rt-thread/bsp/nuvoton/libraries/m460/StdDriver/src/nu_crypto.c

3037 lines
105 KiB
C

/**************************************************************************//**
* @file crypto.c
* @version V3.00
* @brief Cryptographic Accelerator driver source file
*
* @copyright SPDX-License-Identifier: Apache-2.0
* @copyright Copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*****************************************************************************/
#include <stdio.h>
#include <string.h>
#ifdef __has_include
#if __has_include("strings.h")
#include <strings.h>
#endif
#endif
#include "NuMicro.h"
#define ENABLE_DEBUG 0
#define ECC_SCA_PROTECT 1 // Enable Side-Channel Protecton
#if ENABLE_DEBUG
#define CRPT_DBGMSG printf
#else
#define CRPT_DBGMSG(...) do { } while (0) /* disable debug */
#endif
#if defined(__ICCARM__)
#pragma diag_suppress=Pm073, Pm143, Pe223 /* Misra C rule 14.7 */
#endif
#define TIMEOUT_ECC SystemCoreClock /* 1 second time-out */
/** @addtogroup Standard_Driver Standard Driver
@{
*/
/** @addtogroup CRYPTO_Driver CRYPTO Driver
@{
*/
/** @addtogroup CRYPTO_EXPORTED_FUNCTIONS CRYPTO Exported Functions
@{
*/
/* // @cond HIDDEN_SYMBOLS */
static char hex_char_tbl[] = "0123456789abcdef";
static void dump_ecc_reg(char *str, uint32_t volatile regs[], int32_t count);
static char get_Nth_nibble_char(uint32_t val32, uint32_t idx);
static void Hex2Reg(char input[], uint32_t volatile reg[]);
static void Reg2Hex(int32_t count, uint32_t volatile reg[], char output[]);
static char ch2hex(char ch);
static void Hex2RegEx(char input[], uint32_t volatile reg[], int shift);
static int get_nibble_value(char c);
int32_t ECC_Mutiply(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char x1[], char y1[], char *k, char x2[], char y2[]);
void ECC_Complete(CRPT_T *crpt);
/* // @endcond HIDDEN_SYMBOLS */
/**
* @brief Open PRNG function
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32KeySize it is PRNG key size, including:
* - \ref PRNG_KEY_SIZE_128
* - \ref PRNG_KEY_SIZE_192
* - \ref PRNG_KEY_SIZE_224
* - \ref PRNG_KEY_SIZE_255
* - \ref PRNG_KEY_SIZE_256
* - \ref PRNG_KEY_SIZE_283
* - \ref PRNG_KEY_SIZE_384
* - \ref PRNG_KEY_SIZE_409
* - \ref PRNG_KEY_SIZE_512
* - \ref PRNG_KEY_SIZE_521
* - \ref PRNG_KEY_SIZE_571
* @param[in] u32SeedReload is PRNG seed reload or not, including:
* - \ref PRNG_SEED_CONT
* - \ref PRNG_SEED_RELOAD
* @param[in] u32Seed The new seed. Only valid when u32SeedReload is PRNG_SEED_RELOAD.
* @return None
*/
void PRNG_Open(CRPT_T *crpt, uint32_t u32KeySize, uint32_t u32SeedReload, uint32_t u32Seed)
{
if (u32SeedReload)
{
crpt->PRNG_SEED = u32Seed;
}
crpt->PRNG_CTL = (u32KeySize << CRPT_PRNG_CTL_KEYSZ_Pos) | PRNG_CTL_SEEDSRC_SEEDREG |
(u32SeedReload << CRPT_PRNG_CTL_SEEDRLD_Pos);
}
/**
* @brief Start to generate one PRNG key.
* @param[in] crpt The pointer of CRYPTO module
* @retval 0 Generate PRNG key success.
* @retval -1 Generate PRNG key time-out.
*/
int32_t PRNG_Start(CRPT_T *crpt)
{
int32_t i32TimeOutCnt = SystemCoreClock; /* 1 second time-out */
crpt->PRNG_CTL |= CRPT_PRNG_CTL_START_Msk;
/* Waiting for PRNG Busy */
while (crpt->PRNG_CTL & CRPT_PRNG_CTL_BUSY_Msk)
{
if (i32TimeOutCnt-- <= 0)
{
return -1;
}
}
return 0;
}
/**
* @brief Read the PRNG key.
* @param[in] crpt The pointer of CRYPTO module
* @param[out] u32RandKey The key buffer to store newly generated PRNG key.
* @return None
*/
void PRNG_Read(CRPT_T *crpt, uint32_t u32RandKey[])
{
uint32_t i, wcnt;
uint32_t au32WcntTbl[7] = {4, 6, 6, 7, 8, 8, 8};
wcnt = ((crpt->PRNG_CTL & CRPT_PRNG_CTL_KEYSZ_Msk) >> CRPT_PRNG_CTL_KEYSZ_Pos);
if (wcnt > 6) return;
else wcnt = au32WcntTbl[wcnt];
for (i = 0U; i < wcnt; i++)
{
u32RandKey[i] = crpt->PRNG_KEY[i];
}
crpt->PRNG_CTL &= ~CRPT_PRNG_CTL_SEEDRLD_Msk;
}
/**
* @brief Open AES encrypt/decrypt function.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32Channel AES channel. Must be 0~3.
