rt-thread/bsp/imxrt/Libraries/imxrt1021/devices/MIMXRT1021/drivers/fsl_enet.c

2976 lines
107 KiB
C

/*
* The Clear BSD License
* Copyright (c) 2015 - 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_enet.h"
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
#include "fsl_cache.h"
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.enet"
#endif
/*! @brief IPv4 PTP message IP version offset. */
#define ENET_PTP1588_IPVERSION_OFFSET 0x0EU
/*! @brief IPv4 PTP message UDP protocol offset. */
#define ENET_PTP1588_IPV4_UDP_PROTOCOL_OFFSET 0x17U
/*! @brief IPv4 PTP message UDP port offset. */
#define ENET_PTP1588_IPV4_UDP_PORT_OFFSET 0x24U
/*! @brief IPv4 PTP message UDP message type offset. */
#define ENET_PTP1588_IPV4_UDP_MSGTYPE_OFFSET 0x2AU
/*! @brief IPv4 PTP message UDP version offset. */
#define ENET_PTP1588_IPV4_UDP_VERSION_OFFSET 0x2BU
/*! @brief IPv4 PTP message UDP clock id offset. */
#define ENET_PTP1588_IPV4_UDP_CLKID_OFFSET 0x3EU
/*! @brief IPv4 PTP message UDP sequence id offset. */
#define ENET_PTP1588_IPV4_UDP_SEQUENCEID_OFFSET 0x48U
/*! @brief IPv4 PTP message UDP control offset. */
#define ENET_PTP1588_IPV4_UDP_CTL_OFFSET 0x4AU
/*! @brief IPv6 PTP message UDP protocol offset. */
#define ENET_PTP1588_IPV6_UDP_PROTOCOL_OFFSET 0x14U
/*! @brief IPv6 PTP message UDP port offset. */
#define ENET_PTP1588_IPV6_UDP_PORT_OFFSET 0x38U
/*! @brief IPv6 PTP message UDP message type offset. */
#define ENET_PTP1588_IPV6_UDP_MSGTYPE_OFFSET 0x3EU
/*! @brief IPv6 PTP message UDP version offset. */
#define ENET_PTP1588_IPV6_UDP_VERSION_OFFSET 0x3FU
/*! @brief IPv6 PTP message UDP clock id offset. */
#define ENET_PTP1588_IPV6_UDP_CLKID_OFFSET 0x52U
/*! @brief IPv6 PTP message UDP sequence id offset. */
#define ENET_PTP1588_IPV6_UDP_SEQUENCEID_OFFSET 0x5CU
/*! @brief IPv6 PTP message UDP control offset. */
#define ENET_PTP1588_IPV6_UDP_CTL_OFFSET 0x5EU
/*! @brief PTPv2 message Ethernet packet type offset. */
#define ENET_PTP1588_ETHL2_PACKETTYPE_OFFSET 0x0CU
/*! @brief PTPv2 message Ethernet message type offset. */
#define ENET_PTP1588_ETHL2_MSGTYPE_OFFSET 0x0EU
/*! @brief PTPv2 message Ethernet version type offset. */
#define ENET_PTP1588_ETHL2_VERSION_OFFSET 0X0FU
/*! @brief PTPv2 message Ethernet clock id offset. */
#define ENET_PTP1588_ETHL2_CLOCKID_OFFSET 0x22
/*! @brief PTPv2 message Ethernet sequence id offset. */
#define ENET_PTP1588_ETHL2_SEQUENCEID_OFFSET 0x2c
/*! @brief Packet type Ethernet IEEE802.3 for PTPv2. */
#define ENET_ETHERNETL2 0x88F7U
/*! @brief Packet type IPv4. */
#define ENET_IPV4 0x0800U
/*! @brief Packet type IPv6. */
#define ENET_IPV6 0x86ddU
/*! @brief Packet type VLAN. */
#define ENET_8021QVLAN 0x8100U
/*! @brief UDP protocol type. */
#define ENET_UDPVERSION 0x0011U
/*! @brief Packet IP version IPv4. */
#define ENET_IPV4VERSION 0x0004U
/*! @brief Packet IP version IPv6. */
#define ENET_IPV6VERSION 0x0006U
/*! @brief Ethernet mac address length. */
#define ENET_FRAME_MACLEN 6U
/*! @brief Ethernet VLAN header length. */
#define ENET_FRAME_VLAN_TAGLEN 4U
/*! @brief MDC frequency. */
#define ENET_MDC_FREQUENCY 2500000U
/*! @brief NanoSecond in one second. */
#define ENET_NANOSECOND_ONE_SECOND 1000000000U
/*! @brief Define a common clock cycle delays used for time stamp capture. */
#ifndef ENET_1588TIME_DELAY_COUNT
#define ENET_1588TIME_DELAY_COUNT 10U
#endif
/*! @brief Defines the macro for converting constants from host byte order to network byte order. */
#define ENET_HTONS(n) __REV16(n)
#define ENET_HTONL(n) __REV(n)
#define ENET_NTOHS(n) __REV16(n)
#define ENET_NTOHL(n) __REV(n)
/*! @brief Define the ENET ring/class bumber . */
enum _enet_ring_number
{
kENET_Ring0 = 0U, /*!< ENET ring/class 0. */
#if FSL_FEATURE_ENET_QUEUE > 1
kENET_Ring1 = 1U, /*!< ENET ring/class 1. */
kENET_Ring2 = 2U /*!< ENET ring/class 2. */
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
};
/*! @brief Define interrupt IRQ handler. */
#if FSL_FEATURE_ENET_QUEUE > 1
typedef void (*enet_isr_ring_t)(ENET_Type *base, enet_handle_t *handle, uint32_t ringId);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
typedef void (*enet_isr_t)(ENET_Type *base, enet_handle_t *handle);
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get the ENET instance from peripheral base address.
*
* @param base ENET peripheral base address.
* @return ENET instance.
*/
uint32_t ENET_GetInstance(ENET_Type *base);
/*!
* @brief Set ENET MAC controller with the configuration.
*
* @param base ENET peripheral base address.
* @param handle The ENET handle pointer.
* @param config ENET Mac configuration.
* @param bufferConfig ENET buffer configuration.
* @param macAddr ENET six-byte mac address.
* @param srcClock_Hz ENET module clock source, normally it's system clock.
*/
static void ENET_SetMacController(ENET_Type *base,
enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig,
uint8_t *macAddr,
uint32_t srcClock_Hz);
/*!
* @brief Set ENET handler.
*
* @param base ENET peripheral base address.
* @param handle The ENET handle pointer.
* @param config ENET configuration stucture pointer.
* @param bufferConfig ENET buffer configuration.
*/
static void ENET_SetHandler(ENET_Type *base,
enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig);
/*!
* @brief Set ENET MAC transmit buffer descriptors.
*
* @param handle The ENET handle pointer.
* @param config The ENET configuration structure.
* @param bufferConfig The ENET buffer configuration.
*/
static void ENET_SetTxBufferDescriptors(enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig);
/*!
* @brief Set ENET MAC receive buffer descriptors.
*
* @param handle The ENET handle pointer.
* @param config The ENET configuration structure.
* @param bufferConfig The ENET buffer configuration.
*/
static void ENET_SetRxBufferDescriptors(enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig);
/*!
* @brief Updates the ENET read buffer descriptors.
*
* @param base ENET peripheral base address.
* @param handle The ENET handle pointer.
* @param ringId The descriptor ring index, range from 0 ~ FSL_FEATURE_ENET_QUEUE - 1.
* 0 ----- for single ring kinetis platform.
* 0 ~ 2 for mulit-ring supported IMX8qm.
*/
static void ENET_UpdateReadBuffers(ENET_Type *base, enet_handle_t *handle, uint32_t ringId);
/*!
* @brief Activates ENET send for multiple tx rings.
*
* @param base ENET peripheral base address.
* @param ringId The descriptor ring index, range from 0 ~ FSL_FEATURE_ENET_QUEUE - 1.
* 0 ----- for single ring kinetis platform.
* 0 ~ 2 for mulit-ring supported IMX8qm.
*
* @note This must be called after the MAC configuration and
* state are ready. It must be called after the ENET_Init() and
* this should be called when the ENET receive required.
*/
static void ENET_ActiveSend(ENET_Type *base, uint32_t ringId);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/*!
* @brief Parses the ENET frame for time-stamp process of PTP 1588 frame.
*
* @param data The ENET read data for frame parse.
* @param ptpTsData The ENET PTP message and time-stamp data pointer.
* @param isFastEnabled The fast parse flag.
* - true , Fast processing, only check if this is a PTP message.
* - false, Store the PTP message data after check the PTP message.
*/
static bool ENET_Ptp1588ParseFrame(const uint8_t *data, enet_ptp_time_data_t *ptpTsData, bool isFastEnabled);
/*!
* @brief Updates the new PTP 1588 time-stamp to the time-stamp buffer ring.
*
* @param ptpTsDataRing The PTP message and time-stamp data ring pointer.
* @param ptpTimeData The new PTP 1588 time-stamp data pointer.
*/
static status_t ENET_Ptp1588UpdateTimeRing(enet_ptp_time_data_ring_t *ptpTsDataRing, enet_ptp_time_data_t *ptpTimeData);
/*!
* @brief Search up the right PTP 1588 time-stamp from the time-stamp buffer ring.
*
* @param ptpTsDataRing The PTP message and time-stamp data ring pointer.
* @param ptpTimeData The find out right PTP 1588 time-stamp data pointer with the specific PTP message.
*/
static status_t ENET_Ptp1588SearchTimeRing(enet_ptp_time_data_ring_t *ptpTsDataRing, enet_ptp_time_data_t *ptpTimedata);
/*!
* @brief Store the transmit time-stamp for event PTP frame in the time-stamp buffer ring.
*
* @param base ENET peripheral base address.
* @param handle The ENET handle pointer.
* @param ringId The descriptor ring index, range from 0 ~ FSL_FEATURE_ENET_QUEUE - 1.
* 0 ----- for single ring kinetis platform.
* 0 ~ 2 for mulit-ring supported IMX8qm.
*/
static status_t ENET_StoreTxFrameTime(ENET_Type *base, enet_handle_t *handle, uint32_t ringId);
/*!
* @brief Store the receive time-stamp for event PTP frame in the time-stamp buffer ring.
*
* @param base ENET peripheral base address.
* @param handle The ENET handle pointer.
* @param ptpTimeData The PTP 1588 time-stamp data pointer.
*/
static status_t ENET_StoreRxFrameTime(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_data_t *ptpTimeData);
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_AVB
/*!
* @brief Gets the ring index for transmission.
*
* @param base ENET peripheral base address.
* @param data The ENET transmit data.
* @param handle The ENET handle pointer.
*
* @note This must be called after the MAC configuration and
* state are ready. It must be called after the ENET_Init() and
* this should be called when the ENET receive required.
