rt-thread/bsp/imxrt/libraries/MIMXRT1050/MIMXRT1052/drivers/fsl_flexcan.c

2802 lines
95 KiB
C

/*
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* Copyright 2016-2018 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_flexcan.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexcan"
#endif
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
/*! @name DBG1 - Debug 1 register */
#if !(defined(CAN_DBG1_CFSM_MASK) && defined(CAN_DBG1_CBN_MASK))
#define CAN_DBG1_CFSM_MASK (0x7FU)
#define CAN_DBG1_CFSM_SHIFT (0U)
#define CAN_DBG1_CFSM(x) (((uint32_t)(((uint32_t)(x)) << CAN_DBG1_CFSM_SHIFT)) & CAN_DBG1_CFSM_MASK)
#define CAN_DBG1_CBN_MASK (0x3FF0000U)
#define CAN_DBG1_CBN_SHIFT (16U)
#define CAN_DBG1_CBN(x) (((uint32_t)(((uint32_t)(x)) << CAN_DBG1_CBN_SHIFT)) & CAN_DBG1_CBN_MASK)
#endif
#define OFFSET_DBG1 (0x58U)
#define RXINTERMISSION (CAN_DBG1_CFSM(0x2f))
#define TXINTERMISSION (CAN_DBG1_CFSM(0x14))
#define BUSIDLE (CAN_DBG1_CFSM(0x02))
#define CBN_VALUE3 (CAN_DBG1_CBN(0x03))
#define DELAY_BUSIDLE (200)
#endif
/*! @brief FlexCAN Internal State. */
enum _flexcan_state
{
kFLEXCAN_StateIdle = 0x0, /*!< MB/RxFIFO idle.*/
kFLEXCAN_StateRxData = 0x1, /*!< MB receiving.*/
kFLEXCAN_StateRxRemote = 0x2, /*!< MB receiving remote reply.*/
kFLEXCAN_StateTxData = 0x3, /*!< MB transmitting.*/
kFLEXCAN_StateTxRemote = 0x4, /*!< MB transmitting remote request.*/
kFLEXCAN_StateRxFifo = 0x5, /*!< RxFIFO receiving.*/
};
/*! @brief FlexCAN message buffer CODE for Rx buffers. */
enum _flexcan_mb_code_rx
{
kFLEXCAN_RxMbInactive = 0x0, /*!< MB is not active.*/
kFLEXCAN_RxMbFull = 0x2, /*!< MB is full.*/
kFLEXCAN_RxMbEmpty = 0x4, /*!< MB is active and empty.*/
kFLEXCAN_RxMbOverrun = 0x6, /*!< MB is overwritten into a full buffer.*/
kFLEXCAN_RxMbBusy = 0x8, /*!< FlexCAN is updating the contents of the MB.*/
/*! The CPU must not access the MB.*/
kFLEXCAN_RxMbRanswer = 0xA, /*!< A frame was configured to recognize a Remote Request Frame */
/*! and transmit a Response Frame in return.*/
kFLEXCAN_RxMbNotUsed = 0xF, /*!< Not used.*/
};
/*! @brief FlexCAN message buffer CODE FOR Tx buffers. */
enum _flexcan_mb_code_tx
{
kFLEXCAN_TxMbInactive = 0x8, /*!< MB is not active.*/
kFLEXCAN_TxMbAbort = 0x9, /*!< MB is aborted.*/
kFLEXCAN_TxMbDataOrRemote = 0xC, /*!< MB is a TX Data Frame(when MB RTR = 0) or */
/*!< MB is a TX Remote Request Frame (when MB RTR = 1).*/
kFLEXCAN_TxMbTanswer = 0xE, /*!< MB is a TX Response Request Frame from */
/*! an incoming Remote Request Frame.*/
kFLEXCAN_TxMbNotUsed = 0xF, /*!< Not used.*/
};
/* Typedef for interrupt handler. */
typedef void (*flexcan_isr_t)(CAN_Type *base, flexcan_handle_t *handle);
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Enter FlexCAN Freeze Mode.
*
* This function makes the FlexCAN work under Freeze Mode.
*
* @param base FlexCAN peripheral base address.
*/
static void FLEXCAN_EnterFreezeMode(CAN_Type *base);
/*!
* @brief Exit FlexCAN Freeze Mode.
*
* This function makes the FlexCAN leave Freeze Mode.
*
* @param base FlexCAN peripheral base address.
*/
static void FLEXCAN_ExitFreezeMode(CAN_Type *base);
#if !defined(NDEBUG)
/*!
* @brief Check if Message Buffer is occupied by Rx FIFO.
*
* This function check if Message Buffer is occupied by Rx FIFO.
*
* @param base FlexCAN peripheral base address.
* @param mbIdx The FlexCAN Message Buffer index.
*/
static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx);
#endif
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
/*!
* @brief Get the first valid Message buffer ID of give FlexCAN instance.
*
* This function is a helper function for Errata 5641 workaround.
*
* @param base FlexCAN peripheral base address.
* @return The first valid Message Buffer Number.
*/
static uint32_t FLEXCAN_GetFirstValidMb(CAN_Type *base);
#endif
/*!
* @brief Check if Message Buffer interrupt is enabled.
*
* This function check if Message Buffer interrupt is enabled.
*
* @param base FlexCAN peripheral base address.
* @param mbIdx The FlexCAN Message Buffer index.
*/
static bool FLEXCAN_IsMbIntEnabled(CAN_Type *base, uint8_t mbIdx);
/*!
* @brief Reset the FlexCAN Instance.
*
* Restores the FlexCAN module to reset state, notice that this function
* will set all the registers to reset state so the FlexCAN module can not work
* after calling this API.
*
* @param base FlexCAN peripheral base address.
*/
static void FLEXCAN_Reset(CAN_Type *base);
/*!
* @brief Set Baud Rate of FlexCAN.
*
* This function set the baud rate of FlexCAN.
*
* @param base FlexCAN peripheral base address.
* @param sourceClock_Hz Source Clock in Hz.
* @param baudRate_Bps Baud Rate in Bps.
* @param timingConfig FlexCAN timingConfig.
*/
static void FLEXCAN_SetBaudRate(CAN_Type *base,
uint32_t sourceClock_Hz,
uint32_t baudRate_Bps,
flexcan_timing_config_t timingConfig);
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* @brief Set Baud Rate of FlexCAN FD frame.
*
* This function set the baud rate of FlexCAN FD frame.
*
* @param base FlexCAN peripheral base address.
* @param sourceClock_Hz Source Clock in Hz.
* @param baudRateFD_Bps FD frame Baud Rate in Bps.
* @param timingConfig FlexCAN timingConfig.
*/
static void FLEXCAN_SetFDBaudRate(CAN_Type *base,
uint32_t sourceClock_Hz,
uint32_t baudRateFD_Bps,
flexcan_timing_config_t timingConfig);
/*!
* @brief Get Mailbox offset number by dword.
*
* This function gets the offset number of the specified mailbox.
* Mailbox is not consecutive between memory regions when payload is not 8 bytes
* so need to calculate the specified mailbox address.
* For example, in the first memory region, MB[0].CS address is 0x4002_4080. For 32 bytes
* payload frame, the second mailbox is ((1/12)*512 + 1%12*40)/4 = 10, meaning 10 dword
* after the 0x4002_4080, which is actually the address of mailbox MB[1].CS.
*
* @param base FlexCAN peripheral base address.
* @param mbIdx Mailbox index.
*/
static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx);
#endif
/*******************************************************************************
* Variables
******************************************************************************/
/* Array of FlexCAN peripheral base address. */
static CAN_Type *const s_flexcanBases[] = CAN_BASE_PTRS;
/* Array of FlexCAN IRQ number. */
static const IRQn_Type s_flexcanRxWarningIRQ[] = CAN_Rx_Warning_IRQS;
static const IRQn_Type s_flexcanTxWarningIRQ[] = CAN_Tx_Warning_IRQS;
static const IRQn_Type s_flexcanWakeUpIRQ[] = CAN_Wake_Up_IRQS;
static const IRQn_Type s_flexcanErrorIRQ[] = CAN_Error_IRQS;
static const IRQn_Type s_flexcanBusOffIRQ[] = CAN_Bus_Off_IRQS;
static const IRQn_Type s_flexcanMbIRQ[] = CAN_ORed_Message_buffer_IRQS;
/* Array of FlexCAN handle. */
static flexcan_handle_t *s_flexcanHandle[ARRAY_SIZE(s_flexcanBases)];
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Array of FlexCAN clock name. */
static const clock_ip_name_t s_flexcanClock[] = FLEXCAN_CLOCKS;
#if defined(FLEXCAN_PERIPH_CLOCKS)
/* Array of FlexCAN serial clock name. */
static const clock_ip_name_t s_flexcanPeriphClock[] = FLEXCAN_PERIPH_CLOCKS;
#endif /* FLEXCAN_PERIPH_CLOCKS */
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* FlexCAN ISR for transactional APIs. */
static flexcan_isr_t s_flexcanIsr;
/*******************************************************************************
* Code
******************************************************************************/
/*!
* brief Get the FlexCAN instance from peripheral base address.
*
* param base FlexCAN peripheral base address.
* return FlexCAN instance.