* @param[in] u32EncDec 1: AES encode; 0: AES decode
* @param[in] u32OpMode AES operation mode, including:
* - \ref AES_MODE_ECB
* - \ref AES_MODE_CBC
* - \ref AES_MODE_CFB
* - \ref AES_MODE_OFB
* - \ref AES_MODE_CTR
* - \ref AES_MODE_CBC_CS1
* - \ref AES_MODE_CBC_CS2
* - \ref AES_MODE_CBC_CS3
* @param[in] u32KeySize is AES key size, including:
* - \ref AES_KEY_SIZE_128
* - \ref AES_KEY_SIZE_192
* - \ref AES_KEY_SIZE_256
* @param[in] u32SwapType is AES input/output data swap control, including:
* - \ref AES_NO_SWAP
* - \ref AES_OUT_SWAP
* - \ref AES_IN_SWAP
* - \ref AES_IN_OUT_SWAP
* @return None
*/
void AES_Open(CRPT_T *crpt, uint32_t u32Channel, uint32_t u32EncDec,
uint32_t u32OpMode, uint32_t u32KeySize, uint32_t u32SwapType)
{
(void)u32Channel;
crpt->AES_CTL = (u32EncDec << CRPT_AES_CTL_ENCRPT_Pos) |
(u32OpMode << CRPT_AES_CTL_OPMODE_Pos) |
(u32KeySize << CRPT_AES_CTL_KEYSZ_Pos) |
(u32SwapType << CRPT_AES_CTL_OUTSWAP_Pos);
}
/**
* @brief Start AES encrypt/decrypt
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32Channel AES channel. Must be 0~3.
* @param[in] u32DMAMode AES DMA control, including:
* - \ref CRYPTO_DMA_ONE_SHOT One shot AES encrypt/decrypt.
* - \ref CRYPTO_DMA_CONTINUE Continuous AES encrypt/decrypt.
* - \ref CRYPTO_DMA_LAST Last AES encrypt/decrypt of a series of AES_Start.
* @return None
*/
void AES_Start(CRPT_T *crpt, int32_t u32Channel, uint32_t u32DMAMode)
{
(void)u32Channel;
crpt->AES_CTL |= CRPT_AES_CTL_START_Msk | (u32DMAMode << CRPT_AES_CTL_DMALAST_Pos);
}
/**
* @brief Set AES keys
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32Channel AES channel. Must be 0~3.
* @param[in] au32Keys An word array contains AES keys.
* @param[in] u32KeySize is AES key size, including:
* - \ref AES_KEY_SIZE_128
* - \ref AES_KEY_SIZE_192
* - \ref AES_KEY_SIZE_256
* @return None
*/
void AES_SetKey(CRPT_T *crpt, uint32_t u32Channel, uint32_t au32Keys[], uint32_t u32KeySize)
{
uint32_t i, wcnt, key_reg_addr;
(void) u32Channel;
key_reg_addr = (uint32_t)&crpt->AES_KEY[0];
wcnt = 4UL + u32KeySize * 2UL;
for (i = 0U; i < wcnt; i++)
{
outpw(key_reg_addr, au32Keys[i]);
key_reg_addr += 4UL;
}
}
/**
* @brief Set AES keys index of Key Store
* @param[in] crpt The pointer of CRYPTO module
* @param[in] mem Memory type of Key Store key. it could be:
* - \ref KS_SRAM
* - \ref KS_FLASH
* - \ref KS_OTP
* @param[in] i32KeyIdx Index of the key in Key Store.
* @details AES could use the key in Key Store. This function is used to set the key index of Key Store.
*/
void AES_SetKey_KS(CRPT_T *crpt, KS_MEM_Type mem, int32_t i32KeyIdx)
{
/* Use key in key store */
crpt->AES_KSCTL = CRPT_AES_KSCTL_RSRC_Msk /* use KS */ |
(uint32_t)((int)mem << CRPT_AES_KSCTL_RSSRC_Pos) /* KS Memory type */ |
(uint32_t)i32KeyIdx /* key num */ ;
}
/**
* @brief Set AES initial vectors
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32Channel AES channel. Must be 0~3.
* @param[in] au32IV A four entry word array contains AES initial vectors.
* @return None
*/
void AES_SetInitVect(CRPT_T *crpt, uint32_t u32Channel, uint32_t au32IV[])
{
uint32_t i, key_reg_addr;
(void) u32Channel;
key_reg_addr = (uint32_t)&crpt->AES_IV[0];
for (i = 0U; i < 4U; i++)
{
outpw(key_reg_addr, au32IV[i]);
key_reg_addr += 4UL;
}
}
/**
* @brief Set AES DMA transfer configuration.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32Channel AES channel. Must be 0~3.
