rt-thread/bsp/apm32/libraries/Drivers/drv_spi.c

354 lines
10 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-03-04 stevetong459 first version
* 2022-07-15 Aligagago add apm32F4 serie MCU support
* 2022-12-26 luobeihai add apm32F0 serie MCU support
*/
#include "drv_spi.h"
//#define DRV_DEBUG
#define LOG_TAG "drv.spi"
#include "drv_log.h"
#if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3)
static struct apm32_spi_config spi_config[] = {
#ifdef BSP_USING_SPI1
{SPI1, "spi1"},
#endif
#ifdef BSP_USING_SPI2
{SPI2, "spi2"},
#endif
#ifdef BSP_USING_SPI3
{SPI3, "spi3"},
#endif
};
static struct apm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_T *cs_gpiox, uint16_t cs_gpio_pin)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
struct apm32_spi_cs *cs_pin;
GPIO_Config_T GPIO_InitStructure;
/* initialize the cs pin && select the slave */
#if defined(SOC_SERIES_APM32F0)
GPIO_ConfigStructInit(&GPIO_InitStructure);
GPIO_InitStructure.pin = cs_gpio_pin;
GPIO_InitStructure.speed = GPIO_SPEED_50MHz;
GPIO_InitStructure.mode = GPIO_MODE_OUT;
GPIO_InitStructure.outtype = GPIO_OUT_TYPE_PP;
GPIO_InitStructure.pupd = GPIO_PUPD_NO;
GPIO_Config(cs_gpiox, &GPIO_InitStructure);
GPIO_WriteBitValue(cs_gpiox, cs_gpio_pin, Bit_SET);
#elif defined(SOC_SERIES_APM32F1)
GPIO_ConfigStructInit(&GPIO_InitStructure);
GPIO_InitStructure.pin = cs_gpio_pin;
GPIO_InitStructure.mode = GPIO_MODE_OUT_PP;
GPIO_InitStructure.speed = GPIO_SPEED_50MHz;
GPIO_Config(cs_gpiox, &GPIO_InitStructure);
GPIO_WriteBitValue(cs_gpiox, cs_gpio_pin, BIT_SET);
#elif defined(SOC_SERIES_APM32F4)
GPIO_ConfigStructInit(&GPIO_InitStructure);
GPIO_InitStructure.pin = cs_gpio_pin;
GPIO_InitStructure.speed = GPIO_SPEED_100MHz;
GPIO_InitStructure.mode = GPIO_MODE_OUT;
GPIO_InitStructure.otype = GPIO_OTYPE_PP;
GPIO_InitStructure.pupd = GPIO_PUPD_NOPULL;
GPIO_Config(cs_gpiox, &GPIO_InitStructure);
GPIO_WriteBitValue(cs_gpiox, cs_gpio_pin, BIT_SET);
#endif
/* attach the device to spi bus */
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
cs_pin = (struct apm32_spi_cs *)rt_malloc(sizeof(struct apm32_spi_cs));
RT_ASSERT(cs_pin != RT_NULL);
cs_pin->GPIOx = cs_gpiox;
cs_pin->GPIO_Pin = cs_gpio_pin;
result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin);
if (result != RT_EOK)
{
LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
static rt_err_t apm32_spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *cfg)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
SPI_Config_T hw_spi_config;
struct rt_spi_bus * apm32_spi_bus = (struct rt_spi_bus *)device->bus;
struct apm32_spi *spi_device = (struct apm32_spi *)apm32_spi_bus->parent.user_data;
SPI_T *spi = spi_device->config->spi_x;
uint32_t hw_spi_apb_clock;
#if (DBG_LVL == DBG_LOG)
uint32_t hw_spi_sys_clock = RCM_ReadSYSCLKFreq();
#endif
/* apm32 spi gpio init and enable clock */
extern void apm32_msp_spi_init(void *Instance);
apm32_msp_spi_init(spi);
/* apm32 spi init */
hw_spi_config.mode = (cfg->mode & RT_SPI_SLAVE) ? SPI_MODE_SLAVE : SPI_MODE_MASTER;
hw_spi_config.direction = (cfg->mode & RT_SPI_3WIRE) ? SPI_DIRECTION_1LINE_RX : SPI_DIRECTION_2LINES_FULLDUPLEX;
hw_spi_config.phase = (cfg->mode & RT_SPI_CPHA) ? SPI_CLKPHA_2EDGE : SPI_CLKPHA_1EDGE;
hw_spi_config.polarity = (cfg->mode & RT_SPI_CPOL) ? SPI_CLKPOL_HIGH : SPI_CLKPOL_LOW;
#if defined(SOC_SERIES_APM32F0)
hw_spi_config.slaveSelect = (cfg->mode & RT_SPI_NO_CS) ? SPI_SSC_DISABLE : SPI_SSC_ENABLE;
hw_spi_config.firstBit = (cfg->mode & RT_SPI_MSB) ? SPI_FIRST_BIT_MSB : SPI_FIRST_BIT_LSB;
#else
hw_spi_config.nss = (cfg->mode & RT_SPI_NO_CS) ? SPI_NSS_HARD : SPI_NSS_SOFT;
hw_spi_config.firstBit = (cfg->mode & RT_SPI_MSB) ? SPI_FIRSTBIT_MSB : SPI_FIRSTBIT_LSB;
#endif
if (cfg->data_width == 8)
{
hw_spi_config.length = SPI_DATA_LENGTH_8B;
}
else if (cfg->data_width == 16)
{
hw_spi_config.length = SPI_DATA_LENGTH_16B;
}
else
{
return -RT_EIO;
}
#if defined(SOC_SERIES_APM32F0)
hw_spi_apb_clock = RCM_ReadPCLKFreq();
#else
if (spi == SPI1)
{
RCM_ReadPCLKFreq(NULL, &hw_spi_apb_clock);
}
else
{
RCM_ReadPCLKFreq(&hw_spi_apb_clock, NULL);
}
#endif
if (cfg->max_hz >= hw_spi_apb_clock / 2)
{
hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_2;
}
else if (cfg->max_hz >= hw_spi_apb_clock / 4)
{
hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_4;
}
else if (cfg->max_hz >= hw_spi_apb_clock / 8)
{
hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_8;
}
else if (cfg->max_hz >= hw_spi_apb_clock / 16)
{
hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_16;
}
else if (cfg->max_hz >= hw_spi_apb_clock / 32)
{
hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_32;
}
else if (cfg->max_hz >= hw_spi_apb_clock / 64)
{
hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_64;
}
else if (cfg->max_hz >= hw_spi_apb_clock / 128)
{
hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_128;
}
else
{
/* min prescaler 256 */
hw_spi_config.baudrateDiv = SPI_BAUDRATE_DIV_256;
}
LOG_D("sys freq: %d, pclk2 freq: %d, SPI limiting freq: %d, BaudRatePrescaler: %d",
hw_spi_sys_clock, hw_spi_apb_clock, cfg->max_hz, hw_spi_config.baudrateDiv);
#if defined(SOC_SERIES_APM32F0)
SPI_DisableCRC(spi);
SPI_EnableSSoutput(spi);
SPI_ConfigFIFOThreshold(spi, SPI_RXFIFO_QUARTER);
#endif
SPI_Config(spi, &hw_spi_config);
SPI_Enable(spi);
return RT_EOK;
}
static rt_ssize_t apm32_spi_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
RT_ASSERT(device != NULL);
RT_ASSERT(message != NULL);
struct rt_spi_configuration *config = &device->config;
struct apm32_spi_cs *cs = device->parent.user_data;
struct rt_spi_bus * apm32_spi_bus = (struct rt_spi_bus *)device->bus;
struct apm32_spi *spi_device = (struct apm32_spi *)apm32_spi_bus->parent.user_data;
SPI_T *spi = spi_device->config->spi_x;
/* take CS */
if (message->cs_take)
{
#if defined(SOC_SERIES_APM32F0)
GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, (GPIO_BSRET_T)RESET);
#else
GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, RESET);
#endif
LOG_D("spi take cs\n");
}
if (config->data_width <= 8)
{
const rt_uint8_t *send_ptr = message->send_buf;
rt_uint8_t *recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
LOG_D("spi poll transfer start: %d\n", size);
while (size--)
{
rt_uint8_t data = 0xFF;
if (send_ptr != RT_NULL)
{
data = *send_ptr++;
}
#if defined(SOC_SERIES_APM32F0)
/* Wait until the transmit buffer is empty */
while (SPI_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET);
SPI_TxData8(spi, data);
/* Wait until a data is received */
while (SPI_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET);
data = SPI_RxData8(spi);
#else
/* Wait until the transmit buffer is empty */
while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET);
SPI_I2S_TxData(spi, data);
/* Wait until a data is received */
while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET);
data = SPI_I2S_RxData(spi);
#endif
if (recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
LOG_D("spi poll transfer finsh\n");
}
else if (config->data_width <= 16)
{
const rt_uint16_t *send_ptr = message->send_buf;
rt_uint16_t *recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
while (size--)
{
rt_uint16_t data = 0xFF;
if (send_ptr != RT_NULL)
{
data = *send_ptr++;
}
#if defined(SOC_SERIES_APM32F0)
/* Wait until the transmit buffer is empty */
while (SPI_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET);
SPI_I2S_TxData16(spi, data);
/* Wait until a data is received */
while (SPI_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET);
data = SPI_I2S_RxData16(spi);
#else
/* Wait until the transmit buffer is empty */
while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_TXBE) == RESET);
/* Send the byte */
SPI_I2S_TxData(spi, data);
/* Wait until a data is received */
while (SPI_I2S_ReadStatusFlag(spi, SPI_FLAG_RXBNE) == RESET);
/* Get the received data */
data = SPI_I2S_RxData(spi);
#endif
if (recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
}
/* release CS */
if (message->cs_release)
{
#if defined(SOC_SERIES_APM32F0)
GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, (GPIO_BSRET_T)SET);
#else
GPIO_WriteBitValue(cs->GPIOx, cs->GPIO_Pin, SET);
#endif
LOG_D("spi release cs\n");
}
return message->length;
};
static const struct rt_spi_ops apm32_spi_ops =
{
apm32_spi_configure,
apm32_spi_xfer
};
static int rt_hw_spi_init(void)
{
rt_err_t result;
for (int i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
{
spi_bus_obj[i].config = &spi_config[i];
spi_bus_obj[i].spi_bus.parent.user_data = (void *)&spi_bus_obj[i];
result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].spi_bus_name, &apm32_spi_ops);
RT_ASSERT(result == RT_EOK);
LOG_D("%s bus init done", spi_config[i].spi_bus_name);
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /* RT_USING_SPI */