*/
uint32_t FLEXCAN_GetInstance(CAN_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_flexcanBases); instance++)
{
if (s_flexcanBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_flexcanBases));
return instance;
}
static void FLEXCAN_EnterFreezeMode(CAN_Type *base)
{
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595)
uint32_t u32TempMCR = 0U;
uint32_t u32TimeoutCount = 0U;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint32_t u32TempIMASK2 = 0U;
#endif
uint32_t u32TempIMASK1 = 0U;
#endif
/* Set Freeze, Halt bits. */
base->MCR |= CAN_MCR_FRZ_MASK;
base->MCR |= CAN_MCR_HALT_MASK;
/* Wait until the FlexCAN Module enter freeze mode. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_9595)
u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
do
{
u32TempMCR = base->MCR;
u32TimeoutCount--;
} while ((!(u32TempMCR & CAN_MCR_FRZACK_MASK)) && (u32TimeoutCount > 0));
if (!(u32TempMCR & CAN_MCR_FRZACK_MASK))
{
/* Backup IMASK register */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
u32TempIMASK2 = base->IMASK2;
#endif
u32TempIMASK1 = base->IMASK1;
base->MCR |= CAN_MCR_SOFTRST_MASK;
/* Wait until until the Soft Reset (SOFTRST in MCR) bit is cleared */
u32TimeoutCount = (uint32_t)FLEXCAN_WAIT_TIMEOUT;
do
{
u32TempMCR = base->MCR;
u32TimeoutCount--;
} while ((!(u32TempMCR & CAN_MCR_SOFTRST_MASK)) && (u32TimeoutCount > 0));
/* Reconfigure the MCR and all Interrupt Mask Registers (IMASKn) */
base->MCR = u32TempMCR;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
base->IMASK2 = u32TempIMASK2;
#endif
base->IMASK1 = u32TempIMASK1;
}
#else
while (!(base->MCR & CAN_MCR_FRZACK_MASK))
{
}
#endif
}
static void FLEXCAN_ExitFreezeMode(CAN_Type *base)
{
/* Clear Freeze, Halt bits. */
base->MCR &= ~CAN_MCR_HALT_MASK;
base->MCR &= ~CAN_MCR_FRZ_MASK;
/* Wait until the FlexCAN Module exit freeze mode. */
while (base->MCR & CAN_MCR_FRZACK_MASK)
{
}
}
#if !defined(NDEBUG)
static bool FLEXCAN_IsMbOccupied(CAN_Type *base, uint8_t mbIdx)
{
uint8_t lastOccupiedMb;
/* Is Rx FIFO enabled? */
if (base->MCR & CAN_MCR_RFEN_MASK)
{
/* Get RFFN value. */
lastOccupiedMb = ((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
/* Calculate the number of last Message Buffer occupied by Rx FIFO. */
lastOccupiedMb = ((lastOccupiedMb + 1) * 2) + 5;
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
if (mbIdx <= (lastOccupiedMb + 1))
#else
if (mbIdx <= lastOccupiedMb)
#endif
{
return true;
}
else
{
return false;
}
}
else
{
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
if (0 == mbIdx)
{
return true;
}
else
{
return false;
}
#else
return false;
#endif
}
}
#endif
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
static uint32_t FLEXCAN_GetFirstValidMb(CAN_Type *base)
{
uint32_t firstValidMbNum;
if (base->MCR & CAN_MCR_RFEN_MASK)
{
firstValidMbNum = ((base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT);
firstValidMbNum = ((firstValidMbNum + 1) * 2) + 6;
}
else
{
firstValidMbNum = 0;
}
return firstValidMbNum;
}
#endif
static bool FLEXCAN_IsMbIntEnabled(CAN_Type *base, uint8_t mbIdx)
{
/* Assertion. */
assert(mbIdx < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base));
#if (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
if (mbIdx < 32)
{
#endif
if (base->IMASK1 & ((uint32_t)(1 << mbIdx)))
{
return true;
}
else
{
return false;
}
#if (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
}
else
{
if (base->IMASK2 & ((uint32_t)(1 << (mbIdx - 32))))
{
return true;
}
else
{
return false;
}
}
#endif
}
static void FLEXCAN_Reset(CAN_Type *base)
{
/* The module must should be first exit from low power
* mode, and then soft reset can be applied.
*/
assert(!(base->MCR & CAN_MCR_MDIS_MASK));
uint8_t i;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
if (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base))
{
/* De-assert DOZE Enable Bit. */
base->MCR &= ~CAN_MCR_DOZE_MASK;
}
#endif
/* Wait until FlexCAN exit from any Low Power Mode. */
while (base->MCR & CAN_MCR_LPMACK_MASK)
{
}
/* Assert Soft Reset Signal. */
base->MCR |= CAN_MCR_SOFTRST_MASK;
/* Wait until FlexCAN reset completes. */
while (base->MCR & CAN_MCR_SOFTRST_MASK)
{
}
/* Reset MCR register. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER) && FSL_FEATURE_FLEXCAN_HAS_GLITCH_FILTER)
base->MCR |= CAN_MCR_WRNEN_MASK | CAN_MCR_WAKSRC_MASK |
CAN_MCR_MAXMB(FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1);
#else
base->MCR |= CAN_MCR_WRNEN_MASK | CAN_MCR_MAXMB(FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base) - 1);
#endif
/* Reset CTRL1 and CTRL2 register. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/* SMP bit cannot be asserted when CAN FD is enabled */
if (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
{
base->CTRL1 = 0x0;
}
else
{
base->CTRL1 = CAN_CTRL1_SMP_MASK;
}
#else
base->CTRL1 = CAN_CTRL1_SMP_MASK;
#endif
base->CTRL2 = CAN_CTRL2_TASD(0x16) | CAN_CTRL2_RRS_MASK | CAN_CTRL2_EACEN_MASK;
/* Clean all individual Rx Mask of Message Buffers. */
for (i = 0; i < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); i++)
{
base->RXIMR[i] = 0x3FFFFFFF;
}
/* Clean Global Mask of Message Buffers. */
base->RXMGMASK = 0x3FFFFFFF;
/* Clean Global Mask of Message Buffer 14. */
base->RX14MASK = 0x3FFFFFFF;
/* Clean Global Mask of Message Buffer 15. */
base->RX15MASK = 0x3FFFFFFF;
/* Clean Global Mask of Rx FIFO. */
base->RXFGMASK = 0x3FFFFFFF;
/* Clean all Message Buffer CS fields. */
for (i = 0; i < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); i++)
{
base->MB[i].CS = 0x0;
}
}
static void FLEXCAN_SetBaudRate(CAN_Type *base,
uint32_t sourceClock_Hz,
uint32_t baudRate_Bps,
flexcan_timing_config_t timingConfig)
{
/* FlexCAN timing setting formula:
* quantum = 1 + (PSEG1 + 1) + (PSEG2 + 1) + (PROPSEG + 1);
*/
uint32_t quantum = 1 + (timingConfig.phaseSeg1 + 1) + (timingConfig.phaseSeg2 + 1) + (timingConfig.propSeg + 1);
uint32_t priDiv = baudRate_Bps * quantum;
/* Assertion: Desired baud rate is too high. */
assert(baudRate_Bps <= 1000000U);
/* Assertion: Source clock should greater than baud rate * quantum. */
assert(priDiv <= sourceClock_Hz);
if (0 == priDiv)
{
priDiv = 1;
}
priDiv = (sourceClock_Hz / priDiv) - 1;
/* Desired baud rate is too low. */
if (priDiv > 0xFF)
{
priDiv = 0xFF;
}
timingConfig.preDivider = priDiv;
/* Update actual timing characteristic. */
FLEXCAN_SetTimingConfig(base, &timingConfig);
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
static void FLEXCAN_SetFDBaudRate(CAN_Type *base,
uint32_t sourceClock_Hz,
uint32_t baudRateFD_Bps,
flexcan_timing_config_t timingConfig)
{
/* FlexCAN FD timing setting formula:
* quantum = 1 + (FPSEG1 + 1) + (FPSEG2 + 1) + FPROPSEG;
*/
uint32_t quantum = 1 + (timingConfig.fphaseSeg1 + 1) + (timingConfig.fphaseSeg2 + 1) + timingConfig.fpropSeg;
uint32_t priDiv = baudRateFD_Bps * quantum;
/* Assertion: Desired baud rate is too high. */
assert(baudRateFD_Bps <= 8000000U);
/* Assertion: Source clock should greater than baud rate * FLEXCAN_TIME_QUANTA_NUM. */
assert(priDiv <= sourceClock_Hz);
if (0 == priDiv)
{
priDiv = 1;
}
priDiv = (sourceClock_Hz / priDiv) - 1;
/* Desired baud rate is too low. */
if (priDiv > 0xFF)
{
priDiv = 0xFF;
}
timingConfig.fpreDivider = priDiv;
/* Update actual timing characteristic. */
FLEXCAN_SetFDTimingConfig(base, &timingConfig);
}
#endif
/*!
* brief Initializes a FlexCAN instance.
*
* This function initializes the FlexCAN module with user-defined settings.
* This example shows how to set up the flexcan_config_t parameters and how
* to call the FLEXCAN_Init function by passing in these parameters.
* code
* flexcan_config_t flexcanConfig;
* flexcanConfig.clkSrc = kFLEXCAN_ClkSrcOsc;
* flexcanConfig.baudRate = 1000000U;
* flexcanConfig.maxMbNum = 16;
* flexcanConfig.enableLoopBack = false;
* flexcanConfig.enableSelfWakeup = false;
* flexcanConfig.enableIndividMask = false;
* flexcanConfig.enableDoze = false;
* flexcanConfig.timingConfig = timingConfig;
* FLEXCAN_Init(CAN0, &flexcanConfig, 8000000UL);
* endcode
*
* param base FlexCAN peripheral base address.
* param config Pointer to the user-defined configuration structure.
* param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz.
*/
void FLEXCAN_Init(CAN_Type *base, const flexcan_config_t *config, uint32_t sourceClock_Hz)
{
uint32_t mcrTemp;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance;
#endif
/* Assertion. */
assert(config);
assert((config->maxMbNum > 0) && (config->maxMbNum <= FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)));
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
instance = FLEXCAN_GetInstance(base);
/* Enable FlexCAN clock. */
CLOCK_EnableClock(s_flexcanClock[instance]);
#if defined(FLEXCAN_PERIPH_CLOCKS)
/* Enable FlexCAN serial clock. */
CLOCK_EnableClock(s_flexcanPeriphClock[instance]);
#endif /* FLEXCAN_PERIPH_CLOCKS */
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
#if (!defined(FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE)) || !FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE
/* Disable FlexCAN Module. */
FLEXCAN_Enable(base, false);
/* Protocol-Engine clock source selection, This bit must be set
* when FlexCAN Module in Disable Mode.
*/
base->CTRL1 = (kFLEXCAN_ClkSrcOsc == config->clkSrc) ? base->CTRL1 & ~CAN_CTRL1_CLKSRC_MASK :
base->CTRL1 | CAN_CTRL1_CLKSRC_MASK;
#else
#if defined(CAN_CTRL1_CLKSRC_MASK)
if (!FSL_FEATURE_FLEXCAN_INSTANCE_SUPPORT_ENGINE_CLK_SEL_REMOVEn(base))
{
/* Disable FlexCAN Module. */
FLEXCAN_Enable(base, false);
/* Protocol-Engine clock source selection, This bit must be set
* when FlexCAN Module in Disable Mode.
*/
base->CTRL1 = (kFLEXCAN_ClkSrcOsc == config->clkSrc) ? base->CTRL1 & ~CAN_CTRL1_CLKSRC_MASK :
base->CTRL1 | CAN_CTRL1_CLKSRC_MASK;
}
#endif
#endif /* FSL_FEATURE_FLEXCAN_SUPPORT_ENGINE_CLK_SEL_REMOVE */
/* Enable FlexCAN Module for configuration. */
FLEXCAN_Enable(base, true);
/* Reset to known status. */
FLEXCAN_Reset(base);
/* Save current MCR value and enable to enter Freeze mode(enabled by default). */
mcrTemp = base->MCR;
/* Set the maximum number of Message Buffers */
mcrTemp = (mcrTemp & ~CAN_MCR_MAXMB_MASK) | CAN_MCR_MAXMB(config->maxMbNum - 1);
/* Enable Loop Back Mode? */
base->CTRL1 = (config->enableLoopBack) ? base->CTRL1 | CAN_CTRL1_LPB_MASK : base->CTRL1 & ~CAN_CTRL1_LPB_MASK;
/* Enable Timer Sync? */
base->CTRL1 = (config->enableTimerSync) ? base->CTRL1 | CAN_CTRL1_TSYN_MASK : base->CTRL1 & ~CAN_CTRL1_TSYN_MASK;
/* Enable Self Wake Up Mode and configure the wake up source. */
mcrTemp = (config->enableSelfWakeup) ? mcrTemp | CAN_MCR_SLFWAK_MASK : mcrTemp & ~CAN_MCR_SLFWAK_MASK;
mcrTemp = (kFLEXCAN_WakeupSrcFiltered == config->wakeupSrc) ? mcrTemp | CAN_MCR_WAKSRC_MASK :
mcrTemp & ~CAN_MCR_WAKSRC_MASK;
/* Enable Individual Rx Masking? */
mcrTemp = (config->enableIndividMask) ? mcrTemp | CAN_MCR_IRMQ_MASK : mcrTemp & ~CAN_MCR_IRMQ_MASK;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
if (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_DOZE_MODE_SUPPORTn(base))
{
/* Enable Doze Mode? */
mcrTemp = (config->enableDoze) ? mcrTemp | CAN_MCR_DOZE_MASK : mcrTemp & ~CAN_MCR_DOZE_MASK;
}
#endif
/* Save MCR Configuration. */
base->MCR = mcrTemp;
/* Baud Rate Configuration.*/
FLEXCAN_SetBaudRate(base, sourceClock_Hz, config->baudRate, config->timingConfig);
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Initializes a FlexCAN instance.
