/
if (argval == RT_DEVICE_CAN_INT_ERR)
{
intr_event.type = FCAN_INTR_EVENT_ERROR;
intr_event.handler = CanErrorCallback;
intr_event.param = (void *)(&(drv_can->can_handle));
FCanRegisterInterruptHandler(&(drv_can->can_handle), &intr_event);
FCanInterruptEnable(&(drv_can->can_handle), intr_event.type);
}
if (argval == RT_DEVICE_FLAG_INT_TX)
{
intr_event.type = FCAN_INTR_EVENT_SEND;
intr_event.handler = CanTxIrqCallback;
intr_event.param = (void *)(&(drv_can->can_handle));
FCanRegisterInterruptHandler(&(drv_can->can_handle), &intr_event);
FCanInterruptEnable(&(drv_can->can_handle), intr_event.type);
}
if (argval == RT_DEVICE_FLAG_INT_RX)
{
intr_event.type = FCAN_INTR_EVENT_RECV;
intr_event.handler = CanRxIrqCallback;
intr_event.param = (void *)(&(drv_can->can_handle));
FCanRegisterInterruptHandler(&(drv_can->can_handle), &intr_event);
FCanInterruptEnable(&(drv_can->can_handle), intr_event.type);
}
rt_hw_interrupt_set_priority(drv_can->can_handle.config.irq_num, 16);
rt_hw_interrupt_install(drv_can->can_handle.config.irq_num, FCanIntrHandler, &(drv_can->can_handle), drv_can->name);
rt_hw_interrupt_umask(drv_can->can_handle.config.irq_num);
break;
case RT_CAN_CMD_SET_MODE:
argval = (rt_uint32_t) arg;
FCanEnable(&(drv_can->can_handle), RT_FALSE);
if (argval == RT_CAN_MODE_LISTEN)
{
FCanSetMode(&(drv_can->can_handle), FCAN_PROBE_MONITOR_MODE);
drv_can->device.config.mode = RT_CAN_MODE_LISTEN;
}
else if (argval == RT_CAN_MODE_NORMAL)
{
FCanSetMode(&(drv_can->can_handle), FCAN_PROBE_NORMAL_MODE);
drv_can->device.config.mode = RT_CAN_MODE_NORMAL;
}
FCanEnable(&(drv_can->can_handle), RT_TRUE);
break;
case RT_CAN_CMD_SET_BAUD:
argval = (rt_uint32_t) arg;
if (argval != CAN1MBaud &&
argval != CAN800kBaud &&
argval != CAN500kBaud &&
argval != CAN250kBaud &&
argval != CAN125kBaud &&
argval != CAN100kBaud &&
argval != CAN50kBaud &&
argval != CAN20kBaud &&
argval != CAN10kBaud)
{
return RT_ERROR;
}
if (argval != drv_can->device.config.baud_rate)
{
FCanBaudrateConfig arb_segment_config;
FCanBaudrateConfig data_segment_config;
memset(&arb_segment_config, 0, sizeof(arb_segment_config));
memset(&data_segment_config, 0, sizeof(data_segment_config));
drv_can->device.config.baud_rate = argval;
FCanEnable(&(drv_can->can_handle), RT_FALSE);
arb_segment_config.auto_calc = TRUE;
arb_segment_config.baudrate = drv_can->device.config.baud_rate;
arb_segment_config.segment = FCAN_ARB_SEGMENT;
status = FCanBaudrateSet(&(drv_can->can_handle), &arb_segment_config);
if (status != FT_SUCCESS)
{
FCAN_TEST_DEBUG("CAN%d set arb segment baudrate failed.", drv_can->can_handle.config.instance_id);
return RT_ERROR;
}
data_segment_config.auto_calc = TRUE;
data_segment_config.baudrate = drv_can->device.config.baud_rate;
data_segment_config.segment = FCAN_DATA_SEGMENT;
status = FCanBaudrateSet(&(drv_can->can_handle), &data_segment_config);
if (status != FT_SUCCESS)
{
FCAN_TEST_DEBUG("CAN%d set data segment baudrate failed.", drv_can->can_handle.config.instance_id);
return RT_ERROR;
}
FCanEnable(&(drv_can->can_handle), RT_TRUE);
}
break;
case RT_CAN_CMD_SET_BAUD_FD:
#if defined RT_CAN_USING_CANFD
argval = (rt_uint32_t) arg;
if (argval != drv_can->device.config.baud_rate_fd)
{
FCanBaudrateConfig arb_segment_config;
FCanBaudrateConfig data_segment_config;
memset(&arb_segment_config, 0, sizeof(arb_segment_config));
memset(&data_segment_config, 0, sizeof(data_segment_config));
drv_can->device.config.baud_rate = argval;
FCanEnable(&(drv_can->can_handle), RT_FALSE);
