rt-thread/bsp/imxrt/libraries/MIMXRT1020/MIMXRT1021/drivers/fsl_flexio_spi.c

1331 lines
46 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2020 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_flexio_spi.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexio_spi"
#endif
/*! @brief FLEXIO SPI transfer state, which is used for SPI transactiaonl APIs' internal state. */
enum _flexio_spi_transfer_states
{
kFLEXIO_SPI_Idle = 0x0U, /*!< Nothing in the transmitter/receiver's queue. */
kFLEXIO_SPI_Busy, /*!< Transmiter/Receive's queue is not finished. */
};
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Send a piece of data for SPI.
*
* This function computes the number of data to be written into D register or Tx FIFO,
* and write the data into it. At the same time, this function updates the values in
* master handle structure.
*
* @param base pointer to FLEXIO_SPI_Type structure
* @param handle Pointer to SPI master handle structure.
*/
static void FLEXIO_SPI_TransferSendTransaction(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle);
/*!
* @brief Receive a piece of data for SPI master.
*
* This function computes the number of data to receive from D register or Rx FIFO,
* and write the data to destination address. At the same time, this function updates
* the values in master handle structure.
*
* @param base pointer to FLEXIO_SPI_Type structure
* @param handle Pointer to SPI master handle structure.
*/
static void FLEXIO_SPI_TransferReceiveTransaction(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle);
/*******************************************************************************
* Variables
******************************************************************************/
/*******************************************************************************
* Codes
******************************************************************************/
static uint32_t FLEXIO_SPI_GetInstance(FLEXIO_SPI_Type *base)
{
return FLEXIO_GetInstance(base->flexioBase);
}
static void FLEXIO_SPI_TransferSendTransaction(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle)
{
uint16_t tmpData = FLEXIO_SPI_DUMMYDATA;
if (handle->txData != NULL)
{
/* Transmit data and update tx size/buff. */
if (handle->bytePerFrame == 1U)
{
tmpData = *(handle->txData);
handle->txData++;
}
else
{
if (handle->direction == kFLEXIO_SPI_MsbFirst)
{
tmpData = (uint16_t)(handle->txData[0]) << 8U;
tmpData += handle->txData[1];
}
else
{
tmpData = (uint16_t)(handle->txData[1]) << 8U;
tmpData += handle->txData[0];
}
handle->txData += 2U;
}
}
else
{
tmpData = FLEXIO_SPI_DUMMYDATA;
}
handle->txRemainingBytes -= handle->bytePerFrame;
FLEXIO_SPI_WriteData(base, handle->direction, tmpData);
if (0U == handle->txRemainingBytes)
{
FLEXIO_SPI_DisableInterrupts(base, (uint32_t)kFLEXIO_SPI_TxEmptyInterruptEnable);
}
}
static void FLEXIO_SPI_TransferReceiveTransaction(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle)
{
uint16_t tmpData;
tmpData = FLEXIO_SPI_ReadData(base, handle->direction);
if (handle->rxData != NULL)
{
if (handle->bytePerFrame == 1U)
{
*handle->rxData = (uint8_t)tmpData;
handle->rxData++;
}
else
{
if (handle->direction == kFLEXIO_SPI_MsbFirst)
{
*handle->rxData = (uint8_t)(tmpData >> 8);
handle->rxData++;
*handle->rxData = (uint8_t)tmpData;
}
else
{
*handle->rxData = (uint8_t)tmpData;
handle->rxData++;
*handle->rxData = (uint8_t)(tmpData >> 8);
}
handle->rxData++;
}
}
handle->rxRemainingBytes -= handle->bytePerFrame;
}
/*!
* brief Ungates the FlexIO clock, resets the FlexIO module, configures the FlexIO SPI master hardware,
* and configures the FlexIO SPI with FlexIO SPI master configuration. The
* configuration structure can be filled by the user, or be set with default values
* by the FLEXIO_SPI_MasterGetDefaultConfig().
*
* note 1.FlexIO SPI master only support CPOL = 0, which means clock inactive low.
* 2.For FlexIO SPI master, the input valid time is 1.5 clock cycles, for slave the output valid time
* is 2.5 clock cycles. So if FlexIO SPI master communicates with other spi IPs, the maximum baud
* rate is FlexIO clock frequency divided by 2*2=4. If FlexIO SPI master communicates with FlexIO
* SPI slave, the maximum baud rate is FlexIO clock frequency divided by (1.5+2.5)*2=8.
*
* Example
code
FLEXIO_SPI_Type spiDev = {
.flexioBase = FLEXIO,
.SDOPinIndex = 0,
.SDIPinIndex = 1,
.SCKPinIndex = 2,
.CSnPinIndex = 3,
.shifterIndex = {0,1},
.timerIndex = {0,1}
};
flexio_spi_master_config_t config = {
.enableMaster = true,
.enableInDoze = false,
.enableInDebug = true,
.enableFastAccess = false,
.baudRate_Bps = 500000,
.phase = kFLEXIO_SPI_ClockPhaseFirstEdge,
.direction = kFLEXIO_SPI_MsbFirst,
.dataMode = kFLEXIO_SPI_8BitMode
};
FLEXIO_SPI_MasterInit(&spiDev, &config, srcClock_Hz);
endcode
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param masterConfig Pointer to the flexio_spi_master_config_t structure.
* param srcClock_Hz FlexIO source clock in Hz.