*
* This function initializes the FlexCAN module with user-defined settings.
* This example shows how to set up the flexcan_config_t parameters and how
* to call the FLEXCAN_FDInit function by passing in these parameters.
* code
* flexcan_config_t flexcanConfig;
* flexcanConfig.clkSrc = kFLEXCAN_ClkSrcOsc;
* flexcanConfig.baudRate = 1000000U;
* flexcanConfig.baudRateFD = 2000000U;
* flexcanConfig.maxMbNum = 16;
* flexcanConfig.enableLoopBack = false;
* flexcanConfig.enableSelfWakeup = false;
* flexcanConfig.enableIndividMask = false;
* flexcanConfig.enableDoze = false;
* flexcanConfig.timingConfig = timingConfig;
* FLEXCAN_FDInit(CAN0, &flexcanConfig, 8000000UL, kFLEXCAN_16BperMB, false);
* endcode
*
* param base FlexCAN peripheral base address.
* param config Pointer to the user-defined configuration structure.
* param sourceClock_Hz FlexCAN Protocol Engine clock source frequency in Hz.
* param dataSize FlexCAN FD frame payload size.
* param brs If bitrate switch is enabled in FD mode.
*/
void FLEXCAN_FDInit(
CAN_Type *base, const flexcan_config_t *config, uint32_t sourceClock_Hz, flexcan_mb_size_t dataSize, bool brs)
{
assert(dataSize <= 3U);
/* Initialization of classical CAN. */
FLEXCAN_Init(base, config, sourceClock_Hz);
/* Extra bitrate setting for CANFD. */
FLEXCAN_SetFDBaudRate(base, sourceClock_Hz, config->baudRateFD, config->timingConfig);
/* Enable FD operation and set bitrate switch. */
if (brs)
{
base->FDCTRL &= CAN_FDCTRL_FDRATE_MASK;
}
else
{
base->FDCTRL &= ~CAN_FDCTRL_FDRATE_MASK;
}
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
if (brs && (!config->enableLoopBack))
{
base->FDCTRL |= CAN_FDCTRL_TDCEN_MASK | CAN_FDCTRL_TDCOFF(0x2U);
}
base->MCR |= CAN_MCR_FDEN_MASK;
base->FDCTRL |= CAN_FDCTRL_MBDSR0(dataSize);
#if defined(CAN_FDCTRL_MBDSR1_MASK)
base->FDCTRL |= CAN_FDCTRL_MBDSR1(dataSize);
#endif
#if defined(CAN_FDCTRL_MBDSR2_MASK)
base->FDCTRL |= CAN_FDCTRL_MBDSR2(dataSize);
#endif
#if defined(CAN_FDCTRL_MBDSR3_MASK)
base->FDCTRL |= CAN_FDCTRL_MBDSR3(dataSize);
#endif
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
#endif
/*!
* brief De-initializes a FlexCAN instance.
*
* This function disables the FlexCAN module clock and sets all register values
* to the reset value.
*
* param base FlexCAN peripheral base address.
*/
void FLEXCAN_Deinit(CAN_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
uint32_t instance;
#endif
/* Reset all Register Contents. */
FLEXCAN_Reset(base);
/* Disable FlexCAN module. */
FLEXCAN_Enable(base, false);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
instance = FLEXCAN_GetInstance(base);
#if defined(FLEXCAN_PERIPH_CLOCKS)
/* Disable FlexCAN serial clock. */
CLOCK_DisableClock(s_flexcanPeriphClock[instance]);
#endif /* FLEXCAN_PERIPH_CLOCKS */
/* Disable FlexCAN clock. */
CLOCK_DisableClock(s_flexcanClock[instance]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Gets the default configuration structure.
*
* This function initializes the FlexCAN configuration structure to default values. The default
* values are as follows.
* flexcanConfig->clkSrc = kFLEXCAN_ClkSrcOsc;
* flexcanConfig->baudRate = 1000000U;
* flexcanConfig->baudRateFD = 2000000U;
* flexcanConfig->maxMbNum = 16;
* flexcanConfig->enableLoopBack = false;
* flexcanConfig->enableSelfWakeup = false;
* flexcanConfig->enableIndividMask = false;
* flexcanConfig->enableDoze = false;
* flexcanConfig.timingConfig = timingConfig;
*
* param config Pointer to the FlexCAN configuration structure.
*/
void FLEXCAN_GetDefaultConfig(flexcan_config_t *config)
{
/* Assertion. */
assert(config);
/* Initializes the configure structure to zero. */
memset(config, 0, sizeof(*config));
/* Initialize FlexCAN Module config struct with default value. */
config->clkSrc = kFLEXCAN_ClkSrcOsc;
config->baudRate = 1000000U;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
config->baudRateFD = 2000000U;
#endif
config->maxMbNum = 16;
config->enableLoopBack = false;
config->enableTimerSync = true;
config->enableSelfWakeup = false;
config->wakeupSrc = kFLEXCAN_WakeupSrcUnfiltered;
config->enableIndividMask = false;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT) && FSL_FEATURE_FLEXCAN_HAS_DOZE_MODE_SUPPORT)
config->enableDoze = false;
#endif
/* Default protocol timing configuration, time quantum is 10. */
config->timingConfig.phaseSeg1 = 3;
config->timingConfig.phaseSeg2 = 2;
config->timingConfig.propSeg = 1;
config->timingConfig.rJumpwidth = 1;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
config->timingConfig.fphaseSeg1 = 3;
config->timingConfig.fphaseSeg2 = 3;
config->timingConfig.fpropSeg = 1;
config->timingConfig.frJumpwidth = 1;
#endif
}
/*!
* brief Sets the FlexCAN protocol timing characteristic.
*
* This function gives user settings to CAN bus timing characteristic.
* The function is for an experienced user. For less experienced users, call
* the FLEXCAN_Init() and fill the baud rate field with a desired value.
* This provides the default timing characteristics to the module.
*
* Note that calling FLEXCAN_SetTimingConfig() overrides the baud rate set
* in FLEXCAN_Init().
*
* param base FlexCAN peripheral base address.
* param config Pointer to the timing configuration structure.
*/
void FLEXCAN_SetTimingConfig(CAN_Type *base, const flexcan_timing_config_t *config)
{
/* Assertion. */
assert(config);
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (FSL_FEATURE_FLEXCAN_INSTANCE_HAS_FLEXIBLE_DATA_RATEn(base))
{
/* Cleaning previous Timing Setting. */
base->CBT &= ~(CAN_CBT_EPRESDIV_MASK | CAN_CBT_ERJW_MASK | CAN_CBT_EPSEG1_MASK | CAN_CBT_EPSEG2_MASK |
CAN_CBT_EPROPSEG_MASK);
/* Updating Timing Setting according to configuration structure. */
base->CBT |=
(CAN_CBT_EPRESDIV(config->preDivider) | CAN_CBT_ERJW(config->rJumpwidth) |
CAN_CBT_EPSEG1(config->phaseSeg1) | CAN_CBT_EPSEG2(config->phaseSeg2) | CAN_CBT_EPROPSEG(config->propSeg));
}
else
{
/* Cleaning previous Timing Setting. */
base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK |
CAN_CTRL1_PROPSEG_MASK);
/* Updating Timing Setting according to configuration structure. */
base->CTRL1 |= (CAN_CTRL1_PRESDIV(config->preDivider) | CAN_CTRL1_RJW(config->rJumpwidth) |
CAN_CTRL1_PSEG1(config->phaseSeg1) | CAN_CTRL1_PSEG2(config->phaseSeg2) |
CAN_CTRL1_PROPSEG(config->propSeg));
}
#else
/* Cleaning previous Timing Setting. */
base->CTRL1 &= ~(CAN_CTRL1_PRESDIV_MASK | CAN_CTRL1_RJW_MASK | CAN_CTRL1_PSEG1_MASK | CAN_CTRL1_PSEG2_MASK |
CAN_CTRL1_PROPSEG_MASK);
/* Updating Timing Setting according to configuration structure. */
base->CTRL1 |=
(CAN_CTRL1_PRESDIV(config->preDivider) | CAN_CTRL1_RJW(config->rJumpwidth) |
CAN_CTRL1_PSEG1(config->phaseSeg1) | CAN_CTRL1_PSEG2(config->phaseSeg2) | CAN_CTRL1_PROPSEG(config->propSeg));
#endif
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Sets the FlexCAN FD protocol timing characteristic.
*
* This function gives user settings to CAN bus timing characteristic.
* The function is for an experienced user. For less experienced users, call
* the FLEXCAN_Init() and fill the baud rate field with a desired value.
* This provides the default timing characteristics to the module.
*
* Note that calling FLEXCAN_SetFDTimingConfig() overrides the baud rate set
* in FLEXCAN_Init().
*
* param base FlexCAN peripheral base address.
* param config Pointer to the timing configuration structure.
*/
void FLEXCAN_SetFDTimingConfig(CAN_Type *base, const flexcan_timing_config_t *config)
{
/* Assertion. */
assert(config);
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
base->CBT |= CAN_CBT_BTF(1);
/* Cleaning previous Timing Setting. */
base->FDCBT &= ~(CAN_FDCBT_FPRESDIV_MASK | CAN_FDCBT_FRJW_MASK | CAN_FDCBT_FPSEG1_MASK | CAN_FDCBT_FPSEG2_MASK |
CAN_FDCBT_FPROPSEG_MASK);
/* Updating Timing Setting according to configuration structure. */
base->FDCBT |= (CAN_FDCBT_FPRESDIV(config->fpreDivider) | CAN_FDCBT_FRJW(config->frJumpwidth) |
CAN_FDCBT_FPSEG1(config->fphaseSeg1) | CAN_FDCBT_FPSEG2(config->fphaseSeg2) |
CAN_FDCBT_FPROPSEG(config->fpropSeg));
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
#endif
/*!
* brief Sets the FlexCAN receive message buffer global mask.
*
* This function sets the global mask for the FlexCAN message buffer in a matching process.
* The configuration is only effective when the Rx individual mask is disabled in the FLEXCAN_Init().
*
* param base FlexCAN peripheral base address.
* param mask Rx Message Buffer Global Mask value.
*/
void FLEXCAN_SetRxMbGlobalMask(CAN_Type *base, uint32_t mask)
{
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
/* Setting Rx Message Buffer Global Mask value. */
base->RXMGMASK = mask;
base->RX14MASK = mask;
base->RX15MASK = mask;
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
/*!
* brief Sets the FlexCAN receive FIFO global mask.
*
* This function sets the global mask for FlexCAN FIFO in a matching process.
*
* param base FlexCAN peripheral base address.
* param mask Rx Fifo Global Mask value.
*/
void FLEXCAN_SetRxFifoGlobalMask(CAN_Type *base, uint32_t mask)
{
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
/* Setting Rx FIFO Global Mask value. */
base->RXFGMASK = mask;
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
/*!
* brief Sets the FlexCAN receive individual mask.
*
* This function sets the individual mask for the FlexCAN matching process.
* The configuration is only effective when the Rx individual mask is enabled in the FLEXCAN_Init().
* If the Rx FIFO is disabled, the individual mask is applied to the corresponding Message Buffer.
* If the Rx FIFO is enabled, the individual mask for Rx FIFO occupied Message Buffer is applied to
* the Rx Filter with the same index. Note that only the first 32
* individual masks can be used as the Rx FIFO filter mask.
*
* param base FlexCAN peripheral base address.
* param maskIdx The Index of individual Mask.
* param mask Rx Individual Mask value.
*/
void FLEXCAN_SetRxIndividualMask(CAN_Type *base, uint8_t maskIdx, uint32_t mask)
{
assert(maskIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
/* Setting Rx Individual Mask value. */
base->RXIMR[maskIdx] = mask;
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
/*!
* brief Configures a FlexCAN transmit message buffer.
*
* This function aborts the previous transmission, cleans the Message Buffer, and
* configures it as a Transmit Message Buffer.
*
* param base FlexCAN peripheral base address.
* param mbIdx The Message Buffer index.
* param enable Enable/disable Tx Message Buffer.
* - true: Enable Tx Message Buffer.
* - false: Disable Tx Message Buffer.
*/
void FLEXCAN_SetTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
/* Inactivate Message Buffer. */
if (enable)
{
base->MB[mbIdx].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
}
else
{
base->MB[mbIdx].CS = 0;
}
/* Clean Message Buffer content. */
base->MB[mbIdx].ID = 0x0;
base->MB[mbIdx].WORD0 = 0x0;
base->MB[mbIdx].WORD1 = 0x0;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
static uint32_t FLEXCAN_GetFDMailboxOffset(CAN_Type *base, uint8_t mbIdx)
{
uint32_t dataSize;
uint32_t offset = 0;
dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
switch (dataSize)
{
case kFLEXCAN_8BperMB:
offset = (mbIdx / 32) * 512 + mbIdx % 32 * 16;
break;
case kFLEXCAN_16BperMB:
offset = (mbIdx / 21) * 512 + mbIdx % 21 * 24;
break;
case kFLEXCAN_32BperMB:
offset = (mbIdx / 12) * 512 + mbIdx % 12 * 40;
break;
case kFLEXCAN_64BperMB:
offset = (mbIdx / 7) * 512 + mbIdx % 7 * 72;
break;
default:
break;
}
/* To get the dword aligned offset, need to divide by 4. */
offset = offset / 4;
return offset;
}
#endif
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Configures a FlexCAN transmit message buffer.
*
* This function aborts the previous transmission, cleans the Message Buffer, and
* configures it as a Transmit Message Buffer.
*
* param base FlexCAN peripheral base address.
* param mbIdx The Message Buffer index.
* param enable Enable/disable Tx Message Buffer.
* - true: Enable Tx Message Buffer.
* - false: Disable Tx Message Buffer.
*/
void FLEXCAN_SetFDTxMbConfig(CAN_Type *base, uint8_t mbIdx, bool enable)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
uint8_t cnt = 0;
uint8_t payload_dword = 1;
uint32_t dataSize;
dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
volatile uint32_t *mbAddr = &(base->MB[0].CS);
uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base));
#endif
/* Inactivate Message Buffer. */
if (enable)
{
/* Inactivate by writing CS. */
mbAddr[offset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
}
else
{
mbAddr[offset] = 0x0;
}
/* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
Bytes payload. */
for (cnt = 0; cnt < dataSize + 1; cnt++)
{
payload_dword *= 2;
}
/* Clean ID. */
mbAddr[offset + 1] = 0x0;
/* Clean Message Buffer content, DWORD by DWORD. */
for (cnt = 0; cnt < payload_dword; cnt++)
{
mbAddr[offset + 2 + cnt] = 0x0;
}
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
#endif
}
#endif
/*!
* brief Configures a FlexCAN Receive Message Buffer.
*
* This function cleans a FlexCAN build-in Message Buffer and configures it
* as a Receive Message Buffer.
*
* param base FlexCAN peripheral base address.
* param mbIdx The Message Buffer index.
* param config Pointer to the FlexCAN Message Buffer configuration structure.
* param enable Enable/disable Rx Message Buffer.
* - true: Enable Rx Message Buffer.
* - false: Disable Rx Message Buffer.
*/
void FLEXCAN_SetRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *config, bool enable)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(((config) || (false == enable)));
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
uint32_t cs_temp = 0;
/* Inactivate Message Buffer. */
base->MB[mbIdx].CS = 0;
/* Clean Message Buffer content. */
base->MB[mbIdx].ID = 0x0;
base->MB[mbIdx].WORD0 = 0x0;
base->MB[mbIdx].WORD1 = 0x0;
if (enable)
{
/* Setup Message Buffer ID. */
base->MB[mbIdx].ID = config->id;
/* Setup Message Buffer format. */
if (kFLEXCAN_FrameFormatExtend == config->format)
{
cs_temp |= CAN_CS_IDE_MASK;
}
/* Setup Message Buffer type. */
if (kFLEXCAN_FrameTypeRemote == config->type)
{
cs_temp |= CAN_CS_RTR_MASK;
}
/* Activate Rx Message Buffer. */
cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty);
base->MB[mbIdx].CS = cs_temp;
}
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Configures a FlexCAN Receive Message Buffer.
*
* This function cleans a FlexCAN build-in Message Buffer and configures it
* as a Receive Message Buffer.
*
* param base FlexCAN peripheral base address.
* param mbIdx The Message Buffer index.
* param config Pointer to the FlexCAN Message Buffer configuration structure.
* param enable Enable/disable Rx Message Buffer.
* - true: Enable Rx Message Buffer.
* - false: Disable Rx Message Buffer.
*/
void FLEXCAN_SetFDRxMbConfig(CAN_Type *base, uint8_t mbIdx, const flexcan_rx_mb_config_t *config, bool enable)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(((config) || (false == enable)));
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
uint32_t cs_temp = 0;
uint8_t cnt = 0;
volatile uint32_t *mbAddr = &(base->MB[0].CS);
uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
/* Inactivate all mailboxes first, clean ID and Message Buffer content. */
for (cnt = 0; cnt < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); cnt++)
{
base->MB[cnt].CS = 0;
base->MB[cnt].ID = 0;
base->MB[cnt].WORD0 = 0;
base->MB[cnt].WORD1 = 0;
}
if (enable)
{
/* Setup Message Buffer ID. */
mbAddr[offset + 1] = config->id;
/* Setup Message Buffer format. */
if (kFLEXCAN_FrameFormatExtend == config->format)
{
cs_temp |= CAN_CS_IDE_MASK;
}
/* Activate Rx Message Buffer. */
cs_temp |= CAN_CS_CODE(kFLEXCAN_RxMbEmpty);
mbAddr[offset] = cs_temp;
}
}
#endif
/*!
* brief Configures the FlexCAN Rx FIFO.
*
* This function configures the Rx FIFO with given Rx FIFO configuration.
*
* param base FlexCAN peripheral base address.
* param config Pointer to the FlexCAN Rx FIFO configuration structure.
* param enable Enable/disable Rx FIFO.
* - true: Enable Rx FIFO.
* - false: Disable Rx FIFO.
*/
void FLEXCAN_SetRxFifoConfig(CAN_Type *base, const flexcan_rx_fifo_config_t *config, bool enable)
{
/* Assertion. */
assert((config) || (false == enable));
volatile uint32_t *idFilterRegion = (volatile uint32_t *)(&base->MB[6].CS);
uint8_t setup_mb, i, rffn = 0;
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
if (enable)
{
assert(config->idFilterNum <= 128);
/* Get the setup_mb value. */
setup_mb = (base->MCR & CAN_MCR_MAXMB_MASK) >> CAN_MCR_MAXMB_SHIFT;
setup_mb = (setup_mb < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base)) ?
setup_mb :
FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base);
/* Determine RFFN value. */
for (i = 0; i <= 0xF; i++)
{
if ((8 * (i + 1)) >= config->idFilterNum)
{
rffn = i;
assert(((setup_mb - 8) - (2 * rffn)) > 0);
base->CTRL2 = (base->CTRL2 & ~CAN_CTRL2_RFFN_MASK) | CAN_CTRL2_RFFN(rffn);
break;
}
}
}
else
{
rffn = (base->CTRL2 & CAN_CTRL2_RFFN_MASK) >> CAN_CTRL2_RFFN_SHIFT;
}
/* Clean ID filter table occuyied Message Buffer Region. */
rffn = (rffn + 1) * 8;
for (i = 0; i < rffn; i++)
{
idFilterRegion[i] = 0x0;
}
if (enable)
{
/* Disable unused Rx FIFO Filter. */
for (i = config->idFilterNum; i < rffn; i++)
{
idFilterRegion[i] = 0xFFFFFFFFU;
}
/* Copy ID filter table to Message Buffer Region. */
for (i = 0; i < config->idFilterNum; i++)
{
idFilterRegion[i] = config->idFilterTable[i];
}
/* Setup ID Fitlter Type. */
switch (config->idFilterType)
{
case kFLEXCAN_RxFifoFilterTypeA:
base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x0);
break;
case kFLEXCAN_RxFifoFilterTypeB:
base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x1);
break;
case kFLEXCAN_RxFifoFilterTypeC:
base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x2);
break;
case kFLEXCAN_RxFifoFilterTypeD:
/* All frames rejected. */
base->MCR = (base->MCR & ~CAN_MCR_IDAM_MASK) | CAN_MCR_IDAM(0x3);
break;
default:
break;
}
/* Setting Message Reception Priority. */
base->CTRL2 = (config->priority == kFLEXCAN_RxFifoPrioHigh) ? base->CTRL2 & ~CAN_CTRL2_MRP_MASK :
base->CTRL2 | CAN_CTRL2_MRP_MASK;
/* Enable Rx Message FIFO. */
base->MCR |= CAN_MCR_RFEN_MASK;
}
else
{
/* Disable Rx Message FIFO. */
base->MCR &= ~CAN_MCR_RFEN_MASK;
/* Clean MB0 ~ MB5. */
FLEXCAN_SetRxMbConfig(base, 0, NULL, false);
FLEXCAN_SetRxMbConfig(base, 1, NULL, false);
FLEXCAN_SetRxMbConfig(base, 2, NULL, false);
FLEXCAN_SetRxMbConfig(base, 3, NULL, false);
FLEXCAN_SetRxMbConfig(base, 4, NULL, false);
FLEXCAN_SetRxMbConfig(base, 5, NULL, false);
}
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA) && FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA)
/*!