arb_segment_config.auto_calc = TRUE;
arb_segment_config.baudrate = CAN1MBaud;
arb_segment_config.segment = FCAN_ARB_SEGMENT;
status = FCanBaudrateSet(&(drv_can->can_handle), &arb_segment_config);
if (status != FT_SUCCESS)
{
FCAN_TEST_DEBUG("CAN%d set arb segment baudrate failed.", drv_can->can_handle.config.instance_id);
return RT_ERROR;
}
data_segment_config.auto_calc = TRUE;
data_segment_config.baudrate = drv_can->device.config.baud_rate_fd;
data_segment_config.segment = FCAN_DATA_SEGMENT;
status = FCanBaudrateSet(&(drv_can->can_handle), &data_segment_config);
if (status != FT_SUCCESS)
{
FCAN_TEST_DEBUG("CAN%d set data segment baudrate failed.", drv_can->can_handle.config.instance_id);
return RT_ERROR;
}
FCanEnable(&(drv_can->can_handle), RT_TRUE);
}
#endif
break;
case RT_CAN_CMD_SET_FILTER:
#ifdef RT_CAN_USING_HDR
filter_cfg = (struct rt_can_filter_config *)arg;
FCanEnable(&(drv_can->can_handle), RT_FALSE);
for (int i = 0; i < filter_cfg->count; i++)
{
drv_can->filter.filter_index = i;
drv_can->filter.mask = filter_cfg->items[i].mask;
drv_can->filter.id = filter_cfg->items[i].id;
drv_can->filter.type = FCAN_STANDARD_FRAME;
status = FCanIdMaskFilterSet(&(drv_can->can_handle), &(drv_can->filter));
if (status != FT_SUCCESS)
{
FCAN_TEST_ERROR("CAN%d set mask filter failed.", drv_can->can_handle.config.instance_id);
return RT_ERROR;
}
}
FCanEnable(&(drv_can->can_handle), RT_TRUE);
#endif
break;
}
return RT_EOK;
}
static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
{
RT_ASSERT(can);
RT_ASSERT(buf);
struct phytium_can *drv_can;
drv_can = (struct phytium_can *)can->parent.user_data;
RT_ASSERT(drv_can);
struct rt_can_msg *pmsg = (struct rt_can_msg *)buf;
FCanFrame can_frame = {0};
/* Check the parameters */
RT_ASSERT(pmsg->len <= 8U);
if (RT_CAN_STDID == pmsg->ide)
{
can_frame.canid = pmsg->id;
}
else
{
can_frame.canid = pmsg->id;
can_frame.canid |= CAN_EFF_FLAG;
}
if (RT_CAN_DTR == pmsg->rtr)
{
}
else
{
can_frame.canid |= CAN_RTR_FLAG;
}
can_frame.candlc = pmsg->len ;
memcpy(can_frame.data, pmsg->data, 8);
return (FCanSend(&drv_can->can_handle, &can_frame) == RT_EOK) ? RT_EOK : -RT_ERROR;
}
static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
{
RT_ASSERT(can);
RT_ASSERT(buf);
struct phytium_can *drv_can;
drv_can = (struct phytium_can *)can->parent.user_data;
RT_ASSERT(drv_can);
struct rt_can_msg *pmsg = (struct rt_can_msg *)buf;
FCanFrame recv_frame;
FError status = FT_SUCCESS;
status = FCanRecv(&(drv_can->can_handle), &recv_frame);
if (status != FT_SUCCESS)
{
FCAN_TEST_DEBUG("CAN%d recv data failed.", drv_can->can_handle.config.instance_id);
return RT_ERROR;
}
if (CAN_EFF_FLAG & recv_frame.canid)
{
pmsg->ide = RT_CAN_EXTID;
pmsg->id = (recv_frame.canid & ~(RT_CAN_EXTID));
}
else
{
pmsg->ide = RT_CAN_STDID;
pmsg->id = recv_frame.canid;
}
if (CAN_RTR_FLAG & recv_frame.canid)
{
pmsg->id &= ~CAN_RTR_FLAG;
pmsg->rtr = RT_CAN_RTR;
}
else
{
pmsg->rtr = RT_CAN_DTR;
}
/* get len */
pmsg->len = recv_frame.candlc;
for (int i = 0; i < pmsg->len; i++)
{
pmsg->data[i] = recv_frame.data[i];
}
/* get hdr */
pmsg->hdr = 0;
return RT_EOK;
}
static const struct rt_can_ops _can_ops =
{
_can_config,
_can_control,
_can_sendmsg,
_can_recvmsg,
};
int rt_hw_can_init(void)
{
rt_err_t ret = RT_EOK;
for (int i = 0; i < (u32)FCAN_NUM; i++)
{
drv_can[i].device.config.ticks = 20000;
drv_can[i].device.config.baud_rate = 800000;
#ifdef RT_CAN_USING_CANFD
drv_can[i].device.config.baud_rate_fd = 800000;
#endif
drv_can[i].device.config.mode = RT_CAN_MODE_NORMAL;