* @param[in] u32SrcAddr AES DMA source address
* @param[in] u32DstAddr AES DMA destination address
* @param[in] u32TransCnt AES DMA transfer byte count
* @return None
*/
void AES_SetDMATransfer(CRPT_T *crpt, uint32_t u32Channel, uint32_t u32SrcAddr,
uint32_t u32DstAddr, uint32_t u32TransCnt)
{
(void) u32Channel;
crpt->AES_SADDR = u32SrcAddr;
crpt->AES_DADDR = u32DstAddr;
crpt->AES_CNT = u32TransCnt;
}
/**
* @brief Open SHA encrypt function.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32OpMode SHA operation mode, including:
* - \ref SHA_MODE_SHA1
* - \ref SHA_MODE_SHA224
* - \ref SHA_MODE_SHA256
* @param[in] u32SwapType is SHA input/output data swap control, including:
* - \ref SHA_NO_SWAP
* - \ref SHA_OUT_SWAP
* - \ref SHA_IN_SWAP
* - \ref SHA_IN_OUT_SWAP
* @param[in] hmac_key_len HMAC key byte count
* @return None
*/
void SHA_Open(CRPT_T *crpt, uint32_t u32OpMode, uint32_t u32SwapType, uint32_t hmac_key_len)
{
crpt->HMAC_CTL = (u32OpMode << CRPT_HMAC_CTL_OPMODE_Pos) |
(u32SwapType << CRPT_HMAC_CTL_OUTSWAP_Pos);
if (hmac_key_len != 0UL)
{
crpt->HMAC_KEYCNT = hmac_key_len;
}
}
/**
* @brief Start SHA encrypt
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32DMAMode TDES DMA control, including:
* - \ref CRYPTO_DMA_ONE_SHOT One shop SHA encrypt.
* - \ref CRYPTO_DMA_CONTINUE Continuous SHA encrypt.
* - \ref CRYPTO_DMA_LAST Last SHA encrypt of a series of SHA_Start.
* @return None
*/
void SHA_Start(CRPT_T *crpt, uint32_t u32DMAMode)
{
crpt->HMAC_CTL &= ~(0x7UL << CRPT_HMAC_CTL_DMALAST_Pos);
crpt->HMAC_CTL |= CRPT_HMAC_CTL_START_Msk | (u32DMAMode << CRPT_HMAC_CTL_DMALAST_Pos);
}
/**
* @brief Set SHA DMA transfer
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32SrcAddr SHA DMA source address
* @param[in] u32TransCnt SHA DMA transfer byte count
* @return None
*/
void SHA_SetDMATransfer(CRPT_T *crpt, uint32_t u32SrcAddr, uint32_t u32TransCnt)
{
crpt->HMAC_SADDR = u32SrcAddr;
crpt->HMAC_DMACNT = u32TransCnt;
}
/**
* @brief Read the SHA digest.
* @param[in] crpt The pointer of CRYPTO module
* @param[out] u32Digest The SHA encrypt output digest.
* @return None
*/
void SHA_Read(CRPT_T *crpt, uint32_t u32Digest[])
{
uint32_t i, wcnt, reg_addr;
i = (crpt->HMAC_CTL & CRPT_HMAC_CTL_OPMODE_Msk) >> CRPT_HMAC_CTL_OPMODE_Pos;
if (i == SHA_MODE_SHA1)
{
wcnt = 5UL;
}
else if (i == SHA_MODE_SHA224)
{
wcnt = 7UL;
}
else if (i == SHA_MODE_SHA256)
{
wcnt = 8UL;
}
else if (i == SHA_MODE_SHA384)
{
wcnt = 12UL;
}
else
{
/* SHA_MODE_SHA512 */
wcnt = 16UL;
}
reg_addr = (uint32_t) & (crpt->HMAC_DGST[0]);
for (i = 0UL; i < wcnt; i++)
{
u32Digest[i] = inpw(reg_addr);
reg_addr += 4UL;
}
}
/*-----------------------------------------------------------------------------------------------*/
/* */
/* ECC */
/* */
/*-----------------------------------------------------------------------------------------------*/
#define ECCOP_POINT_MUL (0x0UL << CRPT_ECC_CTL_ECCOP_Pos)
#define ECCOP_MODULE (0x1UL << CRPT_ECC_CTL_ECCOP_Pos)
#define ECCOP_POINT_ADD (0x2UL << CRPT_ECC_CTL_ECCOP_Pos)
#define ECCOP_POINT_DOUBLE (0x0UL << CRPT_ECC_CTL_ECCOP_Pos)
#define MODOP_DIV (0x0UL << CRPT_ECC_CTL_MODOP_Pos)
#define MODOP_MUL (0x1UL << CRPT_ECC_CTL_MODOP_Pos)
#define MODOP_ADD (0x2UL << CRPT_ECC_CTL_MODOP_Pos)
#define MODOP_SUB (0x3UL << CRPT_ECC_CTL_MODOP_Pos)
#define OP_ECDSAS (0x1UL << CRPT_ECC_CTL_ECDSAS_Pos)
#define OP_ECDSAR (0x1UL << CRPT_ECC_CTL_ECDSAR_Pos)
enum
{
CURVE_GF_P,
CURVE_GF_2M,
};
/*-----------------------------------------------------*/
/* Define elliptic curve (EC): */
/*-----------------------------------------------------*/
static const ECC_CURVE _Curve[] =
{
{
/* NIST: Curve P-192 : y^2=x^3-ax+b (mod p) */
CURVE_P_192,
48, /* Echar */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC", /* "000000000000000000000000000000000000000000000003" */
"64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1",
"188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012",
"07192b95ffc8da78631011ed6b24cdd573f977a11e794811",
58, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF", /* "6277101735386680763835789423207666416083908700390324961279" */
58, /* Eol */
"FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", /* "6277101735386680763835789423176059013767194773182842284081" */
192, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* NIST: Curve P-224 : y^2=x^3-ax+b (mod p) */