* brief Enables or disables the FlexCAN Rx FIFO DMA request.
*
* This function enables or disables the DMA feature of FlexCAN build-in Rx FIFO.
*
* param base FlexCAN peripheral base address.
* param enable true to enable, false to disable.
*/
void FLEXCAN_EnableRxFifoDMA(CAN_Type *base, bool enable)
{
if (enable)
{
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
/* Enable FlexCAN DMA. */
base->MCR |= CAN_MCR_DMA_MASK;
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
else
{
/* Enter Freeze Mode. */
FLEXCAN_EnterFreezeMode(base);
/* Disable FlexCAN DMA. */
base->MCR &= ~CAN_MCR_DMA_MASK;
/* Exit Freeze Mode. */
FLEXCAN_ExitFreezeMode(base);
}
}
#endif /* FSL_FEATURE_FLEXCAN_HAS_RX_FIFO_DMA */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
/*!
* FlexCAN: A frame with wrong ID or payload is transmitted into
* the CAN bus when the Message Buffer under transmission is
* either aborted or deactivated while the CAN bus is in the Bus Idle state
*
* This function to do workaround for ERR006032
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN Message Buffer index.
*/
static void FLEXCAN_ERRATA_6032(CAN_Type *base, uint8_t mbIdx)
{
uint32_t dbg_temp = 0U;
volatile const uint32_t *dbg1Addr = &(base->MCR) + OFFSET_DBG1 / 4;
/*after backup all interruption, disable ALL interruption*/
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
uint32_t u32TempIMASK2 = base->IMASK2;
base->IMASK2 = 0;
#endif
uint32_t u32TempIMASK1 = base->IMASK1;
base->IMASK1 = 0;
dbg_temp = (uint32_t)(*dbg1Addr);
switch (dbg_temp & CAN_DBG1_CBN_MASK)
{
case RXINTERMISSION:
if ((dbg_temp & CAN_DBG1_CBN_MASK) == CBN_VALUE3)
{
/*wait until CFSM is different from RXINTERMISSION */
while ((((uint32_t)(*dbg1Addr)) & CAN_DBG1_CBN_MASK) == RXINTERMISSION)
{
__NOP();
}
}
break;
case TXINTERMISSION:
if ((dbg_temp & CAN_DBG1_CBN_MASK) == CBN_VALUE3)
{
/*wait until CFSM is different from TXINTERMISSION*/
while ((((uint32_t)(*dbg1Addr)) & CAN_DBG1_CBN_MASK) == TXINTERMISSION)
{
__NOP();
}
}
break;
default:
break;
}
/*Anyway, BUSIDLE need to delay*/
if ((((uint32_t)(*dbg1Addr)) & CAN_DBG1_CBN_MASK) == BUSIDLE)
{
uint32_t n = DELAY_BUSIDLE;
while (n-- > 0)
{
__NOP();
}
}
/*Write 0x0 into Code field of CS word.*/
base->MB[mbIdx].CS &= ~CAN_CS_CODE_MASK;
/*restore interruption*/
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
base->IMASK2 = u32TempIMASK2;
#endif
base->IMASK1 = u32TempIMASK1;
}
#endif
/*!
* brief Writes a FlexCAN Message to the Transmit Message Buffer.
*
* This function writes a CAN Message to the specified Transmit Message Buffer
* and changes the Message Buffer state to start CAN Message transmit. After
* that the function returns immediately.
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN Message Buffer index.
* param txFrame Pointer to CAN message frame to be sent.
* retval kStatus_Success - Write Tx Message Buffer Successfully.
* retval kStatus_Fail - Tx Message Buffer is currently in use.
*/
status_t FLEXCAN_WriteTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_frame_t *txFrame)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(txFrame);
assert(txFrame->length <= 8);
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
uint32_t cs_temp = 0;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
FLEXCAN_ERRATA_6032(base, mbIdx);
#endif
/* Check if Message Buffer is available. */
if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (base->MB[mbIdx].CS & CAN_CS_CODE_MASK))
{
/* Inactive Tx Message Buffer. */
base->MB[mbIdx].CS = (base->MB[mbIdx].CS & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive);
/* Fill Message ID field. */
base->MB[mbIdx].ID = txFrame->id;
/* Fill Message Format field. */
if (kFLEXCAN_FrameFormatExtend == txFrame->format)
{
cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK;
}
/* Fill Message Type field. */
if (kFLEXCAN_FrameTypeRemote == txFrame->type)
{
cs_temp |= CAN_CS_RTR_MASK;
}
cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(txFrame->length);
/* Load Message Payload. */
base->MB[mbIdx].WORD0 = txFrame->dataWord0;
base->MB[mbIdx].WORD1 = txFrame->dataWord1;
/* Activate Tx Message Buffer. */
base->MB[mbIdx].CS = cs_temp;
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
base->MB[FLEXCAN_GetFirstValidMb(base)].CS = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
#endif
return kStatus_Success;
}
else
{
/* Tx Message Buffer is activated, return immediately. */
return kStatus_Fail;
}
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Writes a FlexCAN FD Message to the Transmit Message Buffer.
*
* This function writes a CAN FD Message to the specified Transmit Message Buffer
* and changes the Message Buffer state to start CAN FD Message transmit. After
* that the function returns immediately.
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN FD Message Buffer index.
* param txFrame Pointer to CAN FD message frame to be sent.
* retval kStatus_Success - Write Tx Message Buffer Successfully.
* retval kStatus_Fail - Tx Message Buffer is currently in use.
*/
status_t FLEXCAN_WriteFDTxMb(CAN_Type *base, uint8_t mbIdx, const flexcan_fd_frame_t *txFrame)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(txFrame);
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
uint32_t cs_temp = 0;
uint8_t cnt = 0;
uint32_t can_cs = 0;
uint8_t payload_dword = 1;
uint32_t dataSize;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_6032)
FLEXCAN_ERRATA_6032(base, mbIdx);
#endif
dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
uint32_t availoffset = FLEXCAN_GetFDMailboxOffset(base, FLEXCAN_GetFirstValidMb(base));
#endif
volatile uint32_t *mbAddr = &(base->MB[0].CS);
uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
can_cs = mbAddr[0];
/* Check if Message Buffer is available. */
if (CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) != (can_cs & CAN_CS_CODE_MASK))
{
/* Inactive Tx Message Buffer and Fill Message ID field. */
mbAddr[offset] = (can_cs & ~CAN_CS_CODE_MASK) | CAN_CS_CODE(kFLEXCAN_TxMbInactive);
mbAddr[offset + 1] = txFrame->id;
/* Fill Message Format field. */
if (kFLEXCAN_FrameFormatExtend == txFrame->format)
{
cs_temp |= CAN_CS_SRR_MASK | CAN_CS_IDE_MASK;
}
cs_temp |= CAN_CS_CODE(kFLEXCAN_TxMbDataOrRemote) | CAN_CS_DLC(txFrame->length) | CAN_CS_EDL(1) |
CAN_CS_BRS(txFrame->brs);
/* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
Bytes payload. */
for (cnt = 0; cnt < dataSize + 1; cnt++)
{
payload_dword *= 2;
}
/* Load Message Payload and Activate Tx Message Buffer. */
for (cnt = 0; cnt < payload_dword; cnt++)
{
mbAddr[offset + 2 + cnt] = txFrame->dataWord[cnt];
}
mbAddr[offset] = cs_temp;
#if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \
(defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829))
mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
mbAddr[availoffset] = CAN_CS_CODE(kFLEXCAN_TxMbInactive);
#endif
return kStatus_Success;
}
else
{
/* Tx Message Buffer is activated, return immediately. */
return kStatus_Fail;
}
}
#endif
/*!
* brief Reads a FlexCAN Message from Receive Message Buffer.
*
* This function reads a CAN message from a specified Receive Message Buffer.
* The function fills a receive CAN message frame structure with
* just received data and activates the Message Buffer again.
* The function returns immediately.
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN Message Buffer index.
* param rxFrame Pointer to CAN message frame structure for reception.
* retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
* retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
* retval kStatus_Fail - Rx Message Buffer is empty.
*/
status_t FLEXCAN_ReadRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *rxFrame)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(rxFrame);
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
uint32_t cs_temp;
uint8_t rx_code;
/* Read CS field of Rx Message Buffer to lock Message Buffer. */
cs_temp = base->MB[mbIdx].CS;
/* Get Rx Message Buffer Code field. */
rx_code = (cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT;
/* Check to see if Rx Message Buffer is full. */
if ((kFLEXCAN_RxMbFull == rx_code) || (kFLEXCAN_RxMbOverrun == rx_code))
{
/* Store Message ID. */
rxFrame->id = base->MB[mbIdx].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
/* Get the message ID and format. */
rxFrame->format = (cs_temp & CAN_CS_IDE_MASK) ? kFLEXCAN_FrameFormatExtend : kFLEXCAN_FrameFormatStandard;
/* Get the message type. */
rxFrame->type = (cs_temp & CAN_CS_RTR_MASK) ? kFLEXCAN_FrameTypeRemote : kFLEXCAN_FrameTypeData;
/* Get the message length. */
rxFrame->length = (cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT;
/* Get the time stamp. */
rxFrame->timestamp = (cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT;
/* Store Message Payload. */
rxFrame->dataWord0 = base->MB[mbIdx].WORD0;
rxFrame->dataWord1 = base->MB[mbIdx].WORD1;
/* Read free-running timer to unlock Rx Message Buffer. */
(void)base->TIMER;
if (kFLEXCAN_RxMbFull == rx_code)
{
return kStatus_Success;
}
else
{
return kStatus_FLEXCAN_RxOverflow;
}
}
else
{
/* Read free-running timer to unlock Rx Message Buffer. */
(void)base->TIMER;
return kStatus_Fail;
}
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Reads a FlexCAN FD Message from Receive Message Buffer.
*
* This function reads a CAN FD message from a specified Receive Message Buffer.
* The function fills a receive CAN FD message frame structure with
* just received data and activates the Message Buffer again.
* The function returns immediately.
*
* param base FlexCAN peripheral base address.
* param mbIdx The FlexCAN FD Message Buffer index.
* param rxFrame Pointer to CAN FD message frame structure for reception.
* retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
* retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
* retval kStatus_Fail - Rx Message Buffer is empty.
*/
status_t FLEXCAN_ReadFDRxMb(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *rxFrame)
{
/* Assertion. */
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(rxFrame);
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
uint32_t cs_temp;
uint8_t rx_code;
uint8_t cnt = 0;
uint32_t can_id = 0;
uint32_t dataSize;
dataSize = (base->FDCTRL & CAN_FDCTRL_MBDSR0_MASK) >> CAN_FDCTRL_MBDSR0_SHIFT;
uint8_t payload_dword = 1;
volatile uint32_t *mbAddr = &(base->MB[0].CS);
uint32_t offset = FLEXCAN_GetFDMailboxOffset(base, mbIdx);
/* Read CS field of Rx Message Buffer to lock Message Buffer. */
cs_temp = mbAddr[offset];
can_id = mbAddr[offset + 1];
/* Get Rx Message Buffer Code field. */
rx_code = (cs_temp & CAN_CS_CODE_MASK) >> CAN_CS_CODE_SHIFT;
/* Check to see if Rx Message Buffer is full. */
if ((kFLEXCAN_RxMbFull == rx_code) || (kFLEXCAN_RxMbOverrun == rx_code))
{
/* Store Message ID. */
rxFrame->id = can_id & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
/* Get the message ID and format. */
rxFrame->format = (cs_temp & CAN_CS_IDE_MASK) ? kFLEXCAN_FrameFormatExtend : kFLEXCAN_FrameFormatStandard;
/* Get the message type. */
rxFrame->type = (cs_temp & CAN_CS_RTR_MASK) ? kFLEXCAN_FrameTypeRemote : kFLEXCAN_FrameTypeData;
/* Get the message length. */
rxFrame->length = (cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT;
/* Get the time stamp. */
rxFrame->timestamp = (cs_temp & CAN_CS_TIME_STAMP_MASK) >> CAN_CS_TIME_STAMP_SHIFT;
/* Calculate the DWORD number, dataSize 0/1/2/3 corresponds to 8/16/32/64
Bytes payload. */
for (cnt = 0; cnt < dataSize + 1; cnt++)
{
payload_dword *= 2;
}
/* Store Message Payload. */
for (cnt = 0; cnt < payload_dword; cnt++)
{
rxFrame->dataWord[cnt] = mbAddr[offset + 2 + cnt];
}
/* Read free-running timer to unlock Rx Message Buffer. */
(void)base->TIMER;
if (kFLEXCAN_RxMbFull == rx_code)
{
return kStatus_Success;
}
else
{
return kStatus_FLEXCAN_RxOverflow;
}
}
else
{
/* Read free-running timer to unlock Rx Message Buffer. */
(void)base->TIMER;
return kStatus_Fail;
}
}
#endif
/*!
* brief Reads a FlexCAN Message from Rx FIFO.
*
* This function reads a CAN message from the FlexCAN build-in Rx FIFO.
*
* param base FlexCAN peripheral base address.
* param rxFrame Pointer to CAN message frame structure for reception.
* retval kStatus_Success - Read Message from Rx FIFO successfully.
* retval kStatus_Fail - Rx FIFO is not enabled.
*/
status_t FLEXCAN_ReadRxFifo(CAN_Type *base, flexcan_frame_t *rxFrame)
{
/* Assertion. */
assert(rxFrame);
uint32_t cs_temp;
/* Check if Rx FIFO is Enabled. */
if (base->MCR & CAN_MCR_RFEN_MASK)
{
/* Read CS field of Rx Message Buffer to lock Message Buffer. */
cs_temp = base->MB[0].CS;
/* Read data from Rx FIFO output port. */
/* Store Message ID. */
rxFrame->id = base->MB[0].ID & (CAN_ID_EXT_MASK | CAN_ID_STD_MASK);
/* Get the message ID and format. */
rxFrame->format = (cs_temp & CAN_CS_IDE_MASK) ? kFLEXCAN_FrameFormatExtend : kFLEXCAN_FrameFormatStandard;
/* Get the message type. */
rxFrame->type = (cs_temp & CAN_CS_RTR_MASK) ? kFLEXCAN_FrameTypeRemote : kFLEXCAN_FrameTypeData;
/* Get the message length. */
rxFrame->length = (cs_temp & CAN_CS_DLC_MASK) >> CAN_CS_DLC_SHIFT;
/* Store Message Payload. */
rxFrame->dataWord0 = base->MB[0].WORD0;
rxFrame->dataWord1 = base->MB[0].WORD1;
/* Store ID Filter Hit Index. */
rxFrame->idhit = (uint8_t)(base->RXFIR & CAN_RXFIR_IDHIT_MASK);
/* Read free-running timer to unlock Rx Message Buffer. */
(void)base->TIMER;
return kStatus_Success;
}
else
{
return kStatus_Fail;
}
}
/*!
* brief Performs a polling send transaction on the CAN bus.
*
* Note that a transfer handle does not need to be created before calling this API.
*
* param base FlexCAN peripheral base pointer.
* param mbIdx The FlexCAN Message Buffer index.
* param txFrame Pointer to CAN message frame to be sent.
* retval kStatus_Success - Write Tx Message Buffer Successfully.
* retval kStatus_Fail - Tx Message Buffer is currently in use.
*/
status_t FLEXCAN_TransferSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *txFrame)
{
/* Write Tx Message Buffer to initiate a data sending. */
if (kStatus_Success == FLEXCAN_WriteTxMb(base, mbIdx, txFrame))
{
/* Wait until CAN Message send out. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
while (!FLEXCAN_GetMbStatusFlags(base, (uint64_t)1 << mbIdx))
#else
while (!FLEXCAN_GetMbStatusFlags(base, 1 << mbIdx))
#endif
{
}
/* Clean Tx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_ClearMbStatusFlags(base, (uint64_t)1 << mbIdx);
#else
FLEXCAN_ClearMbStatusFlags(base, 1 << mbIdx);
#endif
return kStatus_Success;
}
else
{
return kStatus_Fail;
}
}
/*!
* brief Performs a polling receive transaction on the CAN bus.
*
* Note that a transfer handle does not need to be created before calling this API.
*
* param base FlexCAN peripheral base pointer.
* param mbIdx The FlexCAN Message Buffer index.
* param rxFrame Pointer to CAN message frame structure for reception.
* retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
* retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
* retval kStatus_Fail - Rx Message Buffer is empty.
*/
status_t FLEXCAN_TransferReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_frame_t *rxFrame)
{
/* Wait until Rx Message Buffer non-empty. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
while (!FLEXCAN_GetMbStatusFlags(base, (uint64_t)1 << mbIdx))
#else
while (!FLEXCAN_GetMbStatusFlags(base, 1 << mbIdx))
#endif
{
}
/* Clean Rx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_ClearMbStatusFlags(base, (uint64_t)1 << mbIdx);
#else
FLEXCAN_ClearMbStatusFlags(base, 1 << mbIdx);
#endif
/* Read Received CAN Message. */
return FLEXCAN_ReadRxMb(base, mbIdx, rxFrame);
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Performs a polling send transaction on the CAN bus.
*
* Note that a transfer handle does not need to be created before calling this API.
*
* param base FlexCAN peripheral base pointer.
* param mbIdx The FlexCAN FD Message Buffer index.
* param txFrame Pointer to CAN FD message frame to be sent.
* retval kStatus_Success - Write Tx Message Buffer Successfully.
* retval kStatus_Fail - Tx Message Buffer is currently in use.
*/
status_t FLEXCAN_TransferFDSendBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *txFrame)
{
/* Write Tx Message Buffer to initiate a data sending. */
if (kStatus_Success == FLEXCAN_WriteFDTxMb(base, mbIdx, txFrame))
{
/* Wait until CAN Message send out. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
while (!FLEXCAN_GetMbStatusFlags(base, (uint64_t)1 << mbIdx))
#else
while (!FLEXCAN_GetMbStatusFlags(base, 1 << mbIdx))
#endif
{
}
/* Clean Tx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_ClearMbStatusFlags(base, (uint64_t)1 << mbIdx);
#else
FLEXCAN_ClearMbStatusFlags(base, 1 << mbIdx);
#endif
return kStatus_Success;
}
else
{
return kStatus_Fail;
}
}
/*!
* brief Performs a polling receive transaction on the CAN bus.
*
* Note that a transfer handle does not need to be created before calling this API.
*
* param base FlexCAN peripheral base pointer.
* param mbIdx The FlexCAN FD Message Buffer index.
* param rxFrame Pointer to CAN FD message frame structure for reception.
* retval kStatus_Success - Rx Message Buffer is full and has been read successfully.
* retval kStatus_FLEXCAN_RxOverflow - Rx Message Buffer is already overflowed and has been read successfully.
* retval kStatus_Fail - Rx Message Buffer is empty.
*/
status_t FLEXCAN_TransferFDReceiveBlocking(CAN_Type *base, uint8_t mbIdx, flexcan_fd_frame_t *rxFrame)
{
/* Wait until Rx Message Buffer non-empty. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
while (!FLEXCAN_GetMbStatusFlags(base, (uint64_t)1 << mbIdx))
#else
while (!FLEXCAN_GetMbStatusFlags(base, 1 << mbIdx))
#endif
{
}
/* Clean Rx Message Buffer Flag. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_ClearMbStatusFlags(base, (uint64_t)1 << mbIdx);
#else
FLEXCAN_ClearMbStatusFlags(base, 1 << mbIdx);
#endif
/* Read Received CAN Message. */
return FLEXCAN_ReadFDRxMb(base, mbIdx, rxFrame);
}
#endif
/*!
* brief Performs a polling receive transaction from Rx FIFO on the CAN bus.
*
* Note that a transfer handle does not need to be created before calling this API.
*
* param base FlexCAN peripheral base pointer.
* param rxFrame Pointer to CAN message frame structure for reception.
* retval kStatus_Success - Read Message from Rx FIFO successfully.
* retval kStatus_Fail - Rx FIFO is not enabled.
*/
status_t FLEXCAN_TransferReceiveFifoBlocking(CAN_Type *base, flexcan_frame_t *rxFrame)
{
status_t rxFifoStatus;
/* Wait until Rx FIFO non-empty. */
while (!FLEXCAN_GetMbStatusFlags(base, kFLEXCAN_RxFifoFrameAvlFlag))
{
}
/* */
rxFifoStatus = FLEXCAN_ReadRxFifo(base, rxFrame);
/* Clean Rx Fifo available flag. */
FLEXCAN_ClearMbStatusFlags(base, kFLEXCAN_RxFifoFrameAvlFlag);
return rxFifoStatus;
}
/*!
* brief Initializes the FlexCAN handle.
*
* This function initializes the FlexCAN handle, which can be used for other FlexCAN
* transactional APIs. Usually, for a specified FlexCAN instance,
* call this API once to get the initialized handle.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param callback The callback function.
* param userData The parameter of the callback function.