*/
void FLEXIO_SPI_MasterInit(FLEXIO_SPI_Type *base, flexio_spi_master_config_t *masterConfig, uint32_t srcClock_Hz)
{
assert(base != NULL);
assert(masterConfig != NULL);
flexio_shifter_config_t shifterConfig;
flexio_timer_config_t timerConfig;
uint32_t ctrlReg = 0;
uint16_t timerDiv = 0;
uint16_t timerCmp = 0;
/* Clear the shifterConfig & timerConfig struct. */
(void)memset(&shifterConfig, 0, sizeof(shifterConfig));
(void)memset(&timerConfig, 0, sizeof(timerConfig));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Ungate flexio clock. */
CLOCK_EnableClock(s_flexioClocks[FLEXIO_SPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Configure FLEXIO SPI Master */
ctrlReg = base->flexioBase->CTRL;
ctrlReg &= ~(FLEXIO_CTRL_DOZEN_MASK | FLEXIO_CTRL_DBGE_MASK | FLEXIO_CTRL_FASTACC_MASK | FLEXIO_CTRL_FLEXEN_MASK);
ctrlReg |= (FLEXIO_CTRL_DBGE(masterConfig->enableInDebug) | FLEXIO_CTRL_FASTACC(masterConfig->enableFastAccess) |
FLEXIO_CTRL_FLEXEN(masterConfig->enableMaster));
if (!masterConfig->enableInDoze)
{
ctrlReg |= FLEXIO_CTRL_DOZEN_MASK;
}
base->flexioBase->CTRL = ctrlReg;
/* Do hardware configuration. */
/* 1. Configure the shifter 0 for tx. */
shifterConfig.timerSelect = base->timerIndex[0];
shifterConfig.pinConfig = kFLEXIO_PinConfigOutput;
shifterConfig.pinSelect = base->SDOPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeTransmit;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
if (masterConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge)
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
}
else
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitLow;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnShift;
}
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[0], &shifterConfig);
/* 2. Configure the shifter 1 for rx. */
shifterConfig.timerSelect = base->timerIndex[0];
shifterConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
shifterConfig.pinSelect = base->SDIPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeReceive;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
if (masterConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge)
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
}
else
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
}
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[1], &shifterConfig);
/*3. Configure the timer 0 for SCK. */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(base->shifterIndex[0]);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOutput;
timerConfig.pinSelect = base->SCKPinIndex;
timerConfig.pinPolarity = kFLEXIO_PinActiveHigh;
timerConfig.timerMode = kFLEXIO_TimerModeDual8BitBaudBit;
timerConfig.timerOutput = kFLEXIO_TimerOutputZeroNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput;
timerConfig.timerReset = kFLEXIO_TimerResetNever;
timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompare;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnTriggerHigh;
timerConfig.timerStop = kFLEXIO_TimerStopBitEnableOnTimerDisable;
timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled;
timerDiv = (uint16_t)(srcClock_Hz / masterConfig->baudRate_Bps);
timerDiv = timerDiv / 2U - 1U;
timerCmp = ((uint16_t)masterConfig->dataMode * 2U - 1U) << 8U;
timerCmp |= timerDiv;
timerConfig.timerCompare = timerCmp;
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[0], &timerConfig);
/* 4. Configure the timer 1 for CSn. */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_TIMn(base->timerIndex[0]);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveHigh;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOutput;
timerConfig.pinSelect = base->CSnPinIndex;
timerConfig.pinPolarity = kFLEXIO_PinActiveLow;
timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit;
timerConfig.timerOutput = kFLEXIO_TimerOutputOneNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput;
timerConfig.timerReset = kFLEXIO_TimerResetNever;
timerConfig.timerDisable = kFLEXIO_TimerDisableOnPreTimerDisable;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnPrevTimerEnable;
timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled;
timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled;
timerConfig.timerCompare = 0xFFFFU;
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[1], &timerConfig);
}
/*!
* brief Resets the FlexIO SPI timer and shifter config.
*
* param base Pointer to the FLEXIO_SPI_Type.
*/
void FLEXIO_SPI_MasterDeinit(FLEXIO_SPI_Type *base)
{
base->flexioBase->SHIFTCFG[base->shifterIndex[0]] = 0;
base->flexioBase->SHIFTCTL[base->shifterIndex[0]] = 0;
base->flexioBase->SHIFTCFG[base->shifterIndex[1]] = 0;
base->flexioBase->SHIFTCTL[base->shifterIndex[1]] = 0;
base->flexioBase->TIMCFG[base->timerIndex[0]] = 0;
base->flexioBase->TIMCMP[base->timerIndex[0]] = 0;
base->flexioBase->TIMCTL[base->timerIndex[0]] = 0;
base->flexioBase->TIMCFG[base->timerIndex[1]] = 0;
base->flexioBase->TIMCMP[base->timerIndex[1]] = 0;
base->flexioBase->TIMCTL[base->timerIndex[1]] = 0;
}
/*!
* brief Gets the default configuration to configure the FlexIO SPI master. The configuration
* can be used directly by calling the FLEXIO_SPI_MasterConfigure().
* Example:
code
flexio_spi_master_config_t masterConfig;
FLEXIO_SPI_MasterGetDefaultConfig(&masterConfig);
endcode
* param masterConfig Pointer to the flexio_spi_master_config_t structure.
*/
void FLEXIO_SPI_MasterGetDefaultConfig(flexio_spi_master_config_t *masterConfig)
{
assert(masterConfig != NULL);
/* Initializes the configure structure to zero. */
(void)memset(masterConfig, 0, sizeof(*masterConfig));
masterConfig->enableMaster = true;
masterConfig->enableInDoze = false;
masterConfig->enableInDebug = true;
masterConfig->enableFastAccess = false;
/* Default baud rate 500kbps. */
masterConfig->baudRate_Bps = 500000U;
/* Default CPHA = 0. */
masterConfig->phase = kFLEXIO_SPI_ClockPhaseFirstEdge;
/* Default bit count at 8. */
masterConfig->dataMode = kFLEXIO_SPI_8BitMode;
}
/*!
* brief Ungates the FlexIO clock, resets the FlexIO module, configures the FlexIO SPI slave hardware
* configuration, and configures the FlexIO SPI with FlexIO SPI slave configuration. The
* configuration structure can be filled by the user, or be set with default values
* by the FLEXIO_SPI_SlaveGetDefaultConfig().
*
* note 1.Only one timer is needed in the FlexIO SPI slave. As a result, the second timer index is ignored.
* 2.FlexIO SPI slave only support CPOL = 0, which means clock inactive low.
* 3.For FlexIO SPI master, the input valid time is 1.5 clock cycles, for slave the output valid time
* is 2.5 clock cycles. So if FlexIO SPI slave communicates with other spi IPs, the maximum baud
* rate is FlexIO clock frequency divided by 3*2=6. If FlexIO SPI slave communicates with FlexIO
* SPI master, the maximum baud rate is FlexIO clock frequency divided by (1.5+2.5)*2=8.
* Example
code
FLEXIO_SPI_Type spiDev = {
.flexioBase = FLEXIO,
.SDOPinIndex = 0,
.SDIPinIndex = 1,
.SCKPinIndex = 2,
.CSnPinIndex = 3,
.shifterIndex = {0,1},
.timerIndex = {0}
};
flexio_spi_slave_config_t config = {
.enableSlave = true,
.enableInDoze = false,
.enableInDebug = true,
.enableFastAccess = false,
.phase = kFLEXIO_SPI_ClockPhaseFirstEdge,
.direction = kFLEXIO_SPI_MsbFirst,
.dataMode = kFLEXIO_SPI_8BitMode
};
FLEXIO_SPI_SlaveInit(&spiDev, &config);
endcode
* param base Pointer to the FLEXIO_SPI_Type structure.
* param slaveConfig Pointer to the flexio_spi_slave_config_t structure.
*/
void FLEXIO_SPI_SlaveInit(FLEXIO_SPI_Type *base, flexio_spi_slave_config_t *slaveConfig)
{
assert((base != NULL) && (slaveConfig != NULL));
flexio_shifter_config_t shifterConfig;
flexio_timer_config_t timerConfig;
uint32_t ctrlReg = 0;
/* Clear the shifterConfig & timerConfig struct. */
(void)memset(&shifterConfig, 0, sizeof(shifterConfig));
(void)memset(&timerConfig, 0, sizeof(timerConfig));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Ungate flexio clock. */
CLOCK_EnableClock(s_flexioClocks[FLEXIO_SPI_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Configure FLEXIO SPI Slave */
ctrlReg = base->flexioBase->CTRL;
ctrlReg &= ~(FLEXIO_CTRL_DOZEN_MASK | FLEXIO_CTRL_DBGE_MASK | FLEXIO_CTRL_FASTACC_MASK | FLEXIO_CTRL_FLEXEN_MASK);
ctrlReg |= (FLEXIO_CTRL_DBGE(slaveConfig->enableInDebug) | FLEXIO_CTRL_FASTACC(slaveConfig->enableFastAccess) |
FLEXIO_CTRL_FLEXEN(slaveConfig->enableSlave));
if (!slaveConfig->enableInDoze)
{
ctrlReg |= FLEXIO_CTRL_DOZEN_MASK;
}
base->flexioBase->CTRL = ctrlReg;
/* Do hardware configuration. */
/* 1. Configure the shifter 0 for tx. */
shifterConfig.timerSelect = base->timerIndex[0];
shifterConfig.pinConfig = kFLEXIO_PinConfigOutput;
shifterConfig.pinSelect = base->SDOPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeTransmit;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable;
if (slaveConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge)
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
}
else
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnShift;
}
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[0], &shifterConfig);
/* 2. Configure the shifter 1 for rx. */
shifterConfig.timerSelect = base->timerIndex[0];
shifterConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
shifterConfig.pinSelect = base->SDIPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeReceive;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
if (slaveConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge)
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
}
else
{
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
}
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[1], &shifterConfig);
/*3. Configure the timer 0 for shift clock. */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_PININPUT(base->CSnPinIndex);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
timerConfig.pinSelect = base->SCKPinIndex;
timerConfig.pinPolarity = kFLEXIO_PinActiveHigh;
timerConfig.timerMode = kFLEXIO_TimerModeSingle16Bit;
timerConfig.timerOutput = kFLEXIO_TimerOutputZeroNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnPinInputShiftPinInput;
timerConfig.timerReset = kFLEXIO_TimerResetNever;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnTriggerRisingEdge;
timerConfig.timerStop = kFLEXIO_TimerStopBitDisabled;
if (slaveConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge)
{
/* The configuration kFLEXIO_TimerDisableOnTimerCompare only support continuous
PCS access, change to kFLEXIO_TimerDisableNever to enable discontinuous PCS access. */
timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompare;
timerConfig.timerStart = kFLEXIO_TimerStartBitDisabled;
}
else
{
timerConfig.timerDisable = kFLEXIO_TimerDisableOnTriggerFallingEdge;
timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled;
}
timerConfig.timerCompare = (uint32_t)slaveConfig->dataMode * 2U - 1U;
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[0], &timerConfig);
}
/*!
* brief Gates the FlexIO clock.
*
* param base Pointer to the FLEXIO_SPI_Type.
*/
void FLEXIO_SPI_SlaveDeinit(FLEXIO_SPI_Type *base)
{
FLEXIO_SPI_MasterDeinit(base);
}
/*!
* brief Gets the default configuration to configure the FlexIO SPI slave. The configuration
* can be used directly for calling the FLEXIO_SPI_SlaveConfigure().
* Example:
code
flexio_spi_slave_config_t slaveConfig;
FLEXIO_SPI_SlaveGetDefaultConfig(&slaveConfig);
endcode
* param slaveConfig Pointer to the flexio_spi_slave_config_t structure.
*/
void FLEXIO_SPI_SlaveGetDefaultConfig(flexio_spi_slave_config_t *slaveConfig)
{
assert(slaveConfig != NULL);
/* Initializes the configure structure to zero. */
(void)memset(slaveConfig, 0, sizeof(*slaveConfig));
slaveConfig->enableSlave = true;
slaveConfig->enableInDoze = false;
slaveConfig->enableInDebug = true;
slaveConfig->enableFastAccess = false;
/* Default CPHA = 0. */
slaveConfig->phase = kFLEXIO_SPI_ClockPhaseFirstEdge;
/* Default bit count at 8. */
slaveConfig->dataMode = kFLEXIO_SPI_8BitMode;
}
/*!
* brief Enables the FlexIO SPI interrupt.
*
* This function enables the FlexIO SPI interrupt.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param mask interrupt source. The parameter can be any combination of the following values:
* arg kFLEXIO_SPI_RxFullInterruptEnable
* arg kFLEXIO_SPI_TxEmptyInterruptEnable
*/
void FLEXIO_SPI_EnableInterrupts(FLEXIO_SPI_Type *base, uint32_t mask)
{
if ((mask & (uint32_t)kFLEXIO_SPI_TxEmptyInterruptEnable) != 0U)
{
FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1UL << base->shifterIndex[0]);
}
if ((mask & (uint32_t)kFLEXIO_SPI_RxFullInterruptEnable) != 0U)
{
FLEXIO_EnableShifterStatusInterrupts(base->flexioBase, 1UL << base->shifterIndex[1]);
}
}
/*!
* brief Disables the FlexIO SPI interrupt.
*
* This function disables the FlexIO SPI interrupt.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param mask interrupt source The parameter can be any combination of the following values:
* arg kFLEXIO_SPI_RxFullInterruptEnable
* arg kFLEXIO_SPI_TxEmptyInterruptEnable
*/
void FLEXIO_SPI_DisableInterrupts(FLEXIO_SPI_Type *base, uint32_t mask)
{
if ((mask & (uint32_t)kFLEXIO_SPI_TxEmptyInterruptEnable) != 0U)
{
FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1UL << base->shifterIndex[0]);
}
if ((mask & (uint32_t)kFLEXIO_SPI_RxFullInterruptEnable) != 0U)
{
FLEXIO_DisableShifterStatusInterrupts(base->flexioBase, 1UL << base->shifterIndex[1]);
}
}
/*!
* brief Enables/disables the FlexIO SPI transmit DMA. This function enables/disables the FlexIO SPI Tx DMA,
* which means that asserting the kFLEXIO_SPI_TxEmptyFlag does/doesn't trigger the DMA request.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param mask SPI DMA source.
* param enable True means enable DMA, false means disable DMA.
*/
void FLEXIO_SPI_EnableDMA(FLEXIO_SPI_Type *base, uint32_t mask, bool enable)
{
if ((mask & (uint32_t)kFLEXIO_SPI_TxDmaEnable) != 0U)
{
FLEXIO_EnableShifterStatusDMA(base->flexioBase, 1UL << base->shifterIndex[0], enable);
}
if ((mask & (uint32_t)kFLEXIO_SPI_RxDmaEnable) != 0U)
{
FLEXIO_EnableShifterStatusDMA(base->flexioBase, 1UL << base->shifterIndex[1], enable);
}
}
/*!
* brief Gets FlexIO SPI status flags.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* return status flag; Use the status flag to AND the following flag mask and get the status.
* arg kFLEXIO_SPI_TxEmptyFlag
* arg kFLEXIO_SPI_RxEmptyFlag
*/
uint32_t FLEXIO_SPI_GetStatusFlags(FLEXIO_SPI_Type *base)
{
uint32_t shifterStatus = FLEXIO_GetShifterStatusFlags(base->flexioBase);
uint32_t status = 0;
status = ((shifterStatus & (1UL << base->shifterIndex[0])) >> base->shifterIndex[0]);
status |= (((shifterStatus & (1UL << base->shifterIndex[1])) >> (base->shifterIndex[1])) << 1U);
return status;
}
/*!
* brief Clears FlexIO SPI status flags.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param mask status flag
* The parameter can be any combination of the following values:
* arg kFLEXIO_SPI_TxEmptyFlag
* arg kFLEXIO_SPI_RxEmptyFlag
*/
void FLEXIO_SPI_ClearStatusFlags(FLEXIO_SPI_Type *base, uint32_t mask)
{
if ((mask & (uint32_t)kFLEXIO_SPI_TxBufferEmptyFlag) != 0U)
{
FLEXIO_ClearShifterStatusFlags(base->flexioBase, 1UL << base->shifterIndex[0]);
}
if ((mask & (uint32_t)kFLEXIO_SPI_RxBufferFullFlag) != 0U)
{
FLEXIO_ClearShifterStatusFlags(base->flexioBase, 1UL << base->shifterIndex[1]);
}
}
/*!
* brief Sets baud rate for the FlexIO SPI transfer, which is only used for the master.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param baudRate_Bps Baud Rate needed in Hz.
* param srcClockHz SPI source clock frequency in Hz.
*/
void FLEXIO_SPI_MasterSetBaudRate(FLEXIO_SPI_Type *base, uint32_t baudRate_Bps, uint32_t srcClockHz)
{
uint16_t timerDiv = 0;
uint16_t timerCmp = 0;
FLEXIO_Type *flexioBase = base->flexioBase;
/* Set TIMCMP[7:0] = (baud rate divider / 2) - 1.*/
timerDiv = (uint16_t)(srcClockHz / baudRate_Bps);
timerDiv = timerDiv / 2U - 1U;
timerCmp = (uint16_t)(flexioBase->TIMCMP[base->timerIndex[0]]);
timerCmp &= 0xFF00U;
timerCmp |= timerDiv;
flexioBase->TIMCMP[base->timerIndex[0]] = timerCmp;
}
/*!
* brief Sends a buffer of data bytes.
*
* note This function blocks using the polling method until all bytes have been sent.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param direction Shift direction of MSB first or LSB first.
* param buffer The data bytes to send.
* param size The number of data bytes to send.
* retval kStatus_Success Successfully create the handle.
* retval kStatus_FLEXIO_SPI_Timeout The transfer timed out and was aborted.
*/
status_t FLEXIO_SPI_WriteBlocking(FLEXIO_SPI_Type *base,
flexio_spi_shift_direction_t direction,
const uint8_t *buffer,
size_t size)
{
assert(buffer != NULL);
assert(size != 0U);
#if SPI_RETRY_TIMES
uint32_t waitTimes;
#endif
while (0U != size--)
{
/* Wait until data transfer complete. */
#if SPI_RETRY_TIMES
waitTimes = SPI_RETRY_TIMES;
while ((0U == (FLEXIO_SPI_GetStatusFlags(base) & (uint32_t)kFLEXIO_SPI_TxBufferEmptyFlag)) &&
(0U != --waitTimes))
#else
while (0U == (FLEXIO_SPI_GetStatusFlags(base) & (uint32_t)kFLEXIO_SPI_TxBufferEmptyFlag))
#endif
{
}
#if SPI_RETRY_TIMES
if (waitTimes == 0U)
{
return kStatus_FLEXIO_SPI_Timeout;
}
#endif
FLEXIO_SPI_WriteData(base, direction, *buffer++);
}
return kStatus_Success;
}
/*!
* brief Receives a buffer of bytes.
*
* note This function blocks using the polling method until all bytes have been received.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param direction Shift direction of MSB first or LSB first.
* param buffer The buffer to store the received bytes.
* param size The number of data bytes to be received.
* param direction Shift direction of MSB first or LSB first.
* retval kStatus_Success Successfully create the handle.
* retval kStatus_FLEXIO_SPI_Timeout The transfer timed out and was aborted.
*/
status_t FLEXIO_SPI_ReadBlocking(FLEXIO_SPI_Type *base,
flexio_spi_shift_direction_t direction,
uint8_t *buffer,
size_t size)
{
assert(buffer != NULL);
assert(size != 0U);
#if SPI_RETRY_TIMES
uint32_t waitTimes;
#endif
while (0U != size--)
{
/* Wait until data transfer complete. */
#if SPI_RETRY_TIMES
waitTimes = SPI_RETRY_TIMES;
while ((0U == (FLEXIO_SPI_GetStatusFlags(base) & (uint32_t)kFLEXIO_SPI_RxBufferFullFlag)) &&
(0U != --waitTimes))
#else
while (0U == (FLEXIO_SPI_GetStatusFlags(base) & (uint32_t)kFLEXIO_SPI_RxBufferFullFlag))
#endif
{
}
#if SPI_RETRY_TIMES
if (waitTimes == 0U)
{
return kStatus_FLEXIO_SPI_Timeout;
}
#endif
*buffer++ = (uint8_t)FLEXIO_SPI_ReadData(base, direction);
}
return kStatus_Success;
}
/*!
* brief Receives a buffer of bytes.
*
* note This function blocks via polling until all bytes have been received.
*
* param base pointer to FLEXIO_SPI_Type structure
* param xfer FlexIO SPI transfer structure, see #flexio_spi_transfer_t.
* retval kStatus_Success Successfully create the handle.
* retval kStatus_FLEXIO_SPI_Timeout The transfer timed out and was aborted.
*/
status_t FLEXIO_SPI_MasterTransferBlocking(FLEXIO_SPI_Type *base, flexio_spi_transfer_t *xfer)
{
flexio_spi_shift_direction_t direction;
uint8_t bytesPerFrame;
uint32_t dataMode = 0;
uint16_t timerCmp = (uint16_t)(base->flexioBase->TIMCMP[base->timerIndex[0]]);
uint16_t tmpData = FLEXIO_SPI_DUMMYDATA;
#if SPI_RETRY_TIMES
uint32_t waitTimes;
#endif
timerCmp &= 0x00FFU;
/* Configure the values in handle. */
switch (xfer->flags)
{
case (uint8_t)kFLEXIO_SPI_8bitMsb:
dataMode = (8UL * 2UL - 1UL) << 8U;
bytesPerFrame = 1U;
direction = kFLEXIO_SPI_MsbFirst;
break;
case (uint8_t)kFLEXIO_SPI_8bitLsb:
dataMode = (8UL * 2UL - 1UL) << 8U;
bytesPerFrame = 1U;
direction = kFLEXIO_SPI_LsbFirst;
break;
case (uint8_t)kFLEXIO_SPI_16bitMsb:
dataMode = (16UL * 2UL - 1UL) << 8U;
bytesPerFrame = 2U;
direction = kFLEXIO_SPI_MsbFirst;
break;
case (uint8_t)kFLEXIO_SPI_16bitLsb:
dataMode = (16UL * 2UL - 1UL) << 8U;
bytesPerFrame = 2U;
direction = kFLEXIO_SPI_LsbFirst;
break;
default:
dataMode = (8UL * 2UL - 1UL) << 8U;
bytesPerFrame = 1U;
direction = kFLEXIO_SPI_MsbFirst;
assert(true);
break;
}
dataMode |= timerCmp;
/* Configure transfer size. */
base->flexioBase->TIMCMP[base->timerIndex[0]] = dataMode;
while (xfer->dataSize != 0U)
{
/* Wait until data transfer complete. */
#if SPI_RETRY_TIMES
waitTimes = SPI_RETRY_TIMES;
while ((0U == (FLEXIO_SPI_GetStatusFlags(base) & (uint32_t)kFLEXIO_SPI_TxBufferEmptyFlag)) &&
(0U != --waitTimes))
#else
while (0U == (FLEXIO_SPI_GetStatusFlags(base) & (uint32_t)kFLEXIO_SPI_TxBufferEmptyFlag))
#endif
{
}
#if SPI_RETRY_TIMES
if (waitTimes == 0U)
{
return kStatus_FLEXIO_SPI_Timeout;
}
#endif
if (xfer->txData != NULL)
{
/* Transmit data and update tx size/buff. */
if (bytesPerFrame == 1U)
{
tmpData = *(xfer->txData);
xfer->txData++;
}
else
{
if (direction == kFLEXIO_SPI_MsbFirst)
{
tmpData = (uint16_t)(xfer->txData[0]) << 8U;
tmpData += xfer->txData[1];
}
else
{
tmpData = (uint16_t)(xfer->txData[1]) << 8U;
tmpData += xfer->txData[0];
}
xfer->txData += 2U;
}
}
else
{
tmpData = FLEXIO_SPI_DUMMYDATA;
}
xfer->dataSize -= bytesPerFrame;
FLEXIO_SPI_WriteData(base, direction, tmpData);
#if SPI_RETRY_TIMES
waitTimes = SPI_RETRY_TIMES;
while ((0U == (FLEXIO_SPI_GetStatusFlags(base) & (uint32_t)kFLEXIO_SPI_RxBufferFullFlag)) &&
(0U != --waitTimes))
#else
while (0U == (FLEXIO_SPI_GetStatusFlags(base) & (uint32_t)kFLEXIO_SPI_RxBufferFullFlag))
#endif
{
}
#if SPI_RETRY_TIMES
if (waitTimes == 0U)
{
return kStatus_FLEXIO_SPI_Timeout;
}
#endif
tmpData = FLEXIO_SPI_ReadData(base, direction);
if (xfer->rxData != NULL)
{
if (bytesPerFrame == 1U)
{
*xfer->rxData = (uint8_t)tmpData;
xfer->rxData++;
}
else
{
if (direction == kFLEXIO_SPI_MsbFirst)
{
*xfer->rxData = (uint8_t)(tmpData >> 8);
xfer->rxData++;
*xfer->rxData = (uint8_t)tmpData;
}
else
{
*xfer->rxData = (uint8_t)tmpData;
xfer->rxData++;
*xfer->rxData = (uint8_t)(tmpData >> 8);
}
xfer->rxData++;
}
}
}
return kStatus_Success;
}
/*!
* brief Initializes the FlexIO SPI Master handle, which is used in transactional functions.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param handle Pointer to the flexio_spi_master_handle_t structure to store the transfer state.
* param callback The callback function.
* param userData The parameter of the callback function.
* retval kStatus_Success Successfully create the handle.
* retval kStatus_OutOfRange The FlexIO type/handle/ISR table out of range.
*/
status_t FLEXIO_SPI_MasterTransferCreateHandle(FLEXIO_SPI_Type *base,
flexio_spi_master_handle_t *handle,
flexio_spi_master_transfer_callback_t callback,
void *userData)
{
assert(handle != NULL);
IRQn_Type flexio_irqs[] = FLEXIO_IRQS;
/* Zero the handle. */
(void)memset(handle, 0, sizeof(*handle));
/* Register callback and userData. */
handle->callback = callback;
handle->userData = userData;
/* Clear pending NVIC IRQ before enable NVIC IRQ. */
NVIC_ClearPendingIRQ(flexio_irqs[FLEXIO_SPI_GetInstance(base)]);
/* Enable interrupt in NVIC. */
(void)EnableIRQ(flexio_irqs[FLEXIO_SPI_GetInstance(base)]);
/* Save the context in global variables to support the double weak mechanism. */
return FLEXIO_RegisterHandleIRQ(base, handle, FLEXIO_SPI_MasterTransferHandleIRQ);
}
/*!
* brief Master transfer data using IRQ.
*
* This function sends data using IRQ. This is a non-blocking function, which returns
* right away. When all data is sent out/received, the callback function is called.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param handle Pointer to the flexio_spi_master_handle_t structure to store the transfer state.
* param xfer FlexIO SPI transfer structure. See #flexio_spi_transfer_t.
* retval kStatus_Success Successfully start a transfer.
* retval kStatus_InvalidArgument Input argument is invalid.
* retval kStatus_FLEXIO_SPI_Busy SPI is not idle, is running another transfer.
