2012-12-30 09:43:19 +00:00

599 lines
17 KiB
C

/*
* File : mstorage.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2012, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2012-10-01 Yi Qiu first version
* 2012-11-25 Heyuanjie87 reduce the memory consumption
* 2012-12-09 Heyuanjie87 change class and endpoint handler
*/
#include <rtthread.h>
#include <rtservice.h>
#include <rtdevice.h>
#include "mstorage.h"
#ifdef RT_USB_DEVICE_MSTORAGE
#define STATUS_CBW 0x00
#define STATUS_CSW 0x01
#define STATUS_RECEIVE 0x02
#define STATUS_SEND 0x03
static int status = STATUS_CBW;
ALIGN(RT_ALIGN_SIZE)
static struct ustorage_csw csw;
static rt_device_t disk;
static rt_uint32_t _block;
static rt_uint32_t _count, _size;
static struct rt_device_blk_geometry geometry;
static struct udevice_descriptor dev_desc =
{
USB_DESC_LENGTH_DEVICE, //bLength;
USB_DESC_TYPE_DEVICE, //type;
USB_BCD_VERSION, //bcdUSB;
USB_CLASS_MASS_STORAGE, //bDeviceClass;
0x00, //bDeviceSubClass;
0x00, //bDeviceProtocol;
0x40, //bMaxPacketSize0;
USB_VENDOR_ID, //idVendor;
USB_MASS_STORAGE_PRODUCT_ID,//idProduct;
USB_BCD_DEVICE, //bcdDevice;
USB_STRING_MANU_INDEX, //iManufacturer;
USB_STRING_PRODUCT_INDEX, //iProduct;
USB_STRING_SERIAL_INDEX, //iSerialNumber;
USB_DYNAMIC, //bNumConfigurations;
};
const static struct umass_descriptor _mass_desc =
{
USB_DESC_LENGTH_INTERFACE, //bLength;
USB_DESC_TYPE_INTERFACE, //type;
USB_DYNAMIC, //bInterfaceNumber;
0x00, //bAlternateSetting;
0x02, //bNumEndpoints
USB_CLASS_MASS_STORAGE, //bInterfaceClass;
0x06, //bInterfaceSubClass;
0x50, //bInterfaceProtocol;
0x00, //iInterface;
USB_DESC_LENGTH_ENDPOINT, //bLength;
USB_DESC_TYPE_ENDPOINT, //type;
USB_DYNAMIC | USB_DIR_OUT, //bEndpointAddress;
USB_EP_ATTR_BULK, //bmAttributes;
0x40, //wMaxPacketSize;
0x00, //bInterval;
USB_DESC_LENGTH_ENDPOINT, //bLength;
USB_DESC_TYPE_ENDPOINT, //type;
USB_DYNAMIC | USB_DIR_IN, //bEndpointAddress;
USB_EP_ATTR_BULK, //bmAttributes;
0x40, //wMaxPacketSize;
0x00, //bInterval;
};
/**
* This function will allocate an usb device instance from system.
*
* @param parent the hub instance to which the new allocated device attached.
* @param port the hub port.
*
* @return the allocate instance on successful, or RT_NULL on failure.
*/
static rt_err_t _inquiry_cmd(udevice_t device, uep_t ep_in)
{
rt_uint8_t data[36];
*(rt_uint32_t*)&data[0] = 0x0 | (0x80 << 8);
*(rt_uint32_t*)&data[4] = 31;
rt_memset(&data[8], 0x20, 28);
rt_memcpy(&data[8], "RTT", 3);
rt_memcpy(&data[16], "USB Disk", 8);
dcd_ep_write(device->dcd, ep_in, (rt_uint8_t*)&data, 36);
return RT_EOK;
}
/**
* This function will handle sense request.
*
* @param device the usb device object.
*
* @return RT_EOK on successful.
*/
static rt_err_t _request_sense(udevice_t device, uep_t ep_in)
{
struct request_sense_data data;
data.ErrorCode = 0x70;
data.Valid = 0;
data.SenseKey = 5;
data.Information[0] = 0;
data.Information[1] = 0;
data.Information[2] = 0;
data.Information[3] = 0;
data.AdditionalSenseLength = 0x0b;
data.AdditionalSenseCode = 0x20;
data.AdditionalSenseCodeQualifier =0;
dcd_ep_write(device->dcd, ep_in, (rt_uint8_t*)&data, sizeof(struct request_sense_data));
return RT_EOK;
}
/**
* This function will handle mode_sense_6 request.
*
* @param device the usb device object.
*
* @return RT_EOK on successful.
*/
static rt_err_t _mode_sense_6(udevice_t device, uep_t ep_in)
{
rt_uint8_t data[4];
data[0]=3;
data[1]=0;
data[2]=0;
data[3]=0;
dcd_ep_write(device->dcd, ep_in, (rt_uint8_t*)&data, 4);
return RT_EOK;
}
/**
* This function will handle read_capacities request.
*
* @param device the usb device object.
*
* @return RT_EOK on successful.
*/
static rt_err_t _read_capacities(udevice_t device, uep_t ep_in)
{
rt_uint8_t data[12];
rt_uint32_t sector_count, sector_size;
RT_ASSERT(device != RT_NULL);
sector_count = geometry.sector_count;
sector_size = geometry.bytes_per_sector;
*(rt_uint32_t*)&data[0] = 0x08000000;
data[4] = sector_count >> 24;
data[5] = 0xff & (sector_count >> 16);
data[6] = 0xff & (sector_count >> 8);
data[7] = 0xff & (sector_count);
data[8] = 0x02;
data[9] = 0xff & (sector_size >> 16);
data[10] = 0xff & (sector_size >> 8);
data[11] = 0xff & sector_size;
dcd_ep_write(device->dcd, ep_in, (rt_uint8_t*)&data, 12);
return RT_EOK;
}
/**
* This function will handle read_capacity request.
*
* @param device the usb device object.
*
* @return RT_EOK on successful.
*/
static rt_err_t _read_capacity(udevice_t device, uep_t ep_in)
{
rt_uint8_t data[8];
rt_uint32_t sector_count, sector_size;
RT_ASSERT(device != RT_NULL);
sector_count = geometry.sector_count;
sector_size = geometry.bytes_per_sector;
data[0] = sector_count >> 24;
data[1] = 0xff & (sector_count >> 16);
data[2] = 0xff & (sector_count >> 8);
data[3] = 0xff & (sector_count);
data[4] = 0x0;
data[5] = 0xff & (sector_size >> 16);
data[6] = 0xff & (sector_size >> 8);
data[7] = 0xff & sector_size;
dcd_ep_write(device->dcd, ep_in, (rt_uint8_t*)&data, 8);
return RT_EOK;
}
/**
* This function will handle read_10 request.
*
* @param device the usb device object.
* @param cbw the command block wrapper.
*
* @return RT_EOK on successful.
*/
static rt_err_t _read_10(udevice_t device, ustorage_cbw_t cbw, uep_t ep_in)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
_block = cbw->cb[2]<<24 | cbw->cb[3]<<16 | cbw->cb[4]<<8 |
cbw->cb[5]<<0 ;
_count = cbw->cb[7]<<8 | cbw->cb[8]<<0 ;
RT_ASSERT(_count < geometry.sector_count);
rt_device_read(disk, _block, ep_in->buffer, 1);
dcd_ep_write(device->dcd, ep_in, ep_in->buffer, geometry.bytes_per_sector);
_count --;
if (_count)
{
_block ++;
status = STATUS_SEND;
}
else
{
status = STATUS_CSW;
}
return RT_EOK;
}
/**
* This function will handle write_10 request.
*
* @param device the usb device object.
* @param cbw the command block wrapper.
*
* @return RT_EOK on successful.
*/
static rt_err_t _write_10(udevice_t device, ustorage_cbw_t cbw, uep_t ep_out)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(cbw != RT_NULL);
_block = cbw->cb[2]<<24 | cbw->cb[3]<<16 | cbw->cb[4]<<8 |
cbw->cb[5]<<0 ;
_count = cbw->cb[7]<<8 | cbw->cb[8]<<0;
csw.data_reside = cbw->xfer_len;
_size = _count * geometry.bytes_per_sector;
RT_DEBUG_LOG(RT_DEBUG_USB, ("_write_10 count 0x%x 0x%x\n",
_count, geometry.sector_count));
dcd_ep_read(device->dcd, ep_out, ep_out->buffer, geometry.bytes_per_sector);
return RT_EOK;
}
/**
* This function will handle verify_10 request.
*
* @param device the usb device object.
*
* @return RT_EOK on successful.
*/
static rt_err_t _verify_10(udevice_t device)
{
return RT_EOK;
}
/**
* This function will handle mass storage bulk in endpoint request.
*
* @param device the usb device object.
* @param size request size.
*
* @return RT_EOK.
*/
static rt_err_t _ep_in_handler(udevice_t device, uclass_t cls, rt_size_t size)
{
mass_eps_t eps;
RT_ASSERT(device != RT_NULL);
eps = cls->eps;
if(status == STATUS_CSW)
{
dcd_ep_write(device->dcd, eps->ep_in, (rt_uint8_t*)&csw, SIZEOF_CSW);
status = STATUS_CBW;
dcd_ep_read(device->dcd, eps->ep_out, eps->ep_out->buffer, SIZEOF_CBW);
}
if(status == STATUS_SEND)
{
rt_device_read(disk, _block, eps->ep_in->buffer, 1);
dcd_ep_write(device->dcd, eps->ep_in, eps->ep_in->buffer,
geometry.bytes_per_sector);
_count --;
if (_count)
{
_block ++;
status = STATUS_SEND;
}
else
{
status = STATUS_CSW;
}
}
return RT_EOK;
}
#ifdef MASS_CBW_DUMP
static void cbw_dump(struct ustorage_cbw* cbw)
{
RT_ASSERT(cbw != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("signature 0x%x\n", cbw->signature));
RT_DEBUG_LOG(RT_DEBUG_USB, ("tag 0x%x\n", cbw->tag));
RT_DEBUG_LOG(RT_DEBUG_USB, ("xfer_len 0x%x\n", cbw->xfer_len));
RT_DEBUG_LOG(RT_DEBUG_USB, ("dflags 0x%x\n", cbw->dflags));
RT_DEBUG_LOG(RT_DEBUG_USB, ("lun 0x%x\n", cbw->lun));
RT_DEBUG_LOG(RT_DEBUG_USB, ("cb_len 0x%x\n", cbw->cb_len));
RT_DEBUG_LOG(RT_DEBUG_USB, ("cb[0] 0x%x\n", cbw->cb[0]));
}
#endif
/**
* This function will handle mass storage bulk out endpoint request.
*
* @param device the usb device object.
* @param size request size.
*
* @return RT_EOK.
*/
static rt_err_t _ep_out_handler(udevice_t device, uclass_t cls, rt_size_t size)
{
mass_eps_t eps;
RT_ASSERT(device != RT_NULL);
eps = (mass_eps_t)cls->eps;
if(status == STATUS_CBW)
{
struct ustorage_cbw* cbw;
/* dump cbw information */
cbw = (struct ustorage_cbw*)eps->ep_out->buffer;
if(cbw->signature == CBW_SIGNATURE)
{
csw.signature = CSW_SIGNATURE;
csw.tag = cbw->tag;
csw.data_reside = 0;
csw.status = 0;
}
else
return -RT_ERROR;
switch(cbw->cb[0])
{
case SCSI_TEST_UNIT_READY:
dcd_ep_write(device->dcd, eps->ep_in, (rt_uint8_t*)&csw, SIZEOF_CSW);
dcd_ep_read(device->dcd, eps->ep_out, eps->ep_out->buffer, SIZEOF_CBW);
break;
case SCSI_REQUEST_SENSE:
_request_sense(device, eps->ep_in);
status = STATUS_CSW;
break;
case SCSI_INQUIRY_CMD:
_inquiry_cmd(device, eps->ep_in);
status = STATUS_CSW;
break;
case SCSI_MODE_SENSE_6:
_mode_sense_6(device, eps->ep_in);
status = STATUS_CSW;
break;
case SCSI_ALLOW_MEDIUM_REMOVAL:
dcd_ep_write(device->dcd, eps->ep_in, (rt_uint8_t*)&csw, SIZEOF_CSW);
dcd_ep_read(device->dcd, eps->ep_out, eps->ep_out->buffer, SIZEOF_CBW);
break;
case SCSI_READ_CAPACITIES:
_read_capacities(device, eps->ep_in);
status = STATUS_CSW;
break;
case SCSI_READ_CAPACITY:
_read_capacity(device, eps->ep_in);
status = STATUS_CSW;
break;
case SCSI_READ_10:
_read_10(device, cbw, eps->ep_in);
break;
case SCSI_WRITE_10:
_write_10(device, cbw, eps->ep_out);
status = STATUS_RECEIVE;
break;
case SCSI_VERIFY_10:
_verify_10(device);
break;
}
}
else if(status == STATUS_RECEIVE)
{
RT_DEBUG_LOG(RT_DEBUG_USB, ("write size 0x%x block 0x%x oount 0x%x\n",
size, _block, _size));
_size -= size;
csw.data_reside -= size;
rt_device_write(disk, _block, eps->ep_in->buffer, 1);
_block ++;
if(_size == 0)
{
dcd_ep_write(device->dcd, eps->ep_in, (rt_uint8_t*)&csw, SIZEOF_CSW);
dcd_ep_read(device->dcd, eps->ep_out, eps->ep_out->buffer, SIZEOF_CBW);
status = STATUS_CBW;
}
else
{
dcd_ep_read(device->dcd, eps->ep_out, eps->ep_out->buffer,
geometry.bytes_per_sector);
}
}
else
{
rt_kprintf("none cbw status\n");
}
return RT_EOK;
}
/**
* This function will handle mass storage interface request.
*
* @param device the usb device object.
* @param setup the setup request.
*
* @return RT_EOK on successful.
*/
static rt_err_t _interface_handler(udevice_t device, uclass_t cls, ureq_t setup)
{
rt_uint8_t lun = 0;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(setup != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("_interface_handler\n"));
switch(setup->request)
{
case USBREQ_GET_MAX_LUN:
dcd_ep_write(device->dcd, 0, &lun, 1);
break;
case USBREQ_MASS_STORAGE_RESET:
break;
default:
rt_kprintf("unknown interface request\n");
break;
}
return RT_EOK;
}
/**
* This function will run mass storage class, it will be called on handle set configuration request.
*
* @param device the usb device object.
*
* @return RT_EOK on successful.
*/
static rt_err_t _class_run(udevice_t device, uclass_t cls)
{
mass_eps_t eps;
rt_uint8_t *buffer;
RT_ASSERT(device != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("mass storage run\n"));
eps = (mass_eps_t)cls->eps;
disk = rt_device_find(RT_USB_MSTORAGE_DISK_NAME);
if(disk == RT_NULL)
{
rt_kprintf("no disk named %s\n", RT_USB_MSTORAGE_DISK_NAME);
return -RT_ERROR;
}
if(rt_device_control(disk, RT_DEVICE_CTRL_BLK_GETGEOME, (void*)&geometry) != RT_EOK)
return -RT_ERROR;
buffer = (rt_uint8_t*)rt_malloc(geometry.bytes_per_sector);
if(buffer == RT_NULL)
return -RT_ENOMEM;
eps->ep_out->buffer = buffer;
eps->ep_in->buffer = buffer;
dcd_ep_read(device->dcd, eps->ep_out, eps->ep_out->buffer, SIZEOF_CBW);
return RT_EOK;
}
/**
* This function will stop mass storage class, it will be called on handle set configuration request.
*
* @param device the usb device object.
*
* @return RT_EOK on successful.
*/
static rt_err_t _class_stop(udevice_t device, uclass_t cls)
{
mass_eps_t eps;
RT_ASSERT(device != RT_NULL);
RT_DEBUG_LOG(RT_DEBUG_USB, ("mass storage stop\n"));
eps = (mass_eps_t)cls->eps;
rt_free(eps->ep_in->buffer);
eps->ep_out->buffer = RT_NULL;
eps->ep_in->buffer = RT_NULL;
return RT_EOK;
}
static struct uclass_ops ops =
{
_class_run,
_class_stop,
RT_NULL,
};
/**
* This function will create a mass storage class instance.
*
* @param device the usb device object.
*
* @return RT_EOK on successful.
*/
uclass_t rt_usbd_class_mstorage_create(udevice_t device)
{
uintf_t intf;
mass_eps_t eps;
uclass_t mstorage;
ualtsetting_t setting;
umass_desc_t mass_desc;
/* parameter check */
RT_ASSERT(device != RT_NULL);
/* create a mass storage class */
mstorage = rt_usbd_class_create(device, &dev_desc, &ops);
/* create a mass storage endpoints collection */
eps = (mass_eps_t)rt_malloc(sizeof(struct mass_eps));
mstorage->eps = (void*)eps;
/* create an interface */
intf = rt_usbd_interface_create(device, _interface_handler);
/* create an alternate setting */
setting = rt_usbd_altsetting_create(sizeof(struct umass_descriptor));
/* config desc in alternate setting */
rt_usbd_altsetting_config_descriptor(setting, &_mass_desc, 0);
/* create a bulk out and a bulk in endpoint */
mass_desc = (umass_desc_t)setting->desc;
eps->ep_in = rt_usbd_endpoint_create(&mass_desc->ep_in_desc, _ep_in_handler);
eps->ep_out = rt_usbd_endpoint_create(&mass_desc->ep_out_desc, _ep_out_handler);
/* add the bulk out and bulk in endpoint to the alternate setting */
rt_usbd_altsetting_add_endpoint(setting, eps->ep_out);
rt_usbd_altsetting_add_endpoint(setting, eps->ep_in);
/* add the alternate setting to the interface, then set default setting */
rt_usbd_interface_add_altsetting(intf, setting);
rt_usbd_set_altsetting(intf, 0);
/* add the interface to the mass storage class */
rt_usbd_class_add_interface(mstorage, intf);
return mstorage;
}
#endif