*/
void FLEXCAN_TransferCreateHandle(CAN_Type *base,
flexcan_handle_t *handle,
flexcan_transfer_callback_t callback,
void *userData)
{
assert(handle);
uint8_t instance;
/* Clean FlexCAN transfer handle. */
memset(handle, 0, sizeof(*handle));
/* Get instance from peripheral base address. */
instance = FLEXCAN_GetInstance(base);
/* Save the context in global variables to support the double weak mechanism. */
s_flexcanHandle[instance] = handle;
/* Register Callback function. */
handle->callback = callback;
handle->userData = userData;
s_flexcanIsr = FLEXCAN_TransferHandleIRQ;
/* We Enable Error & Status interrupt here, because this interrupt just
* report current status of FlexCAN module through Callback function.
* It is insignificance without a available callback function.
*/
if (handle->callback != NULL)
{
FLEXCAN_EnableInterrupts(base, kFLEXCAN_BusOffInterruptEnable | kFLEXCAN_ErrorInterruptEnable |
kFLEXCAN_RxWarningInterruptEnable | kFLEXCAN_TxWarningInterruptEnable |
kFLEXCAN_WakeUpInterruptEnable);
}
else
{
FLEXCAN_DisableInterrupts(base, kFLEXCAN_BusOffInterruptEnable | kFLEXCAN_ErrorInterruptEnable |
kFLEXCAN_RxWarningInterruptEnable | kFLEXCAN_TxWarningInterruptEnable |
kFLEXCAN_WakeUpInterruptEnable);
}
/* Enable interrupts in NVIC. */
EnableIRQ((IRQn_Type)(s_flexcanRxWarningIRQ[instance]));
EnableIRQ((IRQn_Type)(s_flexcanTxWarningIRQ[instance]));
EnableIRQ((IRQn_Type)(s_flexcanWakeUpIRQ[instance]));
EnableIRQ((IRQn_Type)(s_flexcanErrorIRQ[instance]));
EnableIRQ((IRQn_Type)(s_flexcanBusOffIRQ[instance]));
EnableIRQ((IRQn_Type)(s_flexcanMbIRQ[instance]));
}
/*!
* brief Sends a message using IRQ.
*
* This function sends a message using IRQ. This is a non-blocking function, which returns
* right away. When messages have been sent out, the send callback function is called.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param xfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
* retval kStatus_Success Start Tx Message Buffer sending process successfully.
* retval kStatus_Fail Write Tx Message Buffer failed.
* retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use.
*/
status_t FLEXCAN_TransferSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *xfer)
{
/* Assertion. */
assert(handle);
assert(xfer);
assert(xfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(!FLEXCAN_IsMbOccupied(base, xfer->mbIdx));
/* Check if Message Buffer is idle. */
if (kFLEXCAN_StateIdle == handle->mbState[xfer->mbIdx])
{
/* Distinguish transmit type. */
if (kFLEXCAN_FrameTypeRemote == xfer->frame->type)
{
handle->mbState[xfer->mbIdx] = kFLEXCAN_StateTxRemote;
/* Register user Frame buffer to receive remote Frame. */
handle->mbFrameBuf[xfer->mbIdx] = xfer->frame;
}
else
{
handle->mbState[xfer->mbIdx] = kFLEXCAN_StateTxData;
}
if (kStatus_Success == FLEXCAN_WriteTxMb(base, xfer->mbIdx, xfer->frame))
{
/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_EnableMbInterrupts(base, (uint64_t)1 << xfer->mbIdx);
#else
FLEXCAN_EnableMbInterrupts(base, 1 << xfer->mbIdx);
#endif
return kStatus_Success;
}
else
{
handle->mbState[xfer->mbIdx] = kFLEXCAN_StateIdle;
return kStatus_Fail;
}
}
else
{
return kStatus_FLEXCAN_TxBusy;
}
}
/*!
* brief Receives a message using IRQ.
*
* This function receives a message using IRQ. This is non-blocking function, which returns
* right away. When the message has been received, the receive callback function is called.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param xfer FlexCAN Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
* retval kStatus_Success - Start Rx Message Buffer receiving process successfully.
* retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use.
*/
status_t FLEXCAN_TransferReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *xfer)
{
/* Assertion. */
assert(handle);
assert(xfer);
assert(xfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(!FLEXCAN_IsMbOccupied(base, xfer->mbIdx));
/* Check if Message Buffer is idle. */
if (kFLEXCAN_StateIdle == handle->mbState[xfer->mbIdx])
{
handle->mbState[xfer->mbIdx] = kFLEXCAN_StateRxData;
/* Register Message Buffer. */
handle->mbFrameBuf[xfer->mbIdx] = xfer->frame;
/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_EnableMbInterrupts(base, (uint64_t)1 << xfer->mbIdx);
#else
FLEXCAN_EnableMbInterrupts(base, 1 << xfer->mbIdx);
#endif
return kStatus_Success;
}
else
{
return kStatus_FLEXCAN_RxBusy;
}
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Sends a message using IRQ.
*
* This function sends a message using IRQ. This is a non-blocking function, which returns
* right away. When messages have been sent out, the send callback function is called.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param xfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
* retval kStatus_Success Start Tx Message Buffer sending process successfully.
* retval kStatus_Fail Write Tx Message Buffer failed.
* retval kStatus_FLEXCAN_TxBusy Tx Message Buffer is in use.
*/
status_t FLEXCAN_TransferFDSendNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *xfer)
{
/* Assertion. */
assert(handle);
assert(xfer);
assert(xfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(!FLEXCAN_IsMbOccupied(base, xfer->mbIdx));
/* Check if Message Buffer is idle. */
if (kFLEXCAN_StateIdle == handle->mbState[xfer->mbIdx])
{
/* Distinguish transmit type. */
if (kFLEXCAN_FrameTypeRemote == xfer->frame->type)
{
handle->mbState[xfer->mbIdx] = kFLEXCAN_StateTxRemote;
/* Register user Frame buffer to receive remote Frame. */
handle->mbFDFrameBuf[xfer->mbIdx] = xfer->framefd;
}
else
{
handle->mbState[xfer->mbIdx] = kFLEXCAN_StateTxData;
}
if (kStatus_Success == FLEXCAN_WriteFDTxMb(base, xfer->mbIdx, xfer->framefd))
{
/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_EnableMbInterrupts(base, (uint64_t)1 << xfer->mbIdx);
#else
FLEXCAN_EnableMbInterrupts(base, 1 << xfer->mbIdx);
#endif
return kStatus_Success;
}
else
{
handle->mbState[xfer->mbIdx] = kFLEXCAN_StateIdle;
return kStatus_Fail;
}
}
else
{
return kStatus_FLEXCAN_TxBusy;
}
}
/*!
* brief Receives a message using IRQ.
*
* This function receives a message using IRQ. This is non-blocking function, which returns
* right away. When the message has been received, the receive callback function is called.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param xfer FlexCAN FD Message Buffer transfer structure. See the #flexcan_mb_transfer_t.
* retval kStatus_Success - Start Rx Message Buffer receiving process successfully.
* retval kStatus_FLEXCAN_RxBusy - Rx Message Buffer is in use.
*/
status_t FLEXCAN_TransferFDReceiveNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_mb_transfer_t *xfer)
{
/* Assertion. */
assert(handle);
assert(xfer);
assert(xfer->mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(!FLEXCAN_IsMbOccupied(base, xfer->mbIdx));
/* Check if Message Buffer is idle. */
if (kFLEXCAN_StateIdle == handle->mbState[xfer->mbIdx])
{
handle->mbState[xfer->mbIdx] = kFLEXCAN_StateRxData;
/* Register Message Buffer. */
handle->mbFDFrameBuf[xfer->mbIdx] = xfer->framefd;
/* Enable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_EnableMbInterrupts(base, (uint64_t)1 << xfer->mbIdx);
#else
FLEXCAN_EnableMbInterrupts(base, 1 << xfer->mbIdx);
#endif
return kStatus_Success;
}
else
{
return kStatus_FLEXCAN_RxBusy;
}
}
#endif
/*!
* brief Receives a message from Rx FIFO using IRQ.
*
* This function receives a message using IRQ. This is a non-blocking function, which returns
* right away. When all messages have been received, the receive callback function is called.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param xfer FlexCAN Rx FIFO transfer structure. See the ref flexcan_fifo_transfer_t.
* retval kStatus_Success - Start Rx FIFO receiving process successfully.
* retval kStatus_FLEXCAN_RxFifoBusy - Rx FIFO is currently in use.
*/
status_t FLEXCAN_TransferReceiveFifoNonBlocking(CAN_Type *base, flexcan_handle_t *handle, flexcan_fifo_transfer_t *xfer)
{
/* Assertion. */
assert(handle);
assert(xfer);
/* Check if Message Buffer is idle. */
if (kFLEXCAN_StateIdle == handle->rxFifoState)
{
handle->rxFifoState = kFLEXCAN_StateRxFifo;
/* Register Message Buffer. */
handle->rxFifoFrameBuf = xfer->frame;
/* Enable Message Buffer Interrupt. */
FLEXCAN_EnableMbInterrupts(
base, kFLEXCAN_RxFifoOverflowFlag | kFLEXCAN_RxFifoWarningFlag | kFLEXCAN_RxFifoFrameAvlFlag);
return kStatus_Success;
}
else
{
return kStatus_FLEXCAN_RxFifoBusy;
}
}
/*!
* brief Aborts the interrupt driven message send process.
*
* This function aborts the interrupt driven message send process.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param mbIdx The FlexCAN Message Buffer index.
*/
void FLEXCAN_TransferAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
/* Assertion. */
assert(handle);
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_DisableMbInterrupts(base, (uint64_t)1 << mbIdx);
#else
FLEXCAN_DisableMbInterrupts(base, 1 << mbIdx);
#endif
/* Un-register handle. */
handle->mbFrameBuf[mbIdx] = 0x0;
/* Clean Message Buffer. */
FLEXCAN_SetTxMbConfig(base, mbIdx, true);
handle->mbState[mbIdx] = kFLEXCAN_StateIdle;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
/*!
* brief Aborts the interrupt driven message send process.
*
* This function aborts the interrupt driven message send process.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param mbIdx The FlexCAN FD Message Buffer index.
*/
void FLEXCAN_TransferFDAbortSend(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
/* Assertion. */
assert(handle);
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_DisableMbInterrupts(base, (uint64_t)1 << mbIdx);
#else
FLEXCAN_DisableMbInterrupts(base, 1 << mbIdx);
#endif
/* Un-register handle. */
handle->mbFDFrameBuf[mbIdx] = 0x0;
/* Clean Message Buffer. */
FLEXCAN_SetFDTxMbConfig(base, mbIdx, true);
handle->mbState[mbIdx] = kFLEXCAN_StateIdle;
}
void FLEXCAN_TransferFDAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
/* Assertion. */
assert(handle);
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_DisableMbInterrupts(base, (uint64_t)1 << mbIdx);
#else
FLEXCAN_DisableMbInterrupts(base, 1 << mbIdx);
#endif
/* Un-register handle. */
handle->mbFDFrameBuf[mbIdx] = 0x0;
handle->mbState[mbIdx] = kFLEXCAN_StateIdle;
}
#endif
/*!