*/
static uint8_t ENET_GetTxRingId(ENET_Type *base, uint8_t *data, enet_handle_t *handle);
#endif /* FSL_FEATURE_ENET_HAS_AVB */
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to enet handles for each instance. */
static enet_handle_t *s_ENETHandle[FSL_FEATURE_SOC_ENET_COUNT] = {NULL};
/*! @brief Pointers to enet clocks for each instance. */
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
const clock_ip_name_t s_enetClock[] = ENET_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*! @brief Pointers to enet transmit IRQ number for each instance. */
static const IRQn_Type s_enetTxIrqId[] = ENET_Transmit_IRQS;
/*! @brief Pointers to enet receive IRQ number for each instance. */
static const IRQn_Type s_enetRxIrqId[] = ENET_Receive_IRQS;
#if defined(ENET_ENHANCEDBUFFERDESCRIPTOR_MODE) && ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/*! @brief Pointers to enet timestamp IRQ number for each instance. */
static const IRQn_Type s_enetTsIrqId[] = ENET_1588_Timer_IRQS;
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/*! @brief Pointers to enet error IRQ number for each instance. */
static const IRQn_Type s_enetErrIrqId[] = ENET_Error_IRQS;
/*! @brief Pointers to enet bases for each instance. */
static ENET_Type *const s_enetBases[] = ENET_BASE_PTRS;
/* ENET ISR for transactional APIs. */
#if FSL_FEATURE_ENET_QUEUE > 1
static enet_isr_ring_t s_enetTxIsr;
static enet_isr_ring_t s_enetRxIsr;
#else
static enet_isr_t s_enetTxIsr;
static enet_isr_t s_enetRxIsr;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
static enet_isr_t s_enetErrIsr;
static enet_isr_t s_enetTsIsr;
/*******************************************************************************
* Code
******************************************************************************/
uint32_t ENET_GetInstance(ENET_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_enetBases); instance++)
{
if (s_enetBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_enetBases));
return instance;
}
void ENET_GetDefaultConfig(enet_config_t *config)
{
/* Checks input parameter. */
assert(config);
/* Initializes the MAC configure structure to zero. */
memset(config, 0, sizeof(enet_config_t));
/* Sets MII mode, full duplex, 100Mbps for MAC and PHY data interface. */
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
config->miiMode = kENET_RgmiiMode;
#else
config->miiMode = kENET_RmiiMode;
#endif
config->miiSpeed = kENET_MiiSpeed100M;
config->miiDuplex = kENET_MiiFullDuplex;
config->ringNum = 1;
/* Sets the maximum receive frame length. */
config->rxMaxFrameLen = ENET_FRAME_MAX_FRAMELEN;
}
void ENET_Init(ENET_Type *base,
enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig,
uint8_t *macAddr,
uint32_t srcClock_Hz)
{
/* Checks input parameters. */
assert(handle);
assert(config);
assert(bufferConfig);
assert(macAddr);
assert(config->ringNum <= FSL_FEATURE_ENET_QUEUE);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance = ENET_GetInstance(base);
/* Ungate ENET clock. */
CLOCK_EnableClock(s_enetClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Reset ENET module. */
ENET_Reset(base);
/* Initializes the ENET transmit buffer descriptors. */
ENET_SetTxBufferDescriptors(handle, config, bufferConfig);
/* Initializes the ENET receive buffer descriptors. */
ENET_SetRxBufferDescriptors(handle, config, bufferConfig);
/* Initializes the ENET MAC controller with basic function. */
ENET_SetMacController(base, handle, config, bufferConfig, macAddr, srcClock_Hz);
/* Set all buffers or data in handler for data transmit/receive process. */
ENET_SetHandler(base, handle, config, bufferConfig);
}
void ENET_Deinit(ENET_Type *base)
{
/* Disable interrupt. */
base->EIMR = 0;
/* Disable ENET. */
base->ECR &= ~ENET_ECR_ETHEREN_MASK;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disables the clock source. */
CLOCK_DisableClock(s_enetClock[ENET_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
void ENET_SetCallback(enet_handle_t *handle, enet_callback_t callback, void *userData)
{
assert(handle);
/* Set callback and userData. */
handle->callback = callback;
handle->userData = userData;
}
static void ENET_SetHandler(ENET_Type *base,
enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig)
{
uint8_t count;
uint32_t instance = ENET_GetInstance(base);
const enet_buffer_config_t *buffCfg = bufferConfig;
/* Store transfer parameters in handle pointer. */
memset(handle, 0, sizeof(enet_handle_t));
handle->ringNum = (config->ringNum > FSL_FEATURE_ENET_QUEUE) ? FSL_FEATURE_ENET_QUEUE : config->ringNum;
for (count = 0; count < handle->ringNum; count++)
{
assert(buffCfg->rxBuffSizeAlign * buffCfg->rxBdNumber > config->rxMaxFrameLen);
handle->rxBdBase[count] = buffCfg->rxBdStartAddrAlign;
handle->rxBdCurrent[count] = buffCfg->rxBdStartAddrAlign;
handle->rxBuffSizeAlign[count] = buffCfg->rxBuffSizeAlign;
handle->txBdBase[count] = buffCfg->txBdStartAddrAlign;
handle->txBdCurrent[count] = buffCfg->txBdStartAddrAlign;
handle->txBuffSizeAlign[count] = buffCfg->txBuffSizeAlign;
buffCfg++;
}
/* Save the handle pointer in the global variables. */
s_ENETHandle[instance] = handle;
/* Set the IRQ handler when the interrupt is enabled. */
if (config->interrupt & ENET_TX_INTERRUPT)
{
s_enetTxIsr = ENET_TransmitIRQHandler;
EnableIRQ(s_enetTxIrqId[instance]);
}
if (config->interrupt & ENET_RX_INTERRUPT)
{
s_enetRxIsr = ENET_ReceiveIRQHandler;
EnableIRQ(s_enetRxIrqId[instance]);
}
if (config->interrupt & ENET_ERR_INTERRUPT)
{
s_enetErrIsr = ENET_ErrorIRQHandler;
EnableIRQ(s_enetErrIrqId[instance]);
}
}
static void ENET_SetMacController(ENET_Type *base,
enet_handle_t *handle,
const enet_config_t *config,
const enet_buffer_config_t *bufferConfig,
uint8_t *macAddr,
uint32_t srcClock_Hz)
{
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
/* Check the MII mode/speed/duplex setting. */
if (config->miiSpeed == kENET_MiiSpeed1000M)
{
/* Only RGMII mode has the 1000M bit/s. The 1000M only support full duplex. */
assert(config->miiMode == kENET_RgmiiMode);
assert(config->miiDuplex == kENET_MiiFullDuplex);
}
#endif /* FSL_FEATURE_ENET_HAS_AVB */
uint32_t rcr = 0;
uint32_t tcr = 0;
uint32_t ecr = base->ECR;
uint32_t macSpecialConfig = config->macSpecialConfig;
uint32_t maxFrameLen = config->rxMaxFrameLen;
/* Maximum frame length check. */
if ((macSpecialConfig & kENET_ControlVLANTagEnable) && (maxFrameLen <= ENET_FRAME_MAX_FRAMELEN))
{
maxFrameLen = (ENET_FRAME_MAX_FRAMELEN + ENET_FRAME_VLAN_TAGLEN);
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
if (macSpecialConfig & kENET_ControlSVLANEnable)
{
/* Double vlan tag (SVLAN) supported. */
maxFrameLen += ENET_FRAME_VLAN_TAGLEN;
}
ecr |= ((macSpecialConfig & kENET_ControlSVLANEnable) ? (ENET_ECR_SVLANEN_MASK | ENET_ECR_SVLANDBL_MASK) : 0) |
((macSpecialConfig & kENET_ControlVLANUseSecondTag) ? ENET_ECR_VLANUSE2ND_MASK : 0);
#endif /* FSL_FEATURE_ENET_HAS_AVB */
}
/* Configures MAC receive controller with user configure structure. */
rcr = ((macSpecialConfig & kENET_ControlRxPayloadCheckEnable) ? ENET_RCR_NLC_MASK : 0) |
((macSpecialConfig & kENET_ControlFlowControlEnable) ? ENET_RCR_CFEN_MASK : 0) |
((macSpecialConfig & kENET_ControlFlowControlEnable) ? ENET_RCR_FCE_MASK : 0) |
((macSpecialConfig & kENET_ControlRxPadRemoveEnable) ? ENET_RCR_PADEN_MASK : 0) |
((macSpecialConfig & kENET_ControlRxBroadCastRejectEnable) ? ENET_RCR_BC_REJ_MASK : 0) |
((macSpecialConfig & kENET_ControlPromiscuousEnable) ? ENET_RCR_PROM_MASK : 0) |
ENET_RCR_MAX_FL(maxFrameLen) | ENET_RCR_CRCFWD_MASK;
/* Set the RGMII or RMII, MII mode and control register. */
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
if (config->miiMode == kENET_RgmiiMode)
{
rcr |= ENET_RCR_RGMII_EN_MASK;
rcr &= ~ENET_RCR_MII_MODE_MASK;
}
else
{
rcr &= ~ENET_RCR_RGMII_EN_MASK;
#endif /* FSL_FEATURE_ENET_HAS_AVB */
rcr |= ENET_RCR_MII_MODE_MASK;
if (config->miiMode == kENET_RmiiMode)
{
rcr |= ENET_RCR_RMII_MODE_MASK;
}
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
}
#endif /* FSL_FEATURE_ENET_HAS_AVB */
/* Speed. */
if (config->miiSpeed == kENET_MiiSpeed10M)
{
rcr |= ENET_RCR_RMII_10T_MASK;
}
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
if (config->miiSpeed == kENET_MiiSpeed1000M)
{
ecr |= ENET_ECR_SPEED_MASK;
}
#endif /* FSL_FEATURE_ENET_HAS_AVB */
/* Receive setting for half duplex. */
if (config->miiDuplex == kENET_MiiHalfDuplex)
{
rcr |= ENET_RCR_DRT_MASK;
}
/* Sets internal loop only for MII mode. */
if ((config->macSpecialConfig & kENET_ControlMIILoopEnable) && (config->miiMode != kENET_RmiiMode))
{
rcr |= ENET_RCR_LOOP_MASK;
rcr &= ~ENET_RCR_DRT_MASK;
}
base->RCR = rcr;
/* Configures MAC transmit controller: duplex mode, mac address insertion. */
tcr = base->TCR & ~(ENET_TCR_FDEN_MASK | ENET_TCR_ADDINS_MASK);
tcr |= (config->miiDuplex ? ENET_TCR_FDEN_MASK : 0) |
((macSpecialConfig & kENET_ControlMacAddrInsert) ? ENET_TCR_ADDINS_MASK : 0);
base->TCR = tcr;
/* Configures receive and transmit accelerator. */
base->TACC = config->txAccelerConfig;
base->RACC = config->rxAccelerConfig;
/* Sets the pause duration and FIFO threshold for the flow control enabled case. */
if (macSpecialConfig & kENET_ControlFlowControlEnable)
{
uint32_t reemReg;
base->OPD = config->pauseDuration;
reemReg = ENET_RSEM_RX_SECTION_EMPTY(config->rxFifoEmptyThreshold);
#if defined(FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD) && FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD
reemReg |= ENET_RSEM_STAT_SECTION_EMPTY(config->rxFifoStatEmptyThreshold);
#endif /* FSL_FEATURE_ENET_HAS_RECEIVE_STATUS_THRESHOLD */
base->RSEM = reemReg;
}
/* FIFO threshold setting for store and forward enable/disable case. */
if (macSpecialConfig & kENET_ControlStoreAndFwdDisable)
{
/* Transmit fifo watermark settings. */
base->TFWR = config->txFifoWatermark & ENET_TFWR_TFWR_MASK;
/* Receive fifo full threshold settings. */
base->RSFL = config->rxFifoFullThreshold & ENET_RSFL_RX_SECTION_FULL_MASK;
}
else
{
/* Transmit fifo watermark settings. */
base->TFWR = ENET_TFWR_STRFWD_MASK;
base->RSFL = 0;
}
/* Enable store and forward when accelerator is enabled */
if (config->txAccelerConfig & (kENET_TxAccelIpCheckEnabled | kENET_TxAccelProtoCheckEnabled))
{
base->TFWR = ENET_TFWR_STRFWD_MASK;
}
if (config->rxAccelerConfig & (kENET_RxAccelIpCheckEnabled | kENET_RxAccelProtoCheckEnabled))
{
base->RSFL = 0;
}
/* Initializes the ring 0. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
base->TDSR = MEMORY_ConvertMemoryMapAddress((uint32_t)bufferConfig->txBdStartAddrAlign, kMEMORY_Local2DMA);
base->RDSR = MEMORY_ConvertMemoryMapAddress((uint32_t)bufferConfig->rxBdStartAddrAlign, kMEMORY_Local2DMA);
#else
base->TDSR = (uint32_t)bufferConfig->txBdStartAddrAlign;
base->RDSR = (uint32_t)bufferConfig->rxBdStartAddrAlign;
#endif
base->MRBR = bufferConfig->rxBuffSizeAlign;
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
const enet_buffer_config_t *buffCfg = bufferConfig;
if (config->ringNum > 1)
{
/* Initializes the ring 1. */
buffCfg++;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
base->TDSR1 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->txBdStartAddrAlign, kMEMORY_Local2DMA);
base->RDSR1 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->rxBdStartAddrAlign, kMEMORY_Local2DMA);
#else