CURVE_P_224,
56, /* Echar */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE", /* "00000000000000000000000000000000000000000000000000000003" */
"b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4",
"b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21",
"bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34",
70, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "0026959946667150639794667015087019630673557916260026308143510066298881" */
70, /* Eol */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D", /* "0026959946667150639794667015087019625940457807714424391721682722368061" */
224, /* key_len */
9,
8,
3,
CURVE_GF_P
},
{
/* NIST: Curve P-256 : y^2=x^3-ax+b (mod p) */
CURVE_P_256,
64, /* Echar */
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC", /* "0000000000000000000000000000000000000000000000000000000000000003" */
"5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
"6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
"4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5",
78, /* Epl */
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF", /* "115792089210356248762697446949407573530086143415290314195533631308867097853951" */
78, /* Eol */
"FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", /* "115792089210356248762697446949407573529996955224135760342422259061068512044369" */
256, /* key_len */
10,
5,
2,
CURVE_GF_P
},
{
/* NIST: Curve P-384 : y^2=x^3-ax+b (mod p) */
CURVE_P_384,
96, /* Echar */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC", /* "000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003" */
"b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef",
"aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7",
"3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f",
116, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF", /* "39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319" */
116, /* Eol */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973", /* "39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643" */
384, /* key_len */
12,
3,
2,
CURVE_GF_P
},
{
/* NIST: Curve P-521 : y^2=x^3-ax+b (mod p)*/
CURVE_P_521,
131, /* Echar */
"1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC", /* "00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003" */
"051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00",
"0c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66",
"11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650",
157, /* Epl */
"1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151" */
157, /* Eol */
"1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409", /* "6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449" */
521, /* key_len */
32,
32,
32,
CURVE_GF_P
},
{
/* NIST: Curve B-163 : y^2+xy=x^3+ax^2+b */
CURVE_B_163,
41, /* Echar */
"00000000000000000000000000000000000000001",
"20a601907b8c953ca1481eb10512f78744a3205fd",
"3f0eba16286a2d57ea0991168d4994637e8343e36",
"0d51fbc6c71a0094fa2cdd545b11c5c0c797324f1",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
49, /* Eol */
"40000000000000000000292FE77E70C12A4234C33", /* "5846006549323611672814742442876390689256843201587" */
163, /* key_len */
7,
6,
3,
CURVE_GF_2M
},
{
/* NIST: Curve B-233 : y^2+xy=x^3+ax^2+b */
CURVE_B_233,
59, /* Echar 59 */
"00000000000000000000000000000000000000000000000000000000001",
"066647ede6c332c7f8c0923bb58213b333b20e9ce4281fe115f7d8f90ad",
"0fac9dfcbac8313bb2139f1bb755fef65bc391f8b36f8f8eb7371fd558b",
"1006a08a41903350678e58528bebf8a0beff867a7ca36716f7e01f81052",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
70, /* Eol */
"1000000000000000000000000000013E974E72F8A6922031D2603CFE0D7", /* "6901746346790563787434755862277025555839812737345013555379383634485463" */
233, /* key_len */
74,
74,
74,
CURVE_GF_2M
},
{
/* NIST: Curve B-283 : y^2+xy=x^3+ax^2+b */
CURVE_B_283,
71, /* Echar */
"00000000000000000000000000000000000000000000000000000000000000000000001",
"27b680ac8b8596da5a4af8a19a0303fca97fd7645309fa2a581485af6263e313b79a2f5",
"5f939258db7dd90e1934f8c70b0dfec2eed25b8557eac9c80e2e198f8cdbecd86b12053",
"3676854fe24141cb98fe6d4b20d02b4516ff702350eddb0826779c813f0df45be8112f4",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
85, /* Eol */
"3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A90165B042A7CEFADB307", /* "7770675568902916283677847627294075626569625924376904889109196526770044277787378692871" */