drv_can[i].device.config.sndboxnumber = 1;
drv_can[i].device.config.msgboxsz = 1;
#ifdef RT_CAN_USING_HDR
drv_can[i].device.config.maxhdr = 1;
#endif
ret = rt_hw_can_register(&drv_can[i].device,
drv_can[i].name,
&_can_ops,
&drv_can[i]);
RT_ASSERT(ret == RT_EOK);
}
return (int)ret;
}
INIT_BOARD_EXPORT(rt_hw_can_init);
/*can test example*/
static rt_device_t can_dev; /* CAN device handle */
static struct rt_semaphore rx_sem;
static rt_err_t can_rx_call(rt_device_t dev, rt_size_t size)
{
/* The CAN generates an interrupt after receiving data, calls this callback function, and then sends the received semaphore */
rt_sem_release(&rx_sem);
return RT_EOK;
}
static void can_rx_thread(void *parameter)
{
int i;
rt_err_t res = RT_EOK;
struct rt_can_msg rxmsg = {0};
rt_device_set_rx_indicate(can_dev, can_rx_call);
while (1)
{
/* The hdr value is - 1, which means reading data directly from the uselist */
rxmsg.hdr = -1;
/* Blocking waiting to receive semaphore */
res = rt_sem_take(&rx_sem, RT_WAITING_FOREVER);
RT_ASSERT(res == RT_EOK);
/* Read a frame of data from CAN */
rt_device_read(can_dev, 0, &rxmsg, sizeof(rxmsg));
/* Print data ID and conten */
rt_kprintf("ID:%x\n", rxmsg.id);
rt_kprintf("DATA: ");
for (i = 0; i < 8; i++)
{
rt_kprintf("%2x ", rxmsg.data[i]);
}
rt_kprintf("\n");
}
}
int can_sample(int argc, char *argv[])
{
struct rt_can_msg msg = {0};
rt_err_t res = RT_EOK;;
rt_size_t size;
rt_thread_t thread;
char can_name[RT_NAME_MAX];
if (argc == 2)
{
rt_strncpy(can_name, argv[1], RT_NAME_MAX);
}
else
{
rt_strncpy(can_name, "CAN0", RT_NAME_MAX);
}
/* Find CAN device */
can_dev = rt_device_find(can_name);
if (!can_dev)
{
rt_kprintf("Find %s failed.\n", can_name);
return RT_ERROR;
}
/* Initialize CAN receive signal quantity */
res = rt_sem_init(&rx_sem, "rx_sem", 0, RT_IPC_FLAG_FIFO);
RT_ASSERT(res == RT_EOK);
/* Open the CAN device in the way of interrupt reception and transmission */
res = rt_device_open(can_dev, RT_DEVICE_FLAG_INT_TX | RT_DEVICE_FLAG_INT_RX);
rt_device_control(can_dev,RT_CAN_CMD_SET_BAUD, CAN1MBaud);
RT_ASSERT(res == RT_EOK);
#ifdef RT_CAN_USING_HDR
struct rt_can_filter_item items[4] =
{
RT_CAN_FILTER_ITEM_INIT(0x3, 0, 0, 0, 0, RT_NULL, RT_NULL),
RT_CAN_FILTER_ITEM_INIT(0x3, 0, 0, 0, 0, RT_NULL, RT_NULL),
RT_CAN_FILTER_ITEM_INIT(0x3, 0, 0, 0, 0, RT_NULL, RT_NULL),
RT_CAN_FILTER_ITEM_INIT(0x3, 0, 0, 0, 0, RT_NULL, RT_NULL)
};
struct rt_can_filter_config cfg = {4, 1, items}; /* There are 4 filter tables in total */
/* Set the hardware filter table. After setting, only frames with id=0x03 can be received*/
res = rt_device_control(can_dev, RT_CAN_CMD_SET_FILTER, &cfg);
RT_ASSERT(res == RT_EOK);
#endif
/* Create data receiving thread */
thread = rt_thread_create("can_rx", can_rx_thread, RT_NULL, 1024, 25, 10);
if (thread != RT_NULL)
{
res = rt_thread_startup(thread);
RT_ASSERT(res == RT_EOK);
}
else
{
rt_kprintf("Create can_rx thread failed.\n");
}
msg.id = 0x78; /* ID = 0x78 */
msg.ide = RT_CAN_STDID; /* Standard format */
msg.rtr = RT_CAN_RTR; /* Data frame */
msg.len = 8; /* Data length is 8 */
/* Send CAN data */
for (int i = 0; i < 10; i++)
{
/* 8-byte data to be sent */
msg.data[0] = 0x00+i;
msg.data[1] = 0x11+i;
msg.data[2] = 0x22+i;
msg.data[3] = 0x33+i;
msg.data[4] = 0x44+i;
msg.data[5] = 0x55+i;
msg.data[6] = 0x66+i;
msg.data[7] = 0x77+i;
rt_device_write(can_dev, 0, &msg, sizeof(msg));
}
return res;
}
/* Enter can_sample command for testing */
MSH_CMD_EXPORT(can_sample, can device sample);
#endif