base->TDSR1 = (uint32_t)buffCfg->txBdStartAddrAlign;
base->RDSR1 = (uint32_t)buffCfg->rxBdStartAddrAlign;
#endif
base->MRBR1 = buffCfg->rxBuffSizeAlign;
/* Enable the DMAC for ring 1 and with no rx classification set. */
base->DMACFG[0] = ENET_DMACFG_DMA_CLASS_EN_MASK;
}
if (config->ringNum > 2)
{
/* Initializes the ring 2. */
buffCfg++;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
base->TDSR2 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->txBdStartAddrAlign, kMEMORY_Local2DMA);
base->RDSR2 = MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->rxBdStartAddrAlign, kMEMORY_Local2DMA);
#else
base->TDSR2 = (uint32_t)buffCfg->txBdStartAddrAlign;
base->RDSR2 = (uint32_t)buffCfg->rxBdStartAddrAlign;
#endif
base->MRBR2 = buffCfg->rxBuffSizeAlign;
/* Enable the DMAC for ring 2 and with no rx classification set. */
base->DMACFG[1] = ENET_DMACFG_DMA_CLASS_EN_MASK;
}
/* Default the class/ring 1 and 2 are not enabled and the receive classification is disabled
* so we set the default transmit scheme with the round-robin mode. beacuse the legacy bd mode
* only support the round-robin mode. if the avb feature is required, just call the setup avb
* feature API. */
base->QOS |= ENET_QOS_TX_SCHEME(1);
#endif /* FSL_FEATURE_ENET_HAS_AVB */
/* Configures the Mac address. */
ENET_SetMacAddr(base, macAddr);
/* Initialize the SMI if uninitialized. */
if (!ENET_GetSMI(base))
{
ENET_SetSMI(base, srcClock_Hz, !!(config->macSpecialConfig & kENET_ControlSMIPreambleDisable));
}
/* Enables Ethernet interrupt, enables the interrupt coalsecing if it is required. */
#if defined(FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE) && FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE
if (config->intCoalesceCfg)
{
uint32_t intMask = (ENET_EIMR_TXB_MASK | ENET_EIMR_RXB_MASK);
#if FSL_FEATURE_ENET_QUEUE > 1
uint8_t queue = 0;
intMask |= ENET_EIMR_TXB2_MASK | ENET_EIMR_RXB2_MASK | ENET_EIMR_TXB1_MASK | ENET_EIMR_RXB1_MASK;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
/* Clear all buffer interrupts. */
base->EIMR &= ~intMask;
/* Set the interrupt coalescence. */
#if FSL_FEATURE_ENET_QUEUE > 1
for (queue = 0; queue < FSL_FEATURE_ENET_QUEUE; queue++)
{
base->TXIC[queue] = ENET_TXIC_ICFT(config->intCoalesceCfg->txCoalesceFrameCount[queue]) |
config->intCoalesceCfg->txCoalesceTimeCount[queue] | ENET_TXIC_ICCS_MASK |
ENET_TXIC_ICEN_MASK;
base->RXIC[queue] = ENET_RXIC_ICFT(config->intCoalesceCfg->rxCoalesceFrameCount[queue]) |
config->intCoalesceCfg->rxCoalesceTimeCount[queue] | ENET_RXIC_ICCS_MASK |
ENET_RXIC_ICEN_MASK;
}
#else
base->TXIC = ENET_TXIC_ICFT(config->intCoalesceCfg->txCoalesceFrameCount[0]) |
config->intCoalesceCfg->txCoalesceTimeCount[0] | ENET_TXIC_ICCS_MASK | ENET_TXIC_ICEN_MASK;
base->RXIC = ENET_RXIC_ICFT(config->intCoalesceCfg->rxCoalesceFrameCount[0]) |
config->intCoalesceCfg->rxCoalesceTimeCount[0] | ENET_RXIC_ICCS_MASK | ENET_RXIC_ICEN_MASK;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
#endif /* FSL_FEATURE_ENET_HAS_INTERRUPT_COALESCE */
ENET_EnableInterrupts(base, config->interrupt);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* Sets the 1588 enhanced feature. */
ecr |= ENET_ECR_EN1588_MASK;
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Enables Ethernet module after all configuration except the buffer descriptor active. */
ecr |= ENET_ECR_ETHEREN_MASK | ENET_ECR_DBSWP_MASK;
base->ECR = ecr;
}
static void ENET_SetTxBufferDescriptors(enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig)
{
assert(config);
assert(bufferConfig);
/* Default single ring is supported. */
uint8_t ringNum;
uint32_t count;
uint32_t txBuffSizeAlign;
uint8_t *txBuffer;
const enet_buffer_config_t *buffCfg = bufferConfig;
/* Check the input parameters. */
for (ringNum = 0; ringNum < config->ringNum; ringNum++)
{
if ((buffCfg->txBdStartAddrAlign > 0) && (buffCfg->txBufferAlign > 0))
{
volatile enet_tx_bd_struct_t *curBuffDescrip = buffCfg->txBdStartAddrAlign;
txBuffSizeAlign = buffCfg->txBuffSizeAlign;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
txBuffer = (uint8_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->txBufferAlign, kMEMORY_Local2DMA);
#else
txBuffer = buffCfg->txBufferAlign;
#endif
for (count = 0; count < buffCfg->txBdNumber; count++)
{
/* Set data buffer address. */
curBuffDescrip->buffer = (uint8_t *)((uint32_t)&txBuffer[count * txBuffSizeAlign]);
/* Initializes data length. */
curBuffDescrip->length = 0;
/* Sets the crc. */
curBuffDescrip->control = ENET_BUFFDESCRIPTOR_TX_TRANMITCRC_MASK;
/* Sets the last buffer descriptor with the wrap flag. */
if (count == buffCfg->txBdNumber - 1)
{
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_WRAP_MASK;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* Enable transmit interrupt for store the transmit timestamp. */
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_INTERRUPT_MASK;
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
/* Set the type of the frame when the credit-based scheme is used. */
curBuffDescrip->controlExtend1 |= ENET_BD_FTYPE(ringNum);
#endif /* FSL_FEATURE_ENET_HAS_AVB */
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Increase the index. */
curBuffDescrip++;
}
}
buffCfg++;
}
}
static void ENET_SetRxBufferDescriptors(enet_handle_t *handle, const enet_config_t *config, const enet_buffer_config_t *bufferConfig)
{
assert(config);
assert(bufferConfig);
/* Default single ring is supported. */
uint8_t ringNum;
uint32_t count;
uint32_t rxBuffSizeAlign;
uint8_t *rxBuffer;
const enet_buffer_config_t *buffCfg = bufferConfig;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
uint32_t mask = (kENET_RxFrameInterrupt | kENET_RxBufferInterrupt);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Check the input parameters. */
for (ringNum = 0; ringNum < config->ringNum; ringNum++)
{
assert(buffCfg->rxBuffSizeAlign >= ENET_RX_MIN_BUFFERSIZE);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
#if FSL_FEATURE_ENET_QUEUE > 1
if (ringNum == 1)
{
mask = (kENET_RxFrame1Interrupt | kENET_RxBuffer1Interrupt);
}
else if (ringNum == 2)
{
mask = (kENET_RxFrame2Interrupt | kENET_RxBuffer2Interrupt);
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
if ((buffCfg->rxBdStartAddrAlign > 0) && (buffCfg->rxBufferAlign > 0))
{
volatile enet_rx_bd_struct_t *curBuffDescrip = buffCfg->rxBdStartAddrAlign;
rxBuffSizeAlign = buffCfg->rxBuffSizeAlign;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
rxBuffer = (uint8_t *)MEMORY_ConvertMemoryMapAddress((uint32_t)buffCfg->rxBufferAlign, kMEMORY_Local2DMA);
#else
rxBuffer = buffCfg->rxBufferAlign;
#endif
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* Invalidate rx buffers before DMA transfer data into them. */
DCACHE_InvalidateByRange((uint32_t)rxBuffer, (buffCfg->rxBdNumber * rxBuffSizeAlign));
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
for (count = 0; count < buffCfg->rxBdNumber; count++)
{
/* Set data buffer and the length. */
curBuffDescrip->buffer = (uint8_t *)((uint32_t)&rxBuffer[count * rxBuffSizeAlign]);
curBuffDescrip->length = 0;
/* Initializes the buffer descriptors with empty bit. */
curBuffDescrip->control = ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
/* Sets the last buffer descriptor with the wrap flag. */
if (count == buffCfg->rxBdNumber - 1)
{
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
if (config->interrupt & mask)
{
/* Enable receive interrupt. */
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_RX_INTERRUPT_MASK;
}
else
{
curBuffDescrip->controlExtend1 = 0;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Increase the index. */
curBuffDescrip++;
}
}
buffCfg++;
}
}
static void ENET_ActiveSend(ENET_Type *base, uint32_t ringId)
{
assert(ringId < FSL_FEATURE_ENET_QUEUE);
switch (ringId)
{
case kENET_Ring0:
base->TDAR = ENET_TDAR_TDAR_MASK;
break;
#if FSL_FEATURE_ENET_QUEUE > 1
case kENET_Ring1:
base->TDAR1 = ENET_TDAR1_TDAR_MASK;
break;
case kENET_Ring2:
base->TDAR2 = ENET_TDAR2_TDAR_MASK;
break;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
default:
base->TDAR = ENET_TDAR_TDAR_MASK;
break;
}
}
void ENET_SetMII(ENET_Type *base, enet_mii_speed_t speed, enet_mii_duplex_t duplex)
{
uint32_t rcr = base->RCR;
uint32_t tcr = base->TCR;
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
uint32_t ecr = base->ECR;
if (kENET_MiiSpeed1000M == speed)
{
assert(duplex == kENET_MiiFullDuplex);
ecr |= ENET_ECR_SPEED_MASK;
}
else
{
ecr &= ~ENET_ECR_SPEED_MASK;
}
base->ECR = ecr;
#endif /* FSL_FEATURE_ENET_HAS_AVB */
/* Sets speed mode. */
if (kENET_MiiSpeed10M == speed)
{
rcr |= ENET_RCR_RMII_10T_MASK;
}
else
{
rcr &= ~ENET_RCR_RMII_10T_MASK;
}
/* Set duplex mode. */
if (duplex == kENET_MiiHalfDuplex)
{
rcr |= ENET_RCR_DRT_MASK;
tcr &= ~ENET_TCR_FDEN_MASK;
}
else
{
rcr &= ~ENET_RCR_DRT_MASK;
tcr |= ENET_TCR_FDEN_MASK;
}
base->RCR = rcr;
base->TCR = tcr;
}
void ENET_SetMacAddr(ENET_Type *base, uint8_t *macAddr)
{
uint32_t address;
/* Set physical address lower register. */
address = (uint32_t)(((uint32_t)macAddr[0] << 24U) | ((uint32_t)macAddr[1] << 16U) | ((uint32_t)macAddr[2] << 8U) |
(uint32_t)macAddr[3]);
base->PALR = address;
/* Set physical address high register. */
address = (uint32_t)(((uint32_t)macAddr[4] << 8U) | ((uint32_t)macAddr[5]));
base->PAUR = address << ENET_PAUR_PADDR2_SHIFT;
}
void ENET_GetMacAddr(ENET_Type *base, uint8_t *macAddr)
{
assert(macAddr);
uint32_t address;
/* Get from physical address lower register. */
address = base->PALR;
macAddr[0] = 0xFFU & (address >> 24U);
macAddr[1] = 0xFFU & (address >> 16U);
macAddr[2] = 0xFFU & (address >> 8U);
macAddr[3] = 0xFFU & address;
/* Get from physical address high register. */
address = (base->PAUR & ENET_PAUR_PADDR2_MASK) >> ENET_PAUR_PADDR2_SHIFT;
macAddr[4] = 0xFFU & (address >> 8U);
macAddr[5] = 0xFFU & address;
}
void ENET_SetSMI(ENET_Type *base, uint32_t srcClock_Hz, bool isPreambleDisabled)
{
assert(srcClock_Hz);
uint32_t clkCycle = 0;
uint32_t speed = 0;
uint32_t mscr = 0;
/* Calculate the MII speed which controls the frequency of the MDC. */
speed = srcClock_Hz / (2 * ENET_MDC_FREQUENCY);
/* Calculate the hold time on the MDIO output. */
clkCycle = (10 + ENET_NANOSECOND_ONE_SECOND / srcClock_Hz - 1) / (ENET_NANOSECOND_ONE_SECOND / srcClock_Hz) - 1;
/* Build the configuration for MDC/MDIO control. */
mscr = ENET_MSCR_MII_SPEED(speed) | ENET_MSCR_HOLDTIME(clkCycle) | (isPreambleDisabled ? ENET_MSCR_DIS_PRE_MASK : 0);
base->MSCR = mscr;
}
void ENET_StartSMIWrite(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, enet_mii_write_t operation, uint32_t data)
{
uint32_t mmfr = 0;
/* Build MII write command. */
mmfr = ENET_MMFR_ST(1) | ENET_MMFR_OP(operation) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(phyReg) | ENET_MMFR_TA(2) |
(data & 0xFFFF);
base->MMFR = mmfr;
}
void ENET_StartSMIRead(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, enet_mii_read_t operation)
{
uint32_t mmfr = 0;
/* Build MII read command. */
mmfr = ENET_MMFR_ST(1) | ENET_MMFR_OP(operation) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(phyReg) | ENET_MMFR_TA(2);
base->MMFR = mmfr;
}
#if defined(FSL_FEATURE_ENET_HAS_EXTEND_MDIO) && FSL_FEATURE_ENET_HAS_EXTEND_MDIO
void ENET_StartExtC45SMIWrite(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg, uint32_t data)