283, /* key_len */
12,
7,
5,
CURVE_GF_2M
},
{
/* NIST: Curve B-409 : y^2+xy=x^3+ax^2+b */
CURVE_B_409,
103, /* Echar */
"0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"021a5c2c8ee9feb5c4b9a753b7b476b7fd6422ef1f3dd674761fa99d6ac27c8a9a197b272822f6cd57a55aa4f50ae317b13545f",
"15d4860d088ddb3496b0c6064756260441cde4af1771d4db01ffe5b34e59703dc255a868a1180515603aeab60794e54bb7996a7",
"061b1cfab6be5f32bbfa78324ed106a7636b9c5a7bd198d0158aa4f5488d08f38514f1fdf4b4f40d2181b3681c364ba0273c706",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
123, /* Eol */
"10000000000000000000000000000000000000000000000000001E2AAD6A612F33307BE5FA47C3C9E052F838164CD37D9A21173", /* "661055968790248598951915308032771039828404682964281219284648798304157774827374805208143723762179110965979867288366567526771" */
409, /* key_len */
87,
87,
87,
CURVE_GF_2M
},
{
/* NIST: Curve B-571 : y^2+xy=x^3+ax^2+b */
CURVE_B_571,
143, /* Echar */
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"2f40e7e2221f295de297117b7f3d62f5c6a97ffcb8ceff1cd6ba8ce4a9a18ad84ffabbd8efa59332be7ad6756a66e294afd185a78ff12aa520e4de739baca0c7ffeff7f2955727a",
"303001d34b856296c16c0d40d3cd7750a93d1d2955fa80aa5f40fc8db7b2abdbde53950f4c0d293cdd711a35b67fb1499ae60038614f1394abfa3b4c850d927e1e7769c8eec2d19",
"37bf27342da639b6dccfffeb73d69d78c6c27a6009cbbca1980f8533921e8a684423e43bab08a576291af8f461bb2a8b3531d2f0485c19b16e2f1516e23dd3c1a4827af1b8ac15b",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
172, /* Eol */
"3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE661CE18FF55987308059B186823851EC7DD9CA1161DE93D5174D66E8382E9BB2FE84E47", /* "3864537523017258344695351890931987344298927329706434998657235251451519142289560424536143999389415773083133881121926944486246872462816813070234528288303332411393191105285703" */
571, /* key_len */
10,
5,
2,
CURVE_GF_2M
},
{
/* NIST: Curve K-163 : y^2+xy=x^3+ax^2+b */
CURVE_K_163,
41, /* Echar */
"00000000000000000000000000000000000000001",
"00000000000000000000000000000000000000001",
"2fe13c0537bbc11acaa07d793de4e6d5e5c94eee8",
"289070fb05d38ff58321f2e800536d538ccdaa3d9",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
49, /* Eol */
"4000000000000000000020108A2E0CC0D99F8A5EF", /* "5846006549323611672814741753598448348329118574063" */
163, /* key_len */
7,
6,
3,
CURVE_GF_2M
},
{
/* NIST: Curve K-233 : y^2+xy=x^3+ax^2+b */
CURVE_K_233,
59, /* Echar 59 */
"00000000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000000001",
"17232ba853a7e731af129f22ff4149563a419c26bf50a4c9d6eefad6126",
"1db537dece819b7f70f555a67c427a8cd9bf18aeb9b56e0c11056fae6a3",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
70, /* Eol */
"8000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF", /* "3450873173395281893717377931138512760570940988862252126328087024741343" */
233, /* key_len */
74,
74,
74,
CURVE_GF_2M
},
{
/* NIST: Curve K-283 : y^2+xy=x^3+ax^2+b */
CURVE_K_283,
71, /* Echar */
"00000000000000000000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000000000000000000001",
"503213f78ca44883f1a3b8162f188e553cd265f23c1567a16876913b0c2ac2458492836",
"1ccda380f1c9e318d90f95d07e5426fe87e45c0e8184698e45962364e34116177dd2259",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
85, /* Eol */
"1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E061E163C61", /* "3885337784451458141838923813647037813284811733793061324295874997529815829704422603873" */
283, /* key_len */
12,
7,
5,
CURVE_GF_2M
},
{
/* NIST: Curve K-409 : y^2+xy=x^3+ax^2+b */
CURVE_K_409,
103, /* Echar */
"0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"060f05f658f49c1ad3ab1890f7184210efd0987e307c84c27accfb8f9f67cc2c460189eb5aaaa62ee222eb1b35540cfe9023746",
"1e369050b7c4e42acba1dacbf04299c3460782f918ea427e6325165e9ea10e3da5f6c42e9c55215aa9ca27a5863ec48d8e0286b",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
123, /* Eol */
"7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE5F83B2D4EA20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5FCF", /* "330527984395124299475957654016385519914202341482140609642324395022880711289249191050673258457777458014096366590617731358671" */
409, /* key_len */
87,
87,
87,
CURVE_GF_2M
},
{
/* NIST: Curve K-571 : y^2+xy=x^3+ax^2+b */
CURVE_K_571,
143, /* Echar */