* brief Aborts the interrupt driven message receive process.
*
* This function aborts the interrupt driven message receive process.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
* param mbIdx The FlexCAN Message Buffer index.
*/
void FLEXCAN_TransferAbortReceive(CAN_Type *base, flexcan_handle_t *handle, uint8_t mbIdx)
{
/* Assertion. */
assert(handle);
assert(mbIdx <= (base->MCR & CAN_MCR_MAXMB_MASK));
assert(!FLEXCAN_IsMbOccupied(base, mbIdx));
/* Disable Message Buffer Interrupt. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_DisableMbInterrupts(base, (uint64_t)1 << mbIdx);
#else
FLEXCAN_DisableMbInterrupts(base, 1 << mbIdx);
#endif
/* Un-register handle. */
handle->mbFrameBuf[mbIdx] = 0x0;
handle->mbState[mbIdx] = kFLEXCAN_StateIdle;
}
/*!
* brief Aborts the interrupt driven message receive from Rx FIFO process.
*
* This function aborts the interrupt driven message receive from Rx FIFO process.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
*/
void FLEXCAN_TransferAbortReceiveFifo(CAN_Type *base, flexcan_handle_t *handle)
{
/* Assertion. */
assert(handle);
/* Check if Rx FIFO is enabled. */
if (base->MCR & CAN_MCR_RFEN_MASK)
{
/* Disable Rx Message FIFO Interrupts. */
FLEXCAN_DisableMbInterrupts(
base, kFLEXCAN_RxFifoOverflowFlag | kFLEXCAN_RxFifoWarningFlag | kFLEXCAN_RxFifoFrameAvlFlag);
/* Un-register handle. */
handle->rxFifoFrameBuf = 0x0;
}
handle->rxFifoState = kFLEXCAN_StateIdle;
}
/*!
* brief FlexCAN IRQ handle function.
*
* This function handles the FlexCAN Error, the Message Buffer, and the Rx FIFO IRQ request.
*
* param base FlexCAN peripheral base address.
* param handle FlexCAN handle pointer.
*/
void FLEXCAN_TransferHandleIRQ(CAN_Type *base, flexcan_handle_t *handle)
{
/* Assertion. */
assert(handle);
status_t status = kStatus_FLEXCAN_UnHandled;
uint32_t result;
/* Store Current FlexCAN Module Error and Status. */
result = base->ESR1;
do
{
/* Solve FlexCAN Error and Status Interrupt. */
if (result &
(kFLEXCAN_TxWarningIntFlag | kFLEXCAN_RxWarningIntFlag | kFLEXCAN_BusOffIntFlag | kFLEXCAN_ErrorIntFlag))
{
status = kStatus_FLEXCAN_ErrorStatus;
/* Clear FlexCAN Error and Status Interrupt. */
FLEXCAN_ClearStatusFlags(base, kFLEXCAN_TxWarningIntFlag | kFLEXCAN_RxWarningIntFlag |
kFLEXCAN_BusOffIntFlag | kFLEXCAN_ErrorIntFlag);
}
else if (result & kFLEXCAN_WakeUpIntFlag)
{
status = kStatus_FLEXCAN_WakeUp;
FLEXCAN_ClearStatusFlags(base, kFLEXCAN_WakeUpIntFlag);
}
/* Solve FlexCAN Rx FIFO & Message Buffer Interrupt. */
else
{
/* For this implementation, we solve the Message with lowest MB index first. */
for (result = 0; result < FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base); result++)
{
/* Get the lowest unhandled Message Buffer */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
if ((FLEXCAN_GetMbStatusFlags(base, (uint64_t)1 << result)) && (FLEXCAN_IsMbIntEnabled(base, result)))
#else
if ((FLEXCAN_GetMbStatusFlags(base, 1 << result)) && (FLEXCAN_IsMbIntEnabled(base, result)))
#endif
{
break;
}
}
/* Does not find Message to deal with. */
if (result == FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(base))
{
break;
}
/* Solve Rx FIFO interrupt. */
if ((kFLEXCAN_StateIdle != handle->rxFifoState) && ((1 << result) <= kFLEXCAN_RxFifoOverflowFlag))
{
switch (1 << result)
{
case kFLEXCAN_RxFifoOverflowFlag:
status = kStatus_FLEXCAN_RxFifoOverflow;
break;
case kFLEXCAN_RxFifoWarningFlag:
status = kStatus_FLEXCAN_RxFifoWarning;
break;
case kFLEXCAN_RxFifoFrameAvlFlag:
status = FLEXCAN_ReadRxFifo(base, handle->rxFifoFrameBuf);
if (kStatus_Success == status)
{
status = kStatus_FLEXCAN_RxFifoIdle;
}
FLEXCAN_TransferAbortReceiveFifo(base, handle);
break;
default:
status = kStatus_FLEXCAN_UnHandled;
break;
}
}
else
{
/* Get current State of Message Buffer. */
switch (handle->mbState[result])
{
/* Solve Rx Data Frame. */
case kFLEXCAN_StateRxData:
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (base->MCR & CAN_MCR_FDEN_MASK)
{
status = FLEXCAN_ReadFDRxMb(base, result, handle->mbFDFrameBuf[result]);
}
else
{
status = FLEXCAN_ReadRxMb(base, result, handle->mbFrameBuf[result]);
}
#else
status = FLEXCAN_ReadRxMb(base, result, handle->mbFrameBuf[result]);
#endif
if (kStatus_Success == status)
{
status = kStatus_FLEXCAN_RxIdle;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (base->MCR & CAN_MCR_FDEN_MASK)
{
FLEXCAN_TransferFDAbortReceive(base, handle, result);
}
else
{
FLEXCAN_TransferAbortReceive(base, handle, result);
}
#else
FLEXCAN_TransferAbortReceive(base, handle, result);
#endif
break;
/* Solve Rx Remote Frame. */
case kFLEXCAN_StateRxRemote:
status = FLEXCAN_ReadRxMb(base, result, handle->mbFrameBuf[result]);
if (kStatus_Success == status)
{
status = kStatus_FLEXCAN_RxIdle;
}
FLEXCAN_TransferAbortReceive(base, handle, result);
break;
/* Solve Tx Data Frame. */
case kFLEXCAN_StateTxData:
status = kStatus_FLEXCAN_TxIdle;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (base->MCR & CAN_MCR_FDEN_MASK)
{
FLEXCAN_TransferFDAbortSend(base, handle, result);
}
else
{
FLEXCAN_TransferAbortSend(base, handle, result);
}
#else
FLEXCAN_TransferAbortSend(base, handle, result);
#endif
break;
/* Solve Tx Remote Frame. */
case kFLEXCAN_StateTxRemote:
handle->mbState[result] = kFLEXCAN_StateRxRemote;
status = kStatus_FLEXCAN_TxSwitchToRx;
#if (defined(FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE) && FSL_FEATURE_FLEXCAN_HAS_FLEXIBLE_DATA_RATE)
if (base->MCR & CAN_MCR_FDEN_MASK)
{
FLEXCAN_TransferFDAbortReceive(base, handle, result);
}
else
{
FLEXCAN_TransferAbortReceive(base, handle, result);
}
#else
FLEXCAN_TransferAbortReceive(base, handle, result);
#endif
break;
default:
status = kStatus_FLEXCAN_UnHandled;
break;
}
}
/* Clear resolved Message Buffer IRQ. */
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
FLEXCAN_ClearMbStatusFlags(base, (uint64_t)1 << result);
#else
FLEXCAN_ClearMbStatusFlags(base, 1 << result);
#endif
}
/* Calling Callback Function if has one. */
if (handle->callback != NULL)
{
handle->callback(base, handle, status, result, handle->userData);
}
/* Reset return status */
status = kStatus_FLEXCAN_UnHandled;
/* Store Current FlexCAN Module Error and Status. */
result = base->ESR1;
}
#if (defined(FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER)) && (FSL_FEATURE_FLEXCAN_HAS_EXTENDED_FLAG_REGISTER > 0)
while ((0 != FLEXCAN_GetMbStatusFlags(base, 0xFFFFFFFFFFFFFFFFU)) ||
(0 != (result & (kFLEXCAN_TxWarningIntFlag | kFLEXCAN_RxWarningIntFlag | kFLEXCAN_BusOffIntFlag |
kFLEXCAN_ErrorIntFlag | kFLEXCAN_WakeUpIntFlag))));
#else
while ((0 != FLEXCAN_GetMbStatusFlags(base, 0xFFFFFFFFU)) ||
(0 != (result & (kFLEXCAN_TxWarningIntFlag | kFLEXCAN_RxWarningIntFlag | kFLEXCAN_BusOffIntFlag |
kFLEXCAN_ErrorIntFlag | kFLEXCAN_WakeUpIntFlag))));
#endif
}
#if defined(CAN0)
void CAN0_DriverIRQHandler(void)
{
assert(s_flexcanHandle[0]);
s_flexcanIsr(CAN0, s_flexcanHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(CAN1)
void CAN1_DriverIRQHandler(void)
{
assert(s_flexcanHandle[1]);
s_flexcanIsr(CAN1, s_flexcanHandle[1]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(CAN2)
void CAN2_DriverIRQHandler(void)
{
assert(s_flexcanHandle[2]);
s_flexcanIsr(CAN2, s_flexcanHandle[2]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(CAN3)
void CAN3_DriverIRQHandler(void)
{
assert(s_flexcanHandle[3]);
s_flexcanIsr(CAN3, s_flexcanHandle[3]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(CAN4)
void CAN4_DriverIRQHandler(void)
{
assert(s_flexcanHandle[4]);
s_flexcanIsr(CAN4, s_flexcanHandle[4]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(DMA__CAN0)
void DMA_FLEXCAN0_INT_DriverIRQHandler(void)
{
assert(s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]);
s_flexcanIsr(DMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN0)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(DMA__CAN1)
void DMA_FLEXCAN1_INT_DriverIRQHandler(void)
{
assert(s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]);
s_flexcanIsr(DMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN1)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(DMA__CAN2)
void DMA_FLEXCAN2_INT_DriverIRQHandler(void)
{
assert(s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]);
s_flexcanIsr(DMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(DMA__CAN2)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(ADMA__CAN0)
void ADMA_FLEXCAN0_INT_DriverIRQHandler(void)
{
assert(s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]);
s_flexcanIsr(ADMA__CAN0, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN0)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(ADMA__CAN1)
void ADMA_FLEXCAN1_INT_DriverIRQHandler(void)
{
assert(s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]);
s_flexcanIsr(ADMA__CAN1, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN1)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif
#if defined(ADMA__CAN2)
void ADMA_FLEXCAN2_INT_DriverIRQHandler(void)
{
assert(s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]);
s_flexcanIsr(ADMA__CAN2, s_flexcanHandle[FLEXCAN_GetInstance(ADMA__CAN2)]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
__DSB();
#endif
}
#endif