{
uint32_t mmfr = 0;
/* Parse the address from the input register. */
uint16_t devAddr = (phyReg >> ENET_MMFR_TA_SHIFT) & 0x1FU;
uint16_t regAddr = (uint16_t)(phyReg & 0xFFFFU);
/* Address write firstly. */
mmfr = ENET_MMFR_ST(0) | ENET_MMFR_OP(kENET_MiiAddrWrite_C45) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(devAddr) |
ENET_MMFR_TA(2) | ENET_MMFR_DATA(regAddr);
base->MMFR = mmfr;
/* Build MII write command. */
mmfr = ENET_MMFR_ST(0) | ENET_MMFR_OP(kENET_MiiWriteFrame_C45) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(devAddr) |
ENET_MMFR_TA(2) | ENET_MMFR_DATA(data);
base->MMFR = mmfr;
}
void ENET_StartExtC45SMIRead(ENET_Type *base, uint32_t phyAddr, uint32_t phyReg)
{
uint32_t mmfr = 0;
/* Parse the address from the input register. */
uint16_t devAddr = (phyReg >> ENET_MMFR_TA_SHIFT) & 0x1FU;
uint16_t regAddr = (uint16_t)(phyReg & 0xFFFFU);
/* Address write firstly. */
mmfr = ENET_MMFR_ST(0) | ENET_MMFR_OP(kENET_MiiAddrWrite_C45) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(devAddr) |
ENET_MMFR_TA(2) | ENET_MMFR_DATA(regAddr);
base->MMFR = mmfr;
/* Build MII read command. */
mmfr = ENET_MMFR_ST(0) | ENET_MMFR_OP(kENET_MiiReadFrame_C45) | ENET_MMFR_PA(phyAddr) | ENET_MMFR_RA(devAddr) |
ENET_MMFR_TA(2);
base->MMFR = mmfr;
}
#endif /* FSL_FEATURE_ENET_HAS_EXTEND_MDIO */
void ENET_GetRxErrBeforeReadFrame(enet_handle_t *handle, enet_data_error_stats_t *eErrorStatic)
{
assert(handle);
assert(handle->rxBdCurrent[0]);
assert(eErrorStatic);
uint16_t control = 0;
volatile enet_rx_bd_struct_t *curBuffDescrip = handle->rxBdCurrent[0];
do
{
/* The last buffer descriptor of a frame. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
{
control = curBuffDescrip->control;
if (control & ENET_BUFFDESCRIPTOR_RX_TRUNC_MASK)
{
/* The receive truncate error. */
eErrorStatic->statsRxTruncateErr++;
}
if (control & ENET_BUFFDESCRIPTOR_RX_OVERRUN_MASK)
{
/* The receive over run error. */
eErrorStatic->statsRxOverRunErr++;
}
if (control & ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK)
{
/* The receive length violation error. */
eErrorStatic->statsRxLenGreaterErr++;
}
if (control & ENET_BUFFDESCRIPTOR_RX_NOOCTET_MASK)
{
/* The receive alignment error. */
eErrorStatic->statsRxAlignErr++;
}
if (control & ENET_BUFFDESCRIPTOR_RX_CRC_MASK)
{
/* The receive CRC error. */
eErrorStatic->statsRxFcsErr++;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
uint16_t controlExt = curBuffDescrip->controlExtend1;
if (controlExt & ENET_BUFFDESCRIPTOR_RX_MACERR_MASK)
{
/* The MAC error. */
eErrorStatic->statsRxMacErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_RX_PHYERR_MASK)
{
/* The PHY error. */
eErrorStatic->statsRxPhyErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_RX_COLLISION_MASK)
{
/* The receive collision error. */
eErrorStatic->statsRxCollisionErr++;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
break;
}
/* Increase the buffer descriptor, if it is the last one, increase to first one of the ring buffer. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK)
{
curBuffDescrip = handle->rxBdBase[0];
}
else
{
curBuffDescrip++;
}
} while (curBuffDescrip != handle->rxBdCurrent[0]);
}
status_t ENET_GetRxFrameSize(enet_handle_t *handle, uint32_t *length)
{
assert(handle);
assert(handle->rxBdCurrent[0]);
assert(length);
/* Reset the length to zero. */
*length = 0;
uint16_t validLastMask = ENET_BUFFDESCRIPTOR_RX_LAST_MASK | ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
volatile enet_rx_bd_struct_t *curBuffDescrip = handle->rxBdCurrent[0];
/* Check the current buffer descriptor's empty flag. if empty means there is no frame received. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK)
{
return kStatus_ENET_RxFrameEmpty;
}
do
{
/* Add check for abnormal case. */
if ((!(curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK)) && (!curBuffDescrip->length))
{
return kStatus_ENET_RxFrameError;
}
/* Find the last buffer descriptor. */
if ((curBuffDescrip->control & validLastMask) == ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
{
/* The last buffer descriptor in the frame check the status of the received frame. */
if ((curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_ERR_MASK)
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
|| (curBuffDescrip->controlExtend1 & ENET_BUFFDESCRIPTOR_RX_EXT_ERR_MASK)
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
)
{
return kStatus_ENET_RxFrameError;
}
/* FCS is removed by MAC. */
*length = curBuffDescrip->length;
return kStatus_Success;
}
/* Increase the buffer descriptor, if it is the last one, increase to first one of the ring buffer. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK)
{
curBuffDescrip = handle->rxBdBase[0];
}
else
{
curBuffDescrip++;
}
} while (curBuffDescrip != handle->rxBdCurrent[0]);
/* The frame is on processing - set to empty status to make application to receive it next time. */
return kStatus_ENET_RxFrameEmpty;
}
status_t ENET_ReadFrame(ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t length)
{
assert(handle);
assert(handle->rxBdCurrent[0]);
uint32_t len = 0;
uint32_t offset = 0;
uint16_t control;
bool isLastBuff = false;
volatile enet_rx_bd_struct_t *curBuffDescrip = handle->rxBdCurrent[0];
status_t result = kStatus_Success;
uint32_t address;
/* For data-NULL input, only update the buffer descriptor. */
if (!data)
{
do
{
/* Update the control flag. */
control = handle->rxBdCurrent[0]->control;
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, 0);
/* Find the last buffer descriptor for the frame. */
if (control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
{
break;
}
} while (handle->rxBdCurrent[0] != curBuffDescrip);
return result;
}
else
{
/* A frame on one buffer or several receive buffers are both considered. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* Add the cache invalidate maintain. */
DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[0]);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
enet_ptp_time_data_t ptpTimestamp;
bool isPtpEventMessage = false;
/* Parse the PTP message according to the header message. */
isPtpEventMessage = ENET_Ptp1588ParseFrame((uint8_t *)address, &ptpTimestamp, false);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
while (!isLastBuff)
{
/* The last buffer descriptor of a frame. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
{
/* This is a valid frame. */
isLastBuff = true;
if (length == curBuffDescrip->length)
{
/* Copy the frame to user's buffer without FCS. */
len = curBuffDescrip->length - offset;
memcpy(data + offset, (void *)address, len);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* Store the PTP 1588 timestamp for received PTP event frame. */
if (isPtpEventMessage)
{
/* Set the timestamp to the timestamp ring. */
ptpTimestamp.timeStamp.nanosecond = curBuffDescrip->timestamp;
result = ENET_StoreRxFrameTime(base, handle, &ptpTimestamp);
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, 0);
return result;
}
else
{
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, 0);
}
}
else
{
/* Store a frame on several buffer descriptors. */
isLastBuff = false;
/* Length check. */
if (offset >= length)
{
break;
}
memcpy(data + offset, (void *)address, handle->rxBuffSizeAlign[0]);
offset += handle->rxBuffSizeAlign[0];
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, 0);
}
/* Get the current buffer descriptor. */
curBuffDescrip = handle->rxBdCurrent[0];
/* Add the cache invalidate maintain. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[0]);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
}
}
return kStatus_ENET_RxFrameFail;
}
static void ENET_UpdateReadBuffers(ENET_Type *base, enet_handle_t *handle, uint32_t ringId)
{
assert(handle);
assert(ringId < FSL_FEATURE_ENET_QUEUE);
/* Clears status. */
handle->rxBdCurrent[ringId]->control &= ENET_BUFFDESCRIPTOR_RX_WRAP_MASK;
/* Sets the receive buffer descriptor with the empty flag. */
handle->rxBdCurrent[ringId]->control |= ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
/* Increase current buffer descriptor to the next one. */
if (handle->rxBdCurrent[ringId]->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK)
{
handle->rxBdCurrent[ringId] = handle->rxBdBase[ringId];
}
else
{
handle->rxBdCurrent[ringId]++;
}
/* Actives the receive buffer descriptor. */
switch (ringId)
{
case kENET_Ring0:
base->RDAR = ENET_RDAR_RDAR_MASK;
break;
#if FSL_FEATURE_ENET_QUEUE > 1
case kENET_Ring1:
base->RDAR1 = ENET_RDAR1_RDAR_MASK;
break;
case kENET_Ring2:
base->RDAR2 = ENET_RDAR2_RDAR_MASK;
break;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
default:
base->RDAR = ENET_RDAR_RDAR_MASK;
break;
}
}
status_t ENET_SendFrame(ENET_Type *base, enet_handle_t *handle, const uint8_t *data, uint32_t length)
{
assert(handle);
assert(data);
volatile enet_tx_bd_struct_t *curBuffDescrip;
uint32_t len = 0;
uint32_t sizeleft = 0;
uint32_t address;
/* Check the frame length. */
if (length > ENET_FRAME_MAX_FRAMELEN)
{
return kStatus_ENET_TxFrameOverLen;
}
/* Check if the transmit buffer is ready. */
curBuffDescrip = handle->txBdCurrent[0];
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
{
return kStatus_ENET_TxFrameBusy;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
bool isPtpEventMessage = false;
/* Check PTP message with the PTP header. */
isPtpEventMessage = ENET_Ptp1588ParseFrame(data, NULL, true);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* One transmit buffer is enough for one frame. */
if (handle->txBuffSizeAlign[0] >= length)
{
/* Copy data to the buffer for uDMA transfer. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
memcpy((void *)address, data, length);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
DCACHE_CleanByRange(address, length);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/* Set data length. */
curBuffDescrip->length = length;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (isPtpEventMessage)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= ~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
curBuffDescrip->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK);
/* Increase the buffer descriptor address. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
{
handle->txBdCurrent[0] = handle->txBdBase[0];
}
else
{
handle->txBdCurrent[0]++;
}
/* Active the transmit buffer descriptor. */
ENET_ActiveSend(base, 0);
return kStatus_Success;
}
else
{
/* One frame requires more than one transmit buffers. */
do
{
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (isPtpEventMessage)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= ~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Increase the buffer descriptor address. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
{
handle->txBdCurrent[0] = handle->txBdBase[0];
}
else
{
handle->txBdCurrent[0]++;
}
/* update the size left to be transmit. */
sizeleft = length - len;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
if (sizeleft > handle->txBuffSizeAlign[0])
{
/* Data copy. */
memcpy((void *)address, data + len, handle->txBuffSizeAlign[0]);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* Add the cache clean maintain. */
DCACHE_CleanByRange(address, handle->txBuffSizeAlign[0]);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/* Data length update. */