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"26eb7a859923fbc82189631f8103fe4ac9ca2970012d5d46024804801841ca44370958493b205e647da304db4ceb08cbbd1ba39494776fb988b47174dca88c7e2945283a01c8972",
"349dc807f4fbf374f4aeade3bca95314dd58cec9f307a54ffc61efc006d8a2c9d4979c0ac44aea74fbebbb9f772aedcb620b01a7ba7af1b320430c8591984f601cd4c143ef1c7a3",
68, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001", /* "26959946667150639794667015087019630673557916260026308143510066298881" */
172, /* Eol */
"20000000000000000000000000000000000000000000000000000000000000000000000131850E1F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE778F637C1001", /* "1932268761508629172347675945465993672149463664853217499328617625725759571144780212268133978522706711834706712800825351461273674974066617311929682421617092503555733685276673" */
571, /* key_len */
10,
5,
2,
CURVE_GF_2M
},
{
/* Koblitz: Curve secp192k1 : y2 = x3+ax+b over Fp */
CURVE_KO_192,
48, /* Echar */
"00000000000000000000000000000000000000000",
"00000000000000000000000000000000000000003",
"DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D",
"9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D",
58, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37", /* p */
58, /* Eol */
"FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", /* n */
192, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* Koblitz: Curve secp224k1 : y2 = x3+ax+b over Fp */
CURVE_KO_224,
56, /* Echar */
"00000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000005",
"A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C",
"7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5",
70, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D", /* p */
70, /* Eol */
"0000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", /* n */
224, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* Koblitz: Curve secp256k1 : y2 = x3+ax+b over Fp */
CURVE_KO_256,
64, /* Echar */
"0000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000007",
"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",
"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8",
78, /* Epl */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", /* p */
78, /* Eol */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", /* n */
256, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* Brainpool: Curve brainpoolP256r1 */
CURVE_BP_256,
64, /* Echar */
"7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9", /* A */
"26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6", /* B */
"8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262", /* x */
"547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997", /* y */
78, /* Epl */
"A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377", /* p */
78, /* Eol */
"A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7", /* q */
256, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* Brainpool: Curve brainpoolP384r1 */
CURVE_BP_384,
96, /* Echar */
"7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F90F8AA5814A503AD4EB04A8C7DD22CE2826", /* A */
"04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62D57CB4390295DBC9943AB78696FA504C11", /* B */
"1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10E8E826E03436D646AAEF87B2E247D4AF1E", /* x */
"8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129280E4646217791811142820341263C5315", /* y */
116, /* Epl */
"8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB71123ACD3A729901D1A71874700133107EC53", /* p */
116, /* Eol */
"8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A7CF3AB6AF6B7FC3103B883202E9046565", /* q */
384, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
/* Brainpool: Curve brainpoolP512r1 */
CURVE_BP_512,
128, /* Echar */
"7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA", /* A */
"3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723", /* B */
"81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D0098EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822", /* x */
"7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F8111B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892", /* y */
156, /* Epl */
"AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3", /* p */
156, /* Eol */
"AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA70330870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069", /* q */
512, /* key_len */
