rt-thread/bsp/stm32/libraries/HAL_Drivers/drv_qspi.c

397 lines
10 KiB
C

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-27 zylx first version
*/
#include "board.h"
#include "drv_qspi.h"
#include "drv_config.h"
#ifdef RT_USING_QSPI
#define DRV_DEBUG
#define LOG_TAG "drv.qspi"
#include <drv_log.h>
#if defined(BSP_USING_QSPI)
struct stm32_hw_spi_cs
{
uint16_t Pin;
};
struct stm32_qspi_bus
{
QSPI_HandleTypeDef QSPI_Handler;
char *bus_name;
#ifdef BSP_QSPI_USING_DMA
DMA_HandleTypeDef hdma_quadspi;
#endif
};
struct rt_spi_bus _qspi_bus1;
struct stm32_qspi_bus _stm32_qspi_bus;
static int stm32_qspi_init(struct rt_qspi_device *device, struct rt_qspi_configuration *qspi_cfg)
{
int result = RT_EOK;
unsigned int i = 1;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(qspi_cfg != RT_NULL);
struct rt_spi_configuration *cfg = &qspi_cfg->parent;
struct stm32_qspi_bus *qspi_bus = device->parent.bus->parent.user_data;
rt_memset(&qspi_bus->QSPI_Handler, 0, sizeof(qspi_bus->QSPI_Handler));
QSPI_HandleTypeDef QSPI_Handler_config = QSPI_BUS_CONFIG;
qspi_bus->QSPI_Handler = QSPI_Handler_config;
while (cfg->max_hz < HAL_RCC_GetHCLKFreq() / (i + 1))
{
i++;
if (i == 255)
{
LOG_E("QSPI init failed, QSPI frequency(%d) is too low.", cfg->max_hz);
return -RT_ERROR;
}
}
/* 80/(1+i) */
qspi_bus->QSPI_Handler.Init.ClockPrescaler = i;
if (!(cfg->mode & RT_SPI_CPOL))
{
/* QSPI MODE0 */
qspi_bus->QSPI_Handler.Init.ClockMode = QSPI_CLOCK_MODE_0;
}
else
{
/* QSPI MODE3 */
qspi_bus->QSPI_Handler.Init.ClockMode = QSPI_CLOCK_MODE_3;
}
/* flash size */
qspi_bus->QSPI_Handler.Init.FlashSize = POSITION_VAL(qspi_cfg->medium_size) - 1;
result = HAL_QSPI_Init(&qspi_bus->QSPI_Handler);
if (result == HAL_OK)
{
LOG_D("qspi init success!");
}
else
{
LOG_E("qspi init failed (%d)!", result);
}
#ifdef BSP_QSPI_USING_DMA
/* QSPI interrupts must be enabled when using the HAL_QSPI_Receive_DMA */
HAL_NVIC_SetPriority(QSPI_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(QSPI_IRQn);
HAL_NVIC_SetPriority(QSPI_DMA_IRQ, 0, 0);
HAL_NVIC_EnableIRQ(QSPI_DMA_IRQ);
/* init QSPI DMA */
if(QSPI_DMA_RCC == RCC_AHB1ENR_DMA1EN)
{
__HAL_RCC_DMA1_CLK_ENABLE();
}
else
{
__HAL_RCC_DMA2_CLK_ENABLE();
}
HAL_DMA_DeInit(qspi_bus->QSPI_Handler.hdma);
DMA_HandleTypeDef hdma_quadspi_config = QSPI_DMA_CONFIG;
qspi_bus->hdma_quadspi = hdma_quadspi_config;
if (HAL_DMA_Init(&qspi_bus->hdma_quadspi) != HAL_OK)
{
LOG_E("qspi dma init failed (%d)!", result);
}
__HAL_LINKDMA(&qspi_bus->QSPI_Handler, hdma, qspi_bus->hdma_quadspi);
#endif /* BSP_QSPI_USING_DMA */
return result;
}
static void qspi_send_cmd(struct stm32_qspi_bus *qspi_bus, struct rt_qspi_message *message)
{
RT_ASSERT(qspi_bus != RT_NULL);
RT_ASSERT(message != RT_NULL);
QSPI_CommandTypeDef Cmdhandler;
/* set QSPI cmd struct */
Cmdhandler.Instruction = message->instruction.content;
Cmdhandler.Address = message->address.content;
Cmdhandler.DummyCycles = message->dummy_cycles;
if (message->instruction.qspi_lines == 0)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_NONE;