*/
status_t FLEXIO_SPI_MasterTransferNonBlocking(FLEXIO_SPI_Type *base,
flexio_spi_master_handle_t *handle,
flexio_spi_transfer_t *xfer)
{
assert(handle != NULL);
assert(xfer != NULL);
uint32_t dataMode = 0;
uint16_t timerCmp = (uint16_t)base->flexioBase->TIMCMP[base->timerIndex[0]];
uint16_t tmpData = FLEXIO_SPI_DUMMYDATA;
timerCmp &= 0x00FFU;
/* Check if SPI is busy. */
if (handle->state == (uint32_t)kFLEXIO_SPI_Busy)
{
return kStatus_FLEXIO_SPI_Busy;
}
/* Check if the argument is legal. */
if ((xfer->txData == NULL) && (xfer->rxData == NULL))
{
return kStatus_InvalidArgument;
}
/* Configure the values in handle */
switch (xfer->flags)
{
case (uint8_t)kFLEXIO_SPI_8bitMsb:
dataMode = (8UL * 2UL - 1UL) << 8U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_MsbFirst;
break;
case (uint8_t)kFLEXIO_SPI_8bitLsb:
dataMode = (8UL * 2UL - 1UL) << 8U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_LsbFirst;
break;
case (uint8_t)kFLEXIO_SPI_16bitMsb:
dataMode = (16UL * 2UL - 1UL) << 8U;
handle->bytePerFrame = 2U;
handle->direction = kFLEXIO_SPI_MsbFirst;
break;
case (uint8_t)kFLEXIO_SPI_16bitLsb:
dataMode = (16UL * 2UL - 1UL) << 8U;
handle->bytePerFrame = 2U;
handle->direction = kFLEXIO_SPI_LsbFirst;
break;
default:
dataMode = (8UL * 2UL - 1UL) << 8U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_MsbFirst;
assert(true);
break;
}
dataMode |= timerCmp;
/* Configure transfer size. */
base->flexioBase->TIMCMP[base->timerIndex[0]] = dataMode;
handle->state = (uint32_t)kFLEXIO_SPI_Busy;
handle->txData = xfer->txData;
handle->rxData = xfer->rxData;
handle->rxRemainingBytes = xfer->dataSize;
/* Save total transfer size. */
handle->transferSize = xfer->dataSize;
/* Send first byte of data to trigger the rx interrupt. */
if (handle->txData != NULL)
{
/* Transmit data and update tx size/buff. */
if (handle->bytePerFrame == 1U)
{
tmpData = *(handle->txData);
handle->txData++;
}
else
{
if (handle->direction == kFLEXIO_SPI_MsbFirst)
{
tmpData = (uint16_t)(handle->txData[0]) << 8U;
tmpData += handle->txData[1];
}
else
{
tmpData = (uint16_t)(handle->txData[1]) << 8U;
tmpData += handle->txData[0];
}
handle->txData += 2U;
}
}
else
{
tmpData = FLEXIO_SPI_DUMMYDATA;
}
handle->txRemainingBytes = xfer->dataSize - handle->bytePerFrame;
FLEXIO_SPI_WriteData(base, handle->direction, tmpData);
/* Enable transmit and receive interrupt to handle rx. */
FLEXIO_SPI_EnableInterrupts(base, (uint32_t)kFLEXIO_SPI_RxFullInterruptEnable);
return kStatus_Success;
}
/*!
* brief Gets the data transfer status which used IRQ.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param handle Pointer to the flexio_spi_master_handle_t structure to store the transfer state.
* param count Number of bytes transferred so far by the non-blocking transaction.
* retval kStatus_InvalidArgument count is Invalid.
* retval kStatus_Success Successfully return the count.
*/
status_t FLEXIO_SPI_MasterTransferGetCount(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle, size_t *count)
{
assert(handle != NULL);
if (NULL == count)
{
return kStatus_InvalidArgument;
}
/* Return remaing bytes in different cases. */
if (handle->rxData != NULL)
{
*count = handle->transferSize - handle->rxRemainingBytes;
}
else
{
*count = handle->transferSize - handle->txRemainingBytes;
}
return kStatus_Success;
}
/*!
* brief Aborts the master data transfer, which used IRQ.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param handle Pointer to the flexio_spi_master_handle_t structure to store the transfer state.
*/
void FLEXIO_SPI_MasterTransferAbort(FLEXIO_SPI_Type *base, flexio_spi_master_handle_t *handle)
{
assert(handle != NULL);
FLEXIO_SPI_DisableInterrupts(base, (uint32_t)kFLEXIO_SPI_RxFullInterruptEnable);
FLEXIO_SPI_DisableInterrupts(base, (uint32_t)kFLEXIO_SPI_TxEmptyInterruptEnable);
/* Transfer finished, set the state to idle. */
handle->state = (uint32_t)kFLEXIO_SPI_Idle;
/* Clear the internal state. */
handle->rxRemainingBytes = 0;
handle->txRemainingBytes = 0;
}
/*!
* brief FlexIO SPI master IRQ handler function.
*
* param spiType Pointer to the FLEXIO_SPI_Type structure.
* param spiHandle Pointer to the flexio_spi_master_handle_t structure to store the transfer state.
*/
void FLEXIO_SPI_MasterTransferHandleIRQ(void *spiType, void *spiHandle)
{
assert(spiHandle != NULL);
flexio_spi_master_handle_t *handle = (flexio_spi_master_handle_t *)spiHandle;
FLEXIO_SPI_Type *base;
uint32_t status;
if (handle->state == (uint32_t)kFLEXIO_SPI_Idle)
{
return;
}
base = (FLEXIO_SPI_Type *)spiType;
status = FLEXIO_SPI_GetStatusFlags(base);
/* Handle rx. */
if (((status & (uint32_t)kFLEXIO_SPI_RxBufferFullFlag) != 0U) && (handle->rxRemainingBytes != 0U))
{
FLEXIO_SPI_TransferReceiveTransaction(base, handle);
}
/* Handle tx. */
if (((status & (uint32_t)kFLEXIO_SPI_TxBufferEmptyFlag) != 0U) && (handle->txRemainingBytes != 0U))
{
FLEXIO_SPI_TransferSendTransaction(base, handle);
}
/* All the transfer finished. */
if ((handle->txRemainingBytes == 0U) && (handle->rxRemainingBytes == 0U))
{
FLEXIO_SPI_MasterTransferAbort(base, handle);
if (handle->callback != NULL)
{
(handle->callback)(base, handle, kStatus_FLEXIO_SPI_Idle, handle->userData);
}
}
}
/*!
* brief Initializes the FlexIO SPI Slave handle, which is used in transactional functions.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param handle Pointer to the flexio_spi_slave_handle_t structure to store the transfer state.
* param callback The callback function.
* param userData The parameter of the callback function.
* retval kStatus_Success Successfully create the handle.
* retval kStatus_OutOfRange The FlexIO type/handle/ISR table out of range.