7,
2,
1,
CURVE_GF_P
},
{
CURVE_25519,
64, // Echar
"0000000000000000000000000000000000000000000000000000000000076D06", // "0000000000000000000000000000000000000000000000000000000000000003",
"0000000000000000000000000000000000000000000000000000000000000001",
"0000000000000000000000000000000000000000000000000000000000000009",
"20ae19a1b8a086b4e01edd2c7748d14c923d4d7e6d7c61b229e9c5a27eced3d9",
78, // Epl
"7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed", // "115792089210356248762697446949407573530086143415290314195533631308867097853951",
78, // Eol
"1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed", // "115792089210356248762697446949407573529996955224135760342422259061068512044369",
255, // key_len
10,
5,
2,
CURVE_GF_P
},
{
/* NIST: Curve P-256 : y^2=x^3-ax+b (mod p) */
CURVE_SM2_256,
64, /* Echar */
"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC", /* a */
"28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93", /* b */
"32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7", /* x */
"BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0", /* y */
78, /* Epl */
"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF", /* p */
78, /* Eol */
"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123", /* n */
256, /* key_len */
10,
5,
2,
CURVE_GF_P
},
};
static ECC_CURVE *pCurve;
static ECC_CURVE Curve_Copy;
static ECC_CURVE *get_curve(E_ECC_CURVE ecc_curve);
static int32_t ecc_init_curve(CRPT_T *crpt, E_ECC_CURVE ecc_curve);
static int32_t run_ecc_codec(CRPT_T *crpt, uint32_t mode);
static char temp_hex_str[160];
static volatile uint32_t g_ECC_done, g_ECCERR_done;
void ECC_DriverISR(CRPT_T *crpt)
{
if (crpt->INTSTS & CRPT_INTSTS_ECCIF_Msk)
{
g_ECC_done = 1UL;
crpt->INTSTS = CRPT_INTSTS_ECCIF_Msk;
/* printf("ECC done IRQ.\n"); */
}
if (crpt->INTSTS & CRPT_INTSTS_ECCEIF_Msk)
{
g_ECCERR_done = 1UL;
crpt->INTSTS = CRPT_INTSTS_ECCEIF_Msk;
/* printf("ECCERRIF is set!!\n"); */
}
}
#if ENABLE_DEBUG
static void dump_ecc_reg(char *str, uint32_t volatile regs[], int32_t count)
{
int32_t i;
printf("%s => ", str);
for (i = 0; i < count; i++)
{
printf("0x%08x ", regs[i]);
}
printf("\n");
}
#else
static void dump_ecc_reg(char *str, uint32_t volatile regs[], int32_t count)
{
(void)str;
(void)regs;
(void)count;
}
#endif
static char ch2hex(char ch)
{
if (ch <= '9')
{
return ch - '0';
}
else if ((ch <= 'z') && (ch >= 'a'))
{
return ch - 'a' + 10U;
}
else
{
return ch - 'A' + 10U;
}
}
static void Hex2Reg(char input[], uint32_t volatile reg[])
{
char hex;
int si, ri;
uint32_t i, val32;
si = (int)strlen(input) - 1;
ri = 0;
while (si >= 0)
{
val32 = 0UL;
for (i = 0UL; (i < 8UL) && (si >= 0); i++)
{
hex = ch2hex(input[si]);
val32 |= (uint32_t)hex << (i * 4UL);
si--;
}
reg[ri++] = val32;
}
}
static void Hex2RegEx(char input[], uint32_t volatile reg[], int shift)
{
uint32_t hex, carry;
int si, ri;
uint32_t i, val32;
si = (int)strlen(input) - 1;
ri = 0;
carry = 0U;
while (si >= 0)
{
val32 = 0UL;
for (i = 0UL; (i < 8UL) && (si >= 0); i++)
{
hex = (uint32_t)ch2hex(input[si]);
hex <<= shift;
val32 |= (uint32_t)((hex & 0xFU) | carry) << (i * 4UL);
carry = (hex >> 4) & 0xFU;
si--;
}
reg[ri++] = val32;
}
if (carry != 0U)
{
reg[ri] = carry;
}
}
/**
* @brief Extract specified nibble from an unsigned word in character format.
* For example:
* Suppose val32 is 0x786543210, get_Nth_nibble_char(val32, 3) will return a '3'.
* @param[in] val32 The input unsigned word
* @param[in] idx The Nth nibble to be extracted.
* @return The nibble in character format.
*/
static char get_Nth_nibble_char(uint32_t val32, uint32_t idx)
{
return hex_char_tbl[(val32 >> (idx * 4U)) & 0xfU ];
}
static void Reg2Hex(int32_t count, uint32_t volatile reg[], char output[])
{
int32_t idx, ri;
uint32_t i;
output[count] = 0U;
idx = count - 1;
for (ri = 0; idx >= 0; ri++)
{
for (i = 0UL; (i < 8UL) && (idx >= 0); i++)
{
output[idx] = get_Nth_nibble_char(reg[ri], i);
idx--;
}
}
}
/**
* @brief Translate registers value into hex string
* @param[in] count The string length of ouptut hex string.
* @param[in] reg Register array.
* @param[in] output String buffer for output hex string.
*/
void CRPT_Reg2Hex(int32_t count, volatile uint32_t reg[], char output[])
{
Reg2Hex(count, reg, output);
}
/**
* @brief Translate hex string to registers value
* @param[in] input hex string.
* @param[in] reg Register array.