}
else if (message->instruction.qspi_lines == 1)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_1_LINE;
}
else if (message->instruction.qspi_lines == 2)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_2_LINES;
}
else if (message->instruction.qspi_lines == 4)
{
Cmdhandler.InstructionMode = QSPI_INSTRUCTION_4_LINES;
}
if (message->address.qspi_lines == 0)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_NONE;
}
else if (message->address.qspi_lines == 1)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_1_LINE;
}
else if (message->address.qspi_lines == 2)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_2_LINES;
}
else if (message->address.qspi_lines == 4)
{
Cmdhandler.AddressMode = QSPI_ADDRESS_4_LINES;
}
if (message->address.size == 24)
{
Cmdhandler.AddressSize = QSPI_ADDRESS_24_BITS;
}
else
{
Cmdhandler.AddressSize = QSPI_ADDRESS_32_BITS;
}
if (message->qspi_data_lines == 0)
{
Cmdhandler.DataMode = QSPI_DATA_NONE;
}
else if (message->qspi_data_lines == 1)
{
Cmdhandler.DataMode = QSPI_DATA_1_LINE;
}
else if (message->qspi_data_lines == 2)
{
Cmdhandler.DataMode = QSPI_DATA_2_LINES;
}
else if (message->qspi_data_lines == 4)
{
Cmdhandler.DataMode = QSPI_DATA_4_LINES;
}
Cmdhandler.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
Cmdhandler.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
Cmdhandler.DdrMode = QSPI_DDR_MODE_DISABLE;
Cmdhandler.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
Cmdhandler.NbData = message->parent.length;
HAL_QSPI_Command(&qspi_bus->QSPI_Handler, &Cmdhandler, 5000);
}
static rt_uint32_t qspixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
rt_size_t len = 0;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
struct rt_qspi_message *qspi_message = (struct rt_qspi_message *)message;
struct stm32_qspi_bus *qspi_bus = device->bus->parent.user_data;
#ifdef BSP_QSPI_USING_SOFTCS
struct stm32_hw_spi_cs *cs = device->parent.user_data;
#endif
const rt_uint8_t *sndb = message->send_buf;
rt_uint8_t *rcvb = message->recv_buf;
rt_int32_t length = message->length;
#ifdef BSP_QSPI_USING_SOFTCS
if (message->cs_take)
{
rt_pin_write(cs->pin, 0);
}
#endif
/* send data */
if (sndb)
{
qspi_send_cmd(qspi_bus, qspi_message);
if (qspi_message->parent.length != 0)
{
if (HAL_QSPI_Transmit(&qspi_bus->QSPI_Handler, (rt_uint8_t *)sndb, 5000) == HAL_OK)
{
len = length;
}
else
{
LOG_E("QSPI send data failed(%d)!", qspi_bus->QSPI_Handler.ErrorCode);
qspi_bus->QSPI_Handler.State = HAL_QSPI_STATE_READY;
goto __exit;
}
}
else
{
len = 1;
}
}
else if (rcvb)/* recv data */
{
qspi_send_cmd(qspi_bus, qspi_message);
#ifdef BSP_QSPI_USING_DMA
if (HAL_QSPI_Receive_DMA(&qspi_bus->QSPI_Handler, rcvb) == HAL_OK)
#else
if (HAL_QSPI_Receive(&qspi_bus->QSPI_Handler, rcvb, 5000) == HAL_OK)
#endif
{
len = length;
#ifdef BSP_QSPI_USING_DMA
while (qspi_bus->QSPI_Handler.RxXferCount != 0);
#endif
}
else
{
LOG_E("QSPI recv data failed(%d)!", qspi_bus->QSPI_Handler.ErrorCode);
qspi_bus->QSPI_Handler.State = HAL_QSPI_STATE_READY;
goto __exit;
}
}
__exit:
#ifdef BSP_QSPI_USING_SOFTCS
if (message->cs_release)
{
rt_pin_write(cs->pin, 1);
}
#endif
return len;
}
static rt_err_t qspi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct rt_qspi_device *qspi_device = (struct rt_qspi_device *)device;
return stm32_qspi_init(qspi_device, &qspi_device->config);
}
static const struct rt_spi_ops stm32_qspi_ops =
{
.configure = qspi_configure,
.xfer = qspixfer,
};
static int stm32_qspi_register_bus(struct stm32_qspi_bus *qspi_bus, const char *name)
{
RT_ASSERT(qspi_bus != RT_NULL);
RT_ASSERT(name != RT_NULL);
_qspi_bus1.parent.user_data = qspi_bus;
return rt_qspi_bus_register(&_qspi_bus1, name, &stm32_qspi_ops);
}
/**
* @brief This function attach device to QSPI bus.
* @param device_name QSPI device name
* @param pin QSPI cs pin number
* @param data_line_width QSPI data lines width, such as 1, 2, 4
* @param enter_qspi_mode Callback function that lets FLASH enter QSPI mode
* @param exit_qspi_mode Callback function that lets FLASH exit QSPI mode
* @retval 0 : success
* -1 : failed
*/
rt_err_t stm32_qspi_bus_attach_device(const char *bus_name, const char *device_name, rt_uint32_t pin, rt_uint8_t data_line_width, void (*enter_qspi_mode)(), void (*exit_qspi_mode)())
{
struct rt_qspi_device *qspi_device = RT_NULL;
struct stm32_hw_spi_cs *cs_pin = RT_NULL;
rt_err_t result = RT_EOK;
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
RT_ASSERT(data_line_width == 1 || data_line_width == 2 || data_line_width == 4);
qspi_device = (struct rt_qspi_device *)rt_malloc(sizeof(struct rt_qspi_device));
if (qspi_device == RT_NULL)
{
LOG_E("no memory, qspi bus attach device failed!");
result = RT_ENOMEM;
goto __exit;
}
cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs));
if (qspi_device == RT_NULL)
{
LOG_E("no memory, qspi bus attach device failed!");
result = RT_ENOMEM;
goto __exit;
}
qspi_device->enter_qspi_mode = enter_qspi_mode;
qspi_device->exit_qspi_mode = exit_qspi_mode;
qspi_device->config.qspi_dl_width = data_line_width;
cs_pin->Pin = pin;
#ifdef BSP_QSPI_USING_SOFTCS
rt_pin_mode(pin, PIN_MODE_OUTPUT);
rt_pin_write(pin, 1);
#endif
result = rt_spi_bus_attach_device(&qspi_device->parent, device_name, bus_name, (void *)cs_pin);
__exit:
if (result != RT_EOK)
{
if (qspi_device)
{
rt_free(qspi_device);
}
if (cs_pin)
{
rt_free(cs_pin);
}
}
return result;
}
#ifdef BSP_QSPI_USING_DMA
void QSPI_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_QSPI_IRQHandler(&_stm32_qspi_bus.QSPI_Handler);
/* leave interrupt */
rt_interrupt_leave();
}
void QSPI_DMA_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&_stm32_qspi_bus.hdma_quadspi);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_QSPI_USING_DMA */
static int rt_hw_qspi_bus_init(void)
{
return stm32_qspi_register_bus(&_stm32_qspi_bus, "qspi1");
}
INIT_BOARD_EXPORT(rt_hw_qspi_bus_init);
#endif /* BSP_USING_QSPI */
#endif /* RT_USING_QSPI */