*/
status_t FLEXIO_SPI_SlaveTransferCreateHandle(FLEXIO_SPI_Type *base,
flexio_spi_slave_handle_t *handle,
flexio_spi_slave_transfer_callback_t callback,
void *userData)
{
assert(handle != NULL);
IRQn_Type flexio_irqs[] = FLEXIO_IRQS;
/* Zero the handle. */
(void)memset(handle, 0, sizeof(*handle));
/* Register callback and userData. */
handle->callback = callback;
handle->userData = userData;
/* Clear pending NVIC IRQ before enable NVIC IRQ. */
NVIC_ClearPendingIRQ(flexio_irqs[FLEXIO_SPI_GetInstance(base)]);
/* Enable interrupt in NVIC. */
(void)EnableIRQ(flexio_irqs[FLEXIO_SPI_GetInstance(base)]);
/* Save the context in global variables to support the double weak mechanism. */
return FLEXIO_RegisterHandleIRQ(base, handle, FLEXIO_SPI_SlaveTransferHandleIRQ);
}
/*!
* brief Slave transfer data using IRQ.
*
* This function sends data using IRQ. This is a non-blocking function, which returns
* right away. When all data is sent out/received, the callback function is called.
* param handle Pointer to the flexio_spi_slave_handle_t structure to store the transfer state.
*
* param base Pointer to the FLEXIO_SPI_Type structure.
* param xfer FlexIO SPI transfer structure. See #flexio_spi_transfer_t.
* retval kStatus_Success Successfully start a transfer.
* retval kStatus_InvalidArgument Input argument is invalid.
* retval kStatus_FLEXIO_SPI_Busy SPI is not idle; it is running another transfer.
*/
status_t FLEXIO_SPI_SlaveTransferNonBlocking(FLEXIO_SPI_Type *base,
flexio_spi_slave_handle_t *handle,
flexio_spi_transfer_t *xfer)
{
assert(handle != NULL);
assert(xfer != NULL);
uint32_t dataMode = 0;
/* Check if SPI is busy. */
if (handle->state == (uint32_t)kFLEXIO_SPI_Busy)
{
return kStatus_FLEXIO_SPI_Busy;
}
/* Check if the argument is legal. */
if ((xfer->txData == NULL) && (xfer->rxData == NULL))
{
return kStatus_InvalidArgument;
}
/* Configure the values in handle */
switch (xfer->flags)
{
case (uint8_t)kFLEXIO_SPI_8bitMsb:
dataMode = 8U * 2U - 1U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_MsbFirst;
break;
case (uint8_t)kFLEXIO_SPI_8bitLsb:
dataMode = 8U * 2U - 1U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_LsbFirst;
break;
case (uint8_t)kFLEXIO_SPI_16bitMsb:
dataMode = 16U * 2U - 1U;
handle->bytePerFrame = 2U;
handle->direction = kFLEXIO_SPI_MsbFirst;
break;
case (uint8_t)kFLEXIO_SPI_16bitLsb:
dataMode = 16U * 2U - 1U;
handle->bytePerFrame = 2U;
handle->direction = kFLEXIO_SPI_LsbFirst;
break;
default:
dataMode = 8U * 2U - 1U;
handle->bytePerFrame = 1U;
handle->direction = kFLEXIO_SPI_MsbFirst;
assert(true);
break;
}
/* Configure transfer size. */
base->flexioBase->TIMCMP[base->timerIndex[0]] = dataMode;
handle->state = (uint32_t)kFLEXIO_SPI_Busy;
handle->txData = xfer->txData;
handle->rxData = xfer->rxData;
handle->txRemainingBytes = xfer->dataSize;
handle->rxRemainingBytes = xfer->dataSize;
/* Save total transfer size. */
handle->transferSize = xfer->dataSize;
/* Enable transmit and receive interrupt to handle tx and rx. */
FLEXIO_SPI_EnableInterrupts(base, (uint32_t)kFLEXIO_SPI_TxEmptyInterruptEnable);
FLEXIO_SPI_EnableInterrupts(base, (uint32_t)kFLEXIO_SPI_RxFullInterruptEnable);
return kStatus_Success;
}
/*!
* brief FlexIO SPI slave IRQ handler function.
*
* param spiType Pointer to the FLEXIO_SPI_Type structure.
* param spiHandle Pointer to the flexio_spi_slave_handle_t structure to store the transfer state.
*/
void FLEXIO_SPI_SlaveTransferHandleIRQ(void *spiType, void *spiHandle)
{
assert(spiHandle != NULL);
flexio_spi_master_handle_t *handle = (flexio_spi_master_handle_t *)spiHandle;
FLEXIO_SPI_Type *base;
uint32_t status;
if (handle->state == (uint32_t)kFLEXIO_SPI_Idle)
{
return;
}
base = (FLEXIO_SPI_Type *)spiType;
status = FLEXIO_SPI_GetStatusFlags(base);
/* Handle tx. */
if (((status & (uint32_t)kFLEXIO_SPI_TxBufferEmptyFlag) != 0U) && (handle->txRemainingBytes != 0U))
{
FLEXIO_SPI_TransferSendTransaction(base, handle);
}
/* Handle rx. */
if (((status & (uint32_t)kFLEXIO_SPI_RxBufferFullFlag) != 0U) && (handle->rxRemainingBytes != 0U))
{
FLEXIO_SPI_TransferReceiveTransaction(base, handle);
}
/* All the transfer finished. */
if ((handle->txRemainingBytes == 0U) && (handle->rxRemainingBytes == 0U))
{
FLEXIO_SPI_SlaveTransferAbort(base, handle);
if (handle->callback != NULL)
{
(handle->callback)(base, handle, kStatus_FLEXIO_SPI_Idle, handle->userData);
}
}
}