curBuffDescrip->length = handle->txBuffSizeAlign[0];
len += handle->txBuffSizeAlign[0];
/* Sets the control flag. */
curBuffDescrip->control &= ~ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK;
/* Active the transmit buffer descriptor*/
ENET_ActiveSend(base, 0);
}
else
{
memcpy((void *)address, data + len, sizeleft);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* Add the cache clean maintain. */
DCACHE_CleanByRange(address, sizeleft);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
curBuffDescrip->length = sizeleft;
/* Set Last buffer wrap flag. */
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
/* Active the transmit buffer descriptor. */
ENET_ActiveSend(base, 0);
return kStatus_Success;
}
/* Get the current buffer descriptor address. */
curBuffDescrip = handle->txBdCurrent[0];
} while (!(curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK));
return kStatus_ENET_TxFrameBusy;
}
}
#if FSL_FEATURE_ENET_QUEUE > 1
void ENET_GetRxErrBeforeReadFrameMultiRing(enet_handle_t *handle,
enet_data_error_stats_t *eErrorStatic,
uint32_t ringId)
{
assert(handle);
assert(eErrorStatic);
assert(ringId < FSL_FEATURE_ENET_QUEUE);
uint16_t control = 0;
volatile enet_rx_bd_struct_t *curBuffDescrip = handle->rxBdCurrent[ringId];
do
{
/* The last buffer descriptor of a frame. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
{
control = curBuffDescrip->control;
if (control & ENET_BUFFDESCRIPTOR_RX_TRUNC_MASK)
{
/* The receive truncate error. */
eErrorStatic->statsRxTruncateErr++;
}
if (control & ENET_BUFFDESCRIPTOR_RX_OVERRUN_MASK)
{
/* The receive over run error. */
eErrorStatic->statsRxOverRunErr++;
}
if (control & ENET_BUFFDESCRIPTOR_RX_LENVLIOLATE_MASK)
{
/* The receive length violation error. */
eErrorStatic->statsRxLenGreaterErr++;
}
if (control & ENET_BUFFDESCRIPTOR_RX_NOOCTET_MASK)
{
/* The receive alignment error. */
eErrorStatic->statsRxAlignErr++;
}
if (control & ENET_BUFFDESCRIPTOR_RX_CRC_MASK)
{
/* The receive CRC error. */
eErrorStatic->statsRxFcsErr++;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
uint16_t controlExt = curBuffDescrip->controlExtend1;
if (controlExt & ENET_BUFFDESCRIPTOR_RX_MACERR_MASK)
{
/* The MAC error. */
eErrorStatic->statsRxMacErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_RX_PHYERR_MASK)
{
/* The PHY error. */
eErrorStatic->statsRxPhyErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_RX_COLLISION_MASK)
{
/* The receive collision error. */
eErrorStatic->statsRxCollisionErr++;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
break;
}
/* Increase the buffer descriptor, if it is the last one, increase to first one of the ring buffer. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK)
{
curBuffDescrip = handle->rxBdBase[ringId];
}
else
{
curBuffDescrip++;
}
} while (curBuffDescrip != handle->rxBdCurrent[ringId]);
}
status_t ENET_GetRxFrameSizeMultiRing(enet_handle_t *handle, uint32_t *length, uint32_t ringId)
{
assert(handle);
assert(length);
assert(ringId < FSL_FEATURE_ENET_QUEUE);
/* Reset the length to zero. */
*length = 0;
uint16_t validLastMask = ENET_BUFFDESCRIPTOR_RX_LAST_MASK | ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK;
volatile enet_rx_bd_struct_t *curBuffDescrip;
curBuffDescrip = handle->rxBdCurrent[ringId];
/* Check the current buffer descriptor's empty flag. if empty means there is no frame received. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK)
{
return kStatus_ENET_RxFrameEmpty;
}
do
{
/* Add check for abnormal case. */
if ((!(curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_EMPTY_MASK)) && (!curBuffDescrip->length))
{
return kStatus_ENET_RxFrameError;
}
/* Find the last buffer descriptor. */
if ((curBuffDescrip->control & validLastMask) == ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
{
/* The last buffer descriptor in the frame check the status of the received frame. */
if ((curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_ERR_MASK)
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
|| (curBuffDescrip->controlExtend1 & ENET_BUFFDESCRIPTOR_RX_EXT_ERR_MASK)
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
)
{
return kStatus_ENET_RxFrameError;
}
/* FCS is removed by MAC. */
*length = curBuffDescrip->length;
return kStatus_Success;
}
/* Increase the buffer descriptor, if it is the last one, increase to first one of the ring buffer. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_WRAP_MASK)
{
curBuffDescrip = handle->rxBdBase[ringId];
}
else
{
curBuffDescrip++;
}
} while (curBuffDescrip != handle->rxBdCurrent[ringId]);
/* The frame is on processing - set to empty status to make application to receive it next time. */
return kStatus_ENET_RxFrameEmpty;
}
status_t ENET_ReadFrameMultiRing(
ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t length, uint32_t ringId)
{
assert(handle);
assert(ringId < FSL_FEATURE_ENET_QUEUE);
uint32_t len = 0;
uint32_t offset = 0;
uint16_t control;
bool isLastBuff = false;
volatile enet_rx_bd_struct_t *curBuffDescrip = handle->rxBdCurrent[ringId];
status_t result = kStatus_Success;
uint32_t address;
/* For data-NULL input, only update the buffer descriptor. */
if (!data)
{
do
{
/* Update the control flag. */
control = handle->rxBdCurrent[ringId]->control;
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, ringId);
/* Find the last buffer descriptor for the frame. */
if (control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
{
break;
}
} while (handle->rxBdCurrent[ringId] != curBuffDescrip);
return result;
}
else
{
/* A frame on one buffer or several receive buffers are both considered. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* Add the cache invalidate maintain. */
DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[ringId]);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
enet_ptp_time_data_t ptpTimestamp;
bool isPtpEventMessage = false;
/* Parse the PTP message according to the header message. */
isPtpEventMessage = ENET_Ptp1588ParseFrame((uint8_t *)address, &ptpTimestamp, false);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
while (!isLastBuff)
{
/* The last buffer descriptor of a frame. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_RX_LAST_MASK)
{
/* This is a valid frame. */
isLastBuff = true;
if (length == curBuffDescrip->length)
{
/* Copy the frame to user's buffer without FCS. */
len = curBuffDescrip->length - offset;
memcpy(data + offset, (void *)address, len);
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* Store the PTP 1588 timestamp for received PTP event frame. */
if (isPtpEventMessage)
{
/* Set the timestamp to the timestamp ring. */
ptpTimestamp.timeStamp.nanosecond = curBuffDescrip->timestamp;
result = ENET_StoreRxFrameTime(base, handle, &ptpTimestamp);
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, ringId);
return result;
}
else
{
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, ringId);
}
}
else
{
/* Store a frame on several buffer descriptors. */
isLastBuff = false;
/* Length check. */
if (offset >= length)
{
break;
}
memcpy(data + offset, (void *)address, handle->rxBuffSizeAlign[ringId]);
offset += handle->rxBuffSizeAlign[ringId];
/* Updates the receive buffer descriptors. */
ENET_UpdateReadBuffers(base, handle, ringId);
}
/* Get the current buffer descriptor. */
curBuffDescrip = handle->rxBdCurrent[ringId];
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* Add the cache invalidate maintain. */
DCACHE_InvalidateByRange(address, handle->rxBuffSizeAlign[ringId]);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
}
}
return kStatus_ENET_RxFrameFail;
}
status_t ENET_SendFrameMultiRing(
ENET_Type *base, enet_handle_t *handle, uint8_t *data, uint32_t length, uint32_t ringId)
{
assert(handle);
assert(data);
assert(ringId < FSL_FEATURE_ENET_QUEUE);
volatile enet_tx_bd_struct_t *curBuffDescrip;
uint32_t len = 0;
uint32_t sizeleft = 0;
uint32_t address;
/* Check the frame length. */
if (length > ENET_FRAME_MAX_FRAMELEN)
{
return kStatus_ENET_TxFrameOverLen;
}
/* Check if the transmit buffer is ready. */
curBuffDescrip = handle->txBdCurrent[ringId];
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
{
return kStatus_ENET_TxFrameBusy;
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
bool isPtpEventMessage = false;
/* Check PTP message with the PTP header. */
isPtpEventMessage = ENET_Ptp1588ParseFrame(data, NULL, true);
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* One transmit buffer is enough for one frame. */
if (handle->txBuffSizeAlign[ringId] >= length)
{
/* Copy data to the buffer for uDMA transfer. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
memcpy((void *)address, data, length);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* Add the cache clean maintain. */
DCACHE_CleanByRange(address, length);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/* Set data length. */
curBuffDescrip->length = length;
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (isPtpEventMessage)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= ~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
curBuffDescrip->control |= (ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK);
/* Increase the buffer descriptor address. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
{
handle->txBdCurrent[ringId] = handle->txBdBase[ringId];
}
else
{
handle->txBdCurrent[ringId]++;
}
/* Active the transmit buffer descriptor. */
ENET_ActiveSend(base, ringId);
return kStatus_Success;
}
else
{
/* One frame requires more than one transmit buffers. */
do
{
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
/* For enable the timestamp. */
if (isPtpEventMessage)
{
curBuffDescrip->controlExtend1 |= ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
else
{
curBuffDescrip->controlExtend1 &= ~ENET_BUFFDESCRIPTOR_TX_TIMESTAMP_MASK;
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Increase the buffer descriptor address. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
{
handle->txBdCurrent[ringId] = handle->txBdBase[ringId];
}
else
{
handle->txBdCurrent[ringId]++;
}
/* update the size left to be transmit. */
sizeleft = length - len;
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
if (sizeleft > handle->txBuffSizeAlign[ringId])
{
/* Data copy. */
memcpy((void*)address, data + len, handle->txBuffSizeAlign[ringId]);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* Add the cache clean maintain. */
DCACHE_CleanByRange(address, handle->txBuffSizeAlign[ringId]);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
/* Data length update. */
curBuffDescrip->length = handle->txBuffSizeAlign[ringId];
len += handle->txBuffSizeAlign[ringId];
/* Sets the control flag. */
curBuffDescrip->control &= ~ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK;
/* Active the transmit buffer descriptor*/
ENET_ActiveSend(base, ringId);
}
else
{
memcpy((void *)address, data + len, sizeleft);
#if defined(FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL) && FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL
/* Add the cache clean maintain. */
DCACHE_CleanByRange(address, sizeleft);
#endif /* FSL_SDK_ENABLE_DRIVER_CACHE_CONTROL */
curBuffDescrip->length = sizeleft;
/* Set Last buffer wrap flag. */
curBuffDescrip->control |= ENET_BUFFDESCRIPTOR_TX_READY_MASK | ENET_BUFFDESCRIPTOR_TX_LAST_MASK;
/* Active the transmit buffer descriptor. */
ENET_ActiveSend(base, ringId);
return kStatus_Success;
}
/* Get the current buffer descriptor address. */
curBuffDescrip = handle->txBdCurrent[ringId];
} while (!(curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK));
return kStatus_ENET_TxFrameBusy;
}
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
void ENET_AddMulticastGroup(ENET_Type *base, uint8_t *address)
{
assert(address);
uint32_t crc = 0xFFFFFFFFU;
uint32_t count1 = 0;
uint32_t count2 = 0;
/* Calculates the CRC-32 polynomial on the multicast group address. */
for (count1 = 0; count1 < ENET_FRAME_MACLEN; count1++)
{
uint8_t c = address[count1];
for (count2 = 0; count2 < 0x08U; count2++)
{
if ((c ^ crc) & 1U)
{
crc >>= 1U;
c >>= 1U;
crc ^= 0xEDB88320U;
}
else
{
crc >>= 1U;
c >>= 1U;
}
}
}
/* Enable a multicast group address. */
if (!((crc >> 0x1FU) & 1U))
{
base->GALR |= 1U << ((crc >> 0x1AU) & 0x1FU);
}
else
{
base->GAUR |= 1U << ((crc >> 0x1AU) & 0x1FU);
}
}
void ENET_LeaveMulticastGroup(ENET_Type *base, uint8_t *address)
{
assert(address);
uint32_t crc = 0xFFFFFFFFU;
uint32_t count1 = 0;
uint32_t count2 = 0;
/* Calculates the CRC-32 polynomial on the multicast group address. */
for (count1 = 0; count1 < ENET_FRAME_MACLEN; count1++)
{
uint8_t c = address[count1];
for (count2 = 0; count2 < 0x08U; count2++)
{
if ((c ^ crc) & 1U)
{
crc >>= 1U;
c >>= 1U;
crc ^= 0xEDB88320U;
}
else
{
crc >>= 1U;
c >>= 1U;
}
}
}
/* Set the hash table. */
if (!((crc >> 0x1FU) & 1U))
{
base->GALR &= ~(1U << ((crc >> 0x1AU) & 0x1FU));
}
else
{
base->GAUR &= ~(1U << ((crc >> 0x1AU) & 0x1FU));
}
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
status_t ENET_GetTxErrAfterSendFrame(enet_handle_t *handle, enet_data_error_stats_t *eErrorStatic)
{
assert(handle);
assert(eErrorStatic);
uint16_t control = 0;
uint16_t controlExt = 0;
do
{
/* Get the current dirty transmit buffer descriptor. */
control = handle->txBdDirtyStatic[0]->control;
controlExt = handle->txBdDirtyStatic[0]->controlExtend0;
/* Get the control status data, If the buffer descriptor has not been processed break out. */
if (control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
{
return kStatus_ENET_TxFrameBusy;
}
/* Increase the transmit dirty static pointer. */
if (handle->txBdDirtyStatic[0]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
{
handle->txBdDirtyStatic[0] = handle->txBdBase[0];
}
else
{
handle->txBdDirtyStatic[0]++;
}
/* If the transmit buffer descriptor is ready and the last buffer descriptor, store packet statistic. */
if (control & ENET_BUFFDESCRIPTOR_TX_LAST_MASK)
{
if (controlExt & ENET_BUFFDESCRIPTOR_TX_ERR_MASK)
{
/* Transmit error. */
eErrorStatic->statsTxErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_TX_EXCCOLLISIONERR_MASK)
{
/* Transmit excess collision error. */
eErrorStatic->statsTxExcessCollisionErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_TX_LATECOLLISIONERR_MASK)
{
/* Transmit late collision error. */
eErrorStatic->statsTxLateCollisionErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_TX_UNDERFLOWERR_MASK)
{
/* Transmit under flow error. */
eErrorStatic->statsTxUnderFlowErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_TX_OVERFLOWERR_MASK)
{
/* Transmit over flow error. */
eErrorStatic->statsTxOverFlowErr++;
}
return kStatus_Success;
}
} while (handle->txBdDirtyStatic[0] != handle->txBdCurrent[0]);
return kStatus_ENET_TxFrameFail;
}
#if FSL_FEATURE_ENET_QUEUE > 1
status_t ENET_GetTxErrAfterSendFrameMultiRing(enet_handle_t *handle, enet_data_error_stats_t *eErrorStatic,
uint32_t ringId)
{
assert(handle);
assert(eErrorStatic);
assert(ringId < FSL_FEATURE_ENET_QUEUE);
uint16_t control = 0;
uint16_t controlExt = 0;
do
{
/* Get the current dirty transmit buffer descriptor. */
control = handle->txBdDirtyStatic[ringId]->control;
controlExt = handle->txBdDirtyStatic[ringId]->controlExtend0;
/* Get the control status data, If the buffer descriptor has not been processed break out. */
if (control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
{
return kStatus_ENET_TxFrameBusy;
}
/* Increase the transmit dirty static pointer. */
if (handle->txBdDirtyStatic[ringId]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
{
handle->txBdDirtyStatic[ringId] = handle->txBdBase[ringId];
}
else
{
handle->txBdDirtyStatic[ringId]++;
}
/* If the transmit buffer descriptor is ready and the last buffer descriptor, store packet statistic. */
if (control & ENET_BUFFDESCRIPTOR_TX_LAST_MASK)
{
if (controlExt & ENET_BUFFDESCRIPTOR_TX_ERR_MASK)
{
/* Transmit error. */
eErrorStatic->statsTxErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_TX_EXCCOLLISIONERR_MASK)
{
/* Transmit excess collision error. */
eErrorStatic->statsTxExcessCollisionErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_TX_LATECOLLISIONERR_MASK)
{
/* Transmit late collision error. */
eErrorStatic->statsTxLateCollisionErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_TX_UNDERFLOWERR_MASK)
{
/* Transmit under flow error. */
eErrorStatic->statsTxUnderFlowErr++;
}
if (controlExt & ENET_BUFFDESCRIPTOR_TX_OVERFLOWERR_MASK)
{
/* Transmit over flow error. */
eErrorStatic->statsTxOverFlowErr++;
}
return kStatus_Success;
}
} while (handle->txBdDirtyStatic[ringId] != handle->txBdCurrent[ringId]);
return kStatus_ENET_TxFrameFail;
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
static bool ENET_Ptp1588ParseFrame(const uint8_t *data, enet_ptp_time_data_t *ptpTsData, bool isFastEnabled)
{
assert(data);
if (!isFastEnabled)
{
assert(ptpTsData);
}
bool isPtpMsg = false;
const uint8_t *buffer = data;
uint16_t ptpType;
/* Check for VLAN frame.
* Add Double vlan tag check for receiving extended QIN vlan frame. */
if (*(uint16_t *)(buffer + ENET_PTP1588_ETHL2_PACKETTYPE_OFFSET) == (ENET_HTONS(ENET_8021QVLAN)
#if defined(FSL_FEATUR_ENET_HAS_AVB) && FSL_FEATURE_HAS_AVB
|| ENET_HTONS(ENET_8021QSVLAN)
#endif /* FSL_FEATURE_ENET_HAS_AVB */
))
{
buffer += ENET_FRAME_VLAN_TAGLEN;
#if defined(FSL_FEATUR_ENET_HAS_AVB) && FSL_FEATURE_HAS_AVB
if (*(uint16_t *)(buffer + ENET_PTP1588_ETHL2_PACKETTYPE_OFFSET) == ENET_HTONS(ENET_8021QVLAN)
{
buffer += ENET_FRAME_VLAN_TAGLEN;
}
#endif /* FSL_FEATURE_ENET_HAS_AVB */
}
ptpType = *(uint16_t *)(buffer + ENET_PTP1588_ETHL2_PACKETTYPE_OFFSET);
switch (ENET_HTONS(ptpType))
{ /* Ethernet layer 2. */
case ENET_ETHERNETL2:
if ((*(uint8_t *)(buffer + ENET_PTP1588_ETHL2_MSGTYPE_OFFSET) & 0x0F) <= kENET_PtpEventMsgType)
{
isPtpMsg = true;
if (!isFastEnabled)
{
/* It's a ptpv2 message and store the ptp header information. */
ptpTsData->version = (*(uint8_t *)(buffer + ENET_PTP1588_ETHL2_VERSION_OFFSET)) & 0x0F;
ptpTsData->messageType = (*(uint8_t *)(buffer + ENET_PTP1588_ETHL2_MSGTYPE_OFFSET)) & 0x0F;
ptpTsData->sequenceId = ENET_HTONS(*(uint16_t *)(buffer + ENET_PTP1588_ETHL2_SEQUENCEID_OFFSET));
memcpy((void *)&ptpTsData->sourcePortId[0], (void *)(buffer + ENET_PTP1588_ETHL2_CLOCKID_OFFSET),
kENET_PtpSrcPortIdLen);
}
}
break;
/* IPV4. */
case ENET_IPV4:
if ((*(uint8_t *)(buffer + ENET_PTP1588_IPVERSION_OFFSET) >> 4) == ENET_IPV4VERSION)
{
if (((*(uint16_t *)(buffer + ENET_PTP1588_IPV4_UDP_PORT_OFFSET)) == ENET_HTONS(kENET_PtpEventPort)) &&
(*(uint8_t *)(buffer + ENET_PTP1588_IPV4_UDP_PROTOCOL_OFFSET) == ENET_UDPVERSION))
{
/* Set the PTP message flag. */
isPtpMsg = true;
if (!isFastEnabled)
{
/* It's a IPV4 ptp message and store the ptp header information. */
ptpTsData->version = (*(uint8_t *)(buffer + ENET_PTP1588_IPV4_UDP_VERSION_OFFSET)) & 0x0F;
ptpTsData->messageType = (*(uint8_t *)(buffer + ENET_PTP1588_IPV4_UDP_MSGTYPE_OFFSET)) & 0x0F;
ptpTsData->sequenceId =
ENET_HTONS(*(uint16_t *)(buffer + ENET_PTP1588_IPV4_UDP_SEQUENCEID_OFFSET));
memcpy((void *)&ptpTsData->sourcePortId[0],
(void *)(buffer + ENET_PTP1588_IPV4_UDP_CLKID_OFFSET), kENET_PtpSrcPortIdLen);
}
}
}
break;
/* IPV6. */
case ENET_IPV6:
if ((*(uint8_t *)(buffer + ENET_PTP1588_IPVERSION_OFFSET) >> 4) == ENET_IPV6VERSION)
{
if (((*(uint16_t *)(buffer + ENET_PTP1588_IPV6_UDP_PORT_OFFSET)) == ENET_HTONS(kENET_PtpEventPort)) &&
(*(uint8_t *)(buffer + ENET_PTP1588_IPV6_UDP_PROTOCOL_OFFSET) == ENET_UDPVERSION))
{
/* Set the PTP message flag. */
isPtpMsg = true;
if (!isFastEnabled)
{
/* It's a IPV6 ptp message and store the ptp header information. */
ptpTsData->version = (*(uint8_t *)(buffer + ENET_PTP1588_IPV6_UDP_VERSION_OFFSET)) & 0x0F;
ptpTsData->messageType = (*(uint8_t *)(buffer + ENET_PTP1588_IPV6_UDP_MSGTYPE_OFFSET)) & 0x0F;
ptpTsData->sequenceId =
ENET_HTONS(*(uint16_t *)(buffer + ENET_PTP1588_IPV6_UDP_SEQUENCEID_OFFSET));
memcpy((void *)&ptpTsData->sourcePortId[0],
(void *)(buffer + ENET_PTP1588_IPV6_UDP_CLKID_OFFSET), kENET_PtpSrcPortIdLen);
}
}
}
break;
default:
break;
}
return isPtpMsg;
}
void ENET_Ptp1588Configure(ENET_Type *base, enet_handle_t *handle, enet_ptp_config_t *ptpConfig)
{
assert(handle);
assert(ptpConfig);
uint8_t count;
uint32_t instance = ENET_GetInstance(base);
uint32_t mask = kENET_TxBufferInterrupt;
#if FSL_FEATURE_ENET_QUEUE > 1
mask |= kENET_TxBuffer1Interrupt | kENET_TxBuffer2Interrupt;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
/* Start the 1588 timer. */
ENET_Ptp1588StartTimer(base, ptpConfig->ptp1588ClockSrc_Hz);
for (count = 0; count < handle->ringNum; count++)
{
handle->txBdDirtyTime[count] = handle->txBdBase[count];
handle->txBdDirtyStatic[count] = handle->txBdBase[count];
}
/* Setting the receive and transmit state for transaction. */
handle->rxPtpTsDataRing.ptpTsData = ptpConfig->rxPtpTsData;
handle->rxPtpTsDataRing.size = ptpConfig->ptpTsRxBuffNum;
handle->rxPtpTsDataRing.front = 0;
handle->rxPtpTsDataRing.end = 0;
handle->txPtpTsDataRing.ptpTsData = ptpConfig->txPtpTsData;
handle->txPtpTsDataRing.size = ptpConfig->ptpTsTxBuffNum;
handle->txPtpTsDataRing.front = 0;
handle->txPtpTsDataRing.end = 0;
handle->msTimerSecond = 0;
/* Set the IRQ handler when the interrupt is enabled. */
s_enetTxIsr = ENET_TransmitIRQHandler;
s_enetTsIsr = ENET_Ptp1588TimerIRQHandler;
/* Enables the time stamp interrupt and transmit frame interrupt to
* handle the time-stamp . */
ENET_EnableInterrupts(base, (ENET_TS_INTERRUPT | ENET_TX_INTERRUPT));
ENET_DisableInterrupts(base, mask);
EnableIRQ(s_enetTsIrqId[instance]);
EnableIRQ(s_enetTxIrqId[instance]);
}
void ENET_Ptp1588StartTimer(ENET_Type *base, uint32_t ptpClkSrc)
{
/* Restart PTP 1588 timer, master clock. */
base->ATCR = ENET_ATCR_RESTART_MASK;
/* Initializes PTP 1588 timer. */
base->ATINC = ENET_ATINC_INC(ENET_NANOSECOND_ONE_SECOND / ptpClkSrc);
base->ATPER = ENET_NANOSECOND_ONE_SECOND;
/* Sets periodical event and the event signal output assertion and Actives PTP 1588 timer. */
base->ATCR = ENET_ATCR_PEREN_MASK | ENET_ATCR_PINPER_MASK | ENET_ATCR_EN_MASK;
}
void ENET_Ptp1588GetTimer(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_t *ptpTime)
{
assert(handle);
assert(ptpTime);
uint16_t count = ENET_1588TIME_DELAY_COUNT;
uint32_t primask;
/* Disables the interrupt. */
primask = DisableGlobalIRQ();
/* Get the current PTP time. */
ptpTime->second = handle->msTimerSecond;
/* Get the nanosecond from the master timer. */
base->ATCR |= ENET_ATCR_CAPTURE_MASK;
/* Add at least six clock cycle delay to get accurate time.
It's the requirement when the 1588 clock source is slower
than the register clock.
*/
while (count--)
{
__NOP();
}
/* Get the captured time. */
ptpTime->nanosecond = base->ATVR;
/* Enables the interrupt. */
EnableGlobalIRQ(primask);
}
void ENET_Ptp1588SetTimer(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_t *ptpTime)
{
assert(handle);
assert(ptpTime);
uint32_t primask;
/* Disables the interrupt. */
primask = DisableGlobalIRQ();
/* Sets PTP timer. */
handle->msTimerSecond = ptpTime->second;
base->ATVR = ptpTime->nanosecond;
/* Enables the interrupt. */
EnableGlobalIRQ(primask);
}
void ENET_Ptp1588AdjustTimer(ENET_Type *base, uint32_t corrIncrease, uint32_t corrPeriod)
{
/* Set correction for PTP timer increment. */
base->ATINC = (base->ATINC & ~ENET_ATINC_INC_CORR_MASK) | (corrIncrease << ENET_ATINC_INC_CORR_SHIFT);
/* Set correction for PTP timer period. */
base->ATCOR = (base->ATCOR & ~ENET_ATCOR_COR_MASK) | (corrPeriod << ENET_ATCOR_COR_SHIFT);
}
static status_t ENET_Ptp1588UpdateTimeRing(enet_ptp_time_data_ring_t *ptpTsDataRing, enet_ptp_time_data_t *ptpTimeData)
{
assert(ptpTsDataRing);
assert(ptpTsDataRing->ptpTsData);
assert(ptpTimeData);
uint16_t usedBuffer = 0;
/* Check if the buffers ring is full. */
if (ptpTsDataRing->end >= ptpTsDataRing->front)
{
usedBuffer = ptpTsDataRing->end - ptpTsDataRing->front;
}
else
{
usedBuffer = ptpTsDataRing->size - (ptpTsDataRing->front - ptpTsDataRing->end);
}
if (usedBuffer == ptpTsDataRing->size)
{
return kStatus_ENET_PtpTsRingFull;
}
/* Copy the new data into the buffer. */
memcpy((ptpTsDataRing->ptpTsData + ptpTsDataRing->end), ptpTimeData, sizeof(enet_ptp_time_data_t));
/* Increase the buffer pointer to the next empty one. */
ptpTsDataRing->end = (ptpTsDataRing->end + 1) % ptpTsDataRing->size;
return kStatus_Success;
}
static status_t ENET_Ptp1588SearchTimeRing(enet_ptp_time_data_ring_t *ptpTsDataRing, enet_ptp_time_data_t *ptpTimedata)
{
assert(ptpTsDataRing);
assert(ptpTsDataRing->ptpTsData);
assert(ptpTimedata);
uint32_t index;
uint32_t size;
uint16_t usedBuffer = 0;
/* Check the PTP 1588 timestamp ring. */
if (ptpTsDataRing->front == ptpTsDataRing->end)
{
return kStatus_ENET_PtpTsRingEmpty;
}
/* Search the element in the ring buffer */
index = ptpTsDataRing->front;
size = ptpTsDataRing->size;
while (index != ptpTsDataRing->end)
{
if (((ptpTsDataRing->ptpTsData + index)->sequenceId == ptpTimedata->sequenceId) &&
(!memcmp(((void *)&(ptpTsDataRing->ptpTsData + index)->sourcePortId[0]),
(void *)&ptpTimedata->sourcePortId[0], kENET_PtpSrcPortIdLen)) &&
((ptpTsDataRing->ptpTsData + index)->version == ptpTimedata->version) &&
((ptpTsDataRing->ptpTsData + index)->messageType == ptpTimedata->messageType))
{
break;
}
/* Increase the ptp ring index. */
index = (index + 1) % size;
}
if (index == ptpTsDataRing->end)
{
/* Check if buffers is full. */
if (ptpTsDataRing->end >= ptpTsDataRing->front)
{
usedBuffer = ptpTsDataRing->end - ptpTsDataRing->front;
}
else
{
usedBuffer = ptpTsDataRing->size - (ptpTsDataRing->front - ptpTsDataRing->end);
}
if (usedBuffer == ptpTsDataRing->size)
{ /* Drop one in the front. */
ptpTsDataRing->front = (ptpTsDataRing->front + 1) % size;
}
return kStatus_ENET_PtpTsRingFull;
}
/* Get the right timestamp of the required ptp messag. */
ptpTimedata->timeStamp.second = (ptpTsDataRing->ptpTsData + index)->timeStamp.second;
ptpTimedata->timeStamp.nanosecond = (ptpTsDataRing->ptpTsData + index)->timeStamp.nanosecond;
/* Increase the index. */
ptpTsDataRing->front = (ptpTsDataRing->front + 1) % size;
return kStatus_Success;
}
static status_t ENET_StoreRxFrameTime(ENET_Type *base, enet_handle_t *handle, enet_ptp_time_data_t *ptpTimeData)
{
assert(handle);
assert(ptpTimeData);
bool ptpTimerWrap = false;
enet_ptp_time_t ptpTimer;
uint32_t primask;
/* Disables the interrupt. */
primask = DisableGlobalIRQ();
/* Get current PTP timer nanosecond value. */
ENET_Ptp1588GetTimer(base, handle, &ptpTimer);
/* Get PTP timer wrap event. */
ptpTimerWrap = base->EIR & kENET_TsTimerInterrupt;
/* Get transmit time stamp second. */
if ((ptpTimer.nanosecond > ptpTimeData->timeStamp.nanosecond) ||
((ptpTimer.nanosecond < ptpTimeData->timeStamp.nanosecond) && ptpTimerWrap))
{
ptpTimeData->timeStamp.second = handle->msTimerSecond;
}
else
{
ptpTimeData->timeStamp.second = handle->msTimerSecond - 1;
}
/* Enable the interrupt. */
EnableGlobalIRQ(primask);
/* Store the timestamp to the receive time stamp ring. */
/* Check if the buffers ring is full. */
return ENET_Ptp1588UpdateTimeRing(&handle->rxPtpTsDataRing, ptpTimeData);
}
static status_t ENET_StoreTxFrameTime(ENET_Type *base, enet_handle_t *handle, uint32_t ringId)
{
assert(handle);
uint32_t primask;
bool ptpTimerWrap;
bool isPtpEventMessage = false;
enet_ptp_time_data_t ptpTimeData;
volatile enet_tx_bd_struct_t *curBuffDescrip = handle->txBdDirtyTime[ringId];
uint32_t address;
/* Get the control status data, If the buffer descriptor has not been processed break out. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
{
return kStatus_ENET_TxFrameBusy;
}
/* Parse the PTP message. */
#if defined(FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET) && FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET
address = MEMORY_ConvertMemoryMapAddress((uint32_t)curBuffDescrip->buffer,kMEMORY_DMA2Local);
#else
address = (uint32_t)curBuffDescrip->buffer;
#endif /* FSL_FEATURE_MEMORY_HAS_ADDRESS_OFFSET */
isPtpEventMessage = ENET_Ptp1588ParseFrame((uint8_t *)address, &ptpTimeData, false);
if (isPtpEventMessage)
{
/* Only store tx timestamp for ptp event message. */
do
{
/* Increase current buffer descriptor to the next one. */
if (handle->txBdDirtyTime[ringId]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
{
handle->txBdDirtyTime[ringId] = handle->txBdBase[ringId];
}
else
{
handle->txBdDirtyTime[ringId]++;
}
/* Do time stamp check on the last buffer descriptor of the frame. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_LAST_MASK)
{
/* Disables the interrupt. */
primask = DisableGlobalIRQ();
/* Get current PTP timer nanosecond value. */
ENET_Ptp1588GetTimer(base, handle, &ptpTimeData.timeStamp);
/* Get PTP timer wrap event. */
ptpTimerWrap = base->EIR & kENET_TsTimerInterrupt;
/* Get transmit time stamp second. */
if ((ptpTimeData.timeStamp.nanosecond > curBuffDescrip->timestamp) ||
((ptpTimeData.timeStamp.nanosecond < curBuffDescrip->timestamp) && ptpTimerWrap))
{
ptpTimeData.timeStamp.second = handle->msTimerSecond;
}
else
{
ptpTimeData.timeStamp.second = handle->msTimerSecond - 1;
}
/* Save transmit time stamp nanosecond. */
ptpTimeData.timeStamp.nanosecond = curBuffDescrip->timestamp;
/* Enable the interrupt. */
EnableGlobalIRQ(primask);
/* Store the timestamp to the transmit timestamp ring. */
return ENET_Ptp1588UpdateTimeRing(&handle->txPtpTsDataRing, &ptpTimeData);
}
/* Get the current transmit buffer descriptor. */
curBuffDescrip = handle->txBdDirtyTime[ringId];
/* Get the control status data, If the buffer descriptor has not been processed break out. */
if (curBuffDescrip->control & ENET_BUFFDESCRIPTOR_TX_READY_MASK)
{
return kStatus_ENET_TxFrameBusy;
}
} while (handle->txBdDirtyTime[ringId] != handle->txBdCurrent[ringId]);
return kStatus_ENET_TxFrameFail;
}
else
{
/* Only increase current buffer descriptor to the next one. */
if (handle->txBdDirtyTime[ringId]->control & ENET_BUFFDESCRIPTOR_TX_WRAP_MASK)
{
handle->txBdDirtyTime[ringId] = handle->txBdBase[ringId];
}
else
{
handle->txBdDirtyTime[ringId]++;
}
}
return kStatus_Success;
}
status_t ENET_GetTxFrameTime(enet_handle_t *handle, enet_ptp_time_data_t *ptpTimeData)
{
assert(handle);
assert(ptpTimeData);
return ENET_Ptp1588SearchTimeRing(&handle->txPtpTsDataRing, ptpTimeData);
}
status_t ENET_GetRxFrameTime(enet_handle_t *handle, enet_ptp_time_data_t *ptpTimeData)
{
assert(handle);
assert(ptpTimeData);
return ENET_Ptp1588SearchTimeRing(&handle->rxPtpTsDataRing, ptpTimeData);
}
#if defined(FSL_FEATURE_ENET_HAS_AVB) && FSL_FEATURE_ENET_HAS_AVB
void ENET_AVBConfigure(ENET_Type *base, enet_handle_t *handle, const enet_avb_config_t *config)
{
assert(config);
uint8_t count = 0;
for (count = 0; count < FSL_FEATURE_ENET_QUEUE - 1; count++)
{
/* Set the AVB receive ring classification match when the match is not 0. */
if (config->rxClassifyMatch[count])
{
base->RCMR[count] = (config->rxClassifyMatch[count] & 0xFFFF) | ENET_RCMR_MATCHEN_MASK;
}
/* Set the dma controller for the extended ring. */
base->DMACFG[count] |= ENET_DMACFG_IDLE_SLOPE(config->idleSlope[count]);
}
/* Shall use the credit-based scheme for avb. */
base->QOS &= ~ENET_QOS_TX_SCHEME_MASK;
base->QOS |= ENET_QOS_RX_FLUSH0_MASK;
}
#endif /* FSL_FETAURE_ENET_HAS_AVB */
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
#if FSL_FEATURE_ENET_QUEUE > 1
void ENET_TransmitIRQHandler(ENET_Type *base, enet_handle_t *handle, uint32_t ringId)
#else
void ENET_TransmitIRQHandler(ENET_Type *base, enet_handle_t *handle)
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
{
assert(handle);
uint32_t mask = kENET_TxBufferInterrupt | kENET_TxFrameInterrupt;
#if defined(ENET_ENHANCEDBUFFERDESCRIPTOR_MODE) || (FSL_FEATURE_ENET_QUEUE > 1)
uint32_t index = 0;
#endif /* ENET_ENHANCEDBUFFERDESCRIPTORMODE || (FSL_FEATURE_ENET_QUEUE > 1) */
/* Check if the transmit interrupt happen. */
#if FSL_FEATURE_ENET_QUEUE > 1
switch (ringId)
{
case kENET_Ring1:
mask = (kENET_TxFrame1Interrupt | kENET_TxBuffer1Interrupt);
break;
case kENET_Ring2:
mask = (kENET_TxFrame2Interrupt | kENET_TxBuffer2Interrupt);
break;
default:
break;
}
index = ringId;
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
while (mask & base->EIR)
{
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
if (base->EIR & kENET_TxFrameInterrupt)
{
/* Store the transmit timestamp from the buffer descriptor should be done here. */
ENET_StoreTxFrameTime(base, handle, index);
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
/* Clear the transmit interrupt event. */
base->EIR = mask;
/* Callback function. */
if (handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, index, kENET_TxEvent, handle->userData);
#else
handle->callback(base, handle, kENET_TxEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
}
#if FSL_FEATURE_ENET_QUEUE > 1
void ENET_ReceiveIRQHandler(ENET_Type *base, enet_handle_t *handle, uint32_t ringId)
#else
void ENET_ReceiveIRQHandler(ENET_Type *base, enet_handle_t *handle)
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
{
assert(handle);
uint32_t mask = kENET_RxFrameInterrupt | kENET_RxBufferInterrupt;
/* Check if the receive interrupt happen. */
#if FSL_FEATURE_ENET_QUEUE > 1
switch (ringId)
{
case kENET_Ring1:
mask = (kENET_RxFrame1Interrupt | kENET_RxBuffer1Interrupt);
break;
case kENET_Ring2:
mask = (kENET_RxFrame2Interrupt | kENET_RxBuffer2Interrupt);
break;
default:
break;
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
while (mask & base->EIR)
{
/* Clear the transmit interrupt event. */
base->EIR = mask;
/* Callback function. */
if (handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, ringId, kENET_RxEvent, handle->userData);
#else
handle->callback(base, handle, kENET_RxEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
}
void ENET_ErrorIRQHandler(ENET_Type *base, enet_handle_t *handle)
{
assert(handle);
uint32_t errMask = kENET_BabrInterrupt | kENET_BabtInterrupt | kENET_EBusERInterrupt | kENET_PayloadRxInterrupt |
kENET_LateCollisionInterrupt | kENET_RetryLimitInterrupt | kENET_UnderrunInterrupt;
/* Check if the error interrupt happen. */
if (kENET_WakeupInterrupt & base->EIR)
{
/* Clear the wakeup interrupt. */
base->EIR = kENET_WakeupInterrupt;
/* wake up and enter the normal mode. */
ENET_EnableSleepMode(base, false);
/* Callback function. */
if (handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, 0, kENET_WakeUpEvent, handle->userData);
#else
handle->callback(base, handle, kENET_WakeUpEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
else
{
/* Clear the error interrupt event status. */
errMask &= base->EIR;
base->EIR = errMask;
/* Callback function. */
if (handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, 0, kENET_ErrEvent, handle->userData);
#else
handle->callback(base, handle, kENET_ErrEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#ifdef ENET_ENHANCEDBUFFERDESCRIPTOR_MODE
void ENET_Ptp1588TimerIRQHandler(ENET_Type *base, enet_handle_t *handle)
{
assert(handle);
/* Check if the PTP time stamp interrupt happen. */
if (kENET_TsTimerInterrupt & base->EIR)
{
/* Clear the time stamp interrupt. */
base->EIR = kENET_TsTimerInterrupt;
/* Increase timer second counter. */
handle->msTimerSecond++;
/* Callback function. */
if (handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, 0, kENET_TimeStampEvent, handle->userData);
#else
handle->callback(base, handle, kENET_TimeStampEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
else
{
/* Clear the time stamp interrupt. */
base->EIR = kENET_TsAvailInterrupt;
/* Callback function. */
if (handle->callback)
{
#if FSL_FEATURE_ENET_QUEUE > 1
handle->callback(base, handle, 0, kENET_TimeStampAvailEvent, handle->userData);
#else
handle->callback(base, handle, kENET_TimeStampAvailEvent, handle->userData);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
}
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif /* ENET_ENHANCEDBUFFERDESCRIPTOR_MODE */
void ENET_CommonFrame0IRQHandler(ENET_Type *base)
{
uint32_t event = base->EIR;
uint32_t instance = ENET_GetInstance(base);
if (event & (kENET_TxBufferInterrupt | kENET_TxFrameInterrupt))
{
#if FSL_FEATURE_ENET_QUEUE > 1
s_enetTxIsr(base, s_ENETHandle[instance], 0);
#else
s_enetTxIsr(base, s_ENETHandle[instance]);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
if (event & (kENET_RxBufferInterrupt | kENET_RxFrameInterrupt))
{
#if FSL_FEATURE_ENET_QUEUE > 1
s_enetRxIsr(base, s_ENETHandle[instance], 0);
#else
s_enetRxIsr(base, s_ENETHandle[instance]);
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
}
if (event & ENET_TS_INTERRUPT)
{
s_enetTsIsr(base, s_ENETHandle[instance]);
}
if (event & ENET_ERR_INTERRUPT)
{
s_enetErrIsr(base, s_ENETHandle[instance]);
}
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#if FSL_FEATURE_ENET_QUEUE > 1
void ENET_CommonFrame1IRQHandler(ENET_Type *base)
{
uint32_t event = base->EIR;
uint32_t instance = ENET_GetInstance(base);
if (event & (kENET_TxBuffer1Interrupt | kENET_TxFrame1Interrupt))
{
s_enetTxIsr(base, s_ENETHandle[instance], 1);
}
if (event & (kENET_RxBuffer1Interrupt | kENET_RxFrame1Interrupt))
{
s_enetRxIsr(base, s_ENETHandle[instance], 1);
}
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
void ENET_CommonFrame2IRQHandler(ENET_Type *base)
{
uint32_t event = base->EIR;
uint32_t instance = ENET_GetInstance(base);
if (event & (kENET_TxBuffer2Interrupt | kENET_TxFrame2Interrupt))
{
s_enetTxIsr(base, s_ENETHandle[instance], 2);
}
if (event & (kENET_RxBuffer2Interrupt | kENET_RxFrame2Interrupt))
{
s_enetRxIsr(base, s_ENETHandle[instance], 2);
}
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif /* FSL_FEATURE_ENET_QUEUE > 1 */
#if defined(ENET)
void ENET_Transmit_IRQHandler(void)
{
s_enetTxIsr(ENET, s_ENETHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
void ENET_Receive_IRQHandler(void)
{
s_enetRxIsr(ENET, s_ENETHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
void ENET_Error_IRQHandler(void)
{
s_enetErrIsr(ENET, s_ENETHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
void ENET_1588_Timer_IRQHandler(void)
{
s_enetTsIsr(ENET, s_ENETHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
void ENET_DriverIRQHandler(void)
{
ENET_CommonFrame0IRQHandler(ENET);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(ENET1)
void ENET1_DriverIRQHandler(void)
{
ENET_CommonFrame0IRQHandler(ENET1);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(ENET2)
void ENET2_DriverIRQHandler(void)
{
ENET_CommonFrame0IRQHandler(ENET2);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(CONNECTIVITY__ENET0)
void CONNECTIVITY_ENET0_FRAME0_EVENT_INT_DriverIRQHandler(void)
{
ENET_CommonFrame0IRQHandler(CONNECTIVITY__ENET0);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#if FSL_FEATURE_ENET_QUEUE > 1
void CONNECTIVITY_ENET0_FRAME1_INT_DriverIRQHandler(void)
{
ENET_CommonFrame1IRQHandler(CONNECTIVITY__ENET0);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
void CONNECTIVITY_ENET0_FRAME2_INT_DriverIRQHandler(void)
{
ENET_CommonFrame2IRQHandler(CONNECTIVITY__ENET0);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#endif
#if defined(CONNECTIVITY__ENET1)
void CONNECTIVITY_ENET1_FRAME0_EVENT_INT_DriverIRQHandler(void)
{
ENET_CommonFrame0IRQHandler(CONNECTIVITY__ENET1);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#if FSL_FEATURE_ENET_QUEUE > 1
void CONNECTIVITY_ENET1_FRAME1_INT_DriverIRQHandler(void)
{
ENET_CommonFrame1IRQHandler(CONNECTIVITY__ENET1);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
void CONNECTIVITY_ENET1_FRAME2_INT_DriverIRQHandler(void)
{
ENET_CommonFrame2IRQHandler(CONNECTIVITY__ENET1);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#endif