*/
void CRPT_Hex2Reg(char input[], uint32_t volatile reg[])
{
Hex2Reg(input, reg);
}
static int32_t ecc_init_curve(CRPT_T *crpt, E_ECC_CURVE ecc_curve)
{
int32_t i, ret = 0;
pCurve = get_curve(ecc_curve);
if (pCurve == NULL)
{
CRPT_DBGMSG("Cannot find curve %d!!\n", ecc_curve);
ret = -1;
}
if (ret == 0)
{
for (i = 0; i < 18; i++)
{
crpt->ECC_A[i] = 0UL;
crpt->ECC_B[i] = 0UL;
crpt->ECC_X1[i] = 0UL;
crpt->ECC_Y1[i] = 0UL;
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Ea, crpt->ECC_A);
Hex2Reg(pCurve->Eb, crpt->ECC_B);
Hex2Reg(pCurve->Px, crpt->ECC_X1);
Hex2Reg(pCurve->Py, crpt->ECC_Y1);
CRPT_DBGMSG("Key length = %d\n", pCurve->key_len);
dump_ecc_reg("CRPT_ECC_CURVE_A", crpt->ECC_A, 10);
dump_ecc_reg("CRPT_ECC_CURVE_B", crpt->ECC_B, 10);
dump_ecc_reg("CRPT_ECC_POINT_X1", crpt->ECC_X1, 10);
dump_ecc_reg("CRPT_ECC_POINT_Y1", crpt->ECC_Y1, 10);
if (pCurve->GF == (int)CURVE_GF_2M)
{
crpt->ECC_N[0] = 0x1UL;
crpt->ECC_N[(pCurve->key_len) / 32] |= (1UL << ((pCurve->key_len) % 32));
crpt->ECC_N[(pCurve->irreducible_k1) / 32] |= (1UL << ((pCurve->irreducible_k1) % 32));
crpt->ECC_N[(pCurve->irreducible_k2) / 32] |= (1UL << ((pCurve->irreducible_k2) % 32));
crpt->ECC_N[(pCurve->irreducible_k3) / 32] |= (1UL << ((pCurve->irreducible_k3) % 32));
}
else
{
Hex2Reg(pCurve->Pp, crpt->ECC_N);
}
}
dump_ecc_reg("CRPT_ECC_CURVE_N", crpt->ECC_N, 10);
return ret;
}
static int get_nibble_value(char c)
{
char ch;
if ((c >= '0') && (c <= '9'))
{
ch = '0';
return ((int)c - (int)ch);
}
if ((c >= 'a') && (c <= 'f'))
{
ch = 'a';
return ((int)c - (int)ch + 10);
}
if ((c >= 'A') && (c <= 'F'))
{
ch = 'A';
return ((int)c - (int)ch + 10);
}
return 0;
}
/**
* @brief Check if the private key is located in valid range of curve.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] private_k The input private key.
* @return 1 Is valid.
* @return 0 Is not valid.
* @return -1 Invalid curve.
*/
int ECC_IsPrivateKeyValid(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char private_k[])
{
uint32_t i;
(void)crpt;
pCurve = get_curve(ecc_curve);
if (pCurve == NULL)
{
return -1;
}
if (strlen(private_k) < strlen(pCurve->Eorder))
{
return 1;
}
if (strlen(private_k) > strlen(pCurve->Eorder))
{
return 0;
}
for (i = 0U; i < strlen(private_k); i++)
{
if (get_nibble_value(private_k[i]) < get_nibble_value(pCurve->Eorder[i]))
{
return 1;
}
if (get_nibble_value(private_k[i]) > get_nibble_value(pCurve->Eorder[i]))
{
return 0;
}
}
return 0;
}
/**
* @brief Given a private key and curve to generate the public key pair.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] private_k The input private key.
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[out] public_k1 The output publick key 1.
* @param[out] public_k2 The output publick key 2.
* @return 0 Success.
* @return -1 Hardware error or time-out.
* @return -2 "ecc_curve" value is invalid.
*/
int32_t ECC_GeneratePublicKey(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *private_k, char public_k1[], char public_k2[])
{
int32_t ret = 0, i, i32TimeOutCnt;
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -2;
}
if (ret == 0)
{
CRPT->ECC_KSCTL = 0;
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = 0UL;
}
Hex2Reg(private_k, crpt->ECC_K);
/* set FSEL (Field selection) */
if (pCurve->GF == (int)CURVE_GF_2M)
{
crpt->ECC_CTL = 0UL;
}
else /* CURVE_GF_P */
{
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
g_ECC_done = g_ECCERR_done = 0UL;
crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) |
ECCOP_POINT_MUL | CRPT_ECC_CTL_START_Msk;
i32TimeOutCnt = TIMEOUT_ECC;
while (g_ECC_done == 0UL)
{
if ((i32TimeOutCnt-- <= 0) || g_ECCERR_done)
{
ret = -1;
break;
}
}
}
if (ret == 0)
{
Reg2Hex(pCurve->Echar, crpt->ECC_X1, public_k1);
Reg2Hex(pCurve->Echar, crpt->ECC_Y1, public_k2);
}
return ret;
}
/**
* @brief Given a private key and curve to generate the public key pair.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] mem Memory type of Key Store. It could be KS_SRAM, KS_FLASH or KS_OTP.
* @param[in] i32KeyIdx Index of the key in Key Store.
* @param[out] public_k1 The output publick key 1.
* @param[out] public_k2 The output publick key 2.
* @param[in] u32ExtraOp Extra options for ECC_KSCTL register.
* @return 0 Success.
* @return -1 Hardware error or time-out.
* @return -2 "ecc_curve" value is invalid.
*/
int32_t ECC_GeneratePublicKey_KS(CRPT_T *crpt, E_ECC_CURVE ecc_curve, KS_MEM_Type mem, int32_t i32KeyIdx, char public_k1[], char public_k2[], uint32_t u32ExtraOp)
{
int32_t ret = 0, i32TimeOutCnt;
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -2;
}
if (ret == 0)
{
// key from key store
crpt->ECC_KSCTL = (uint32_t)(mem << 6)/* KS Memory Type */ |
(CRPT_ECC_KSCTL_RSRCK_Msk)/* Key from KS */ |
u32ExtraOp |
(uint32_t)i32KeyIdx;
/* set FSEL (Field selection) */
if (pCurve->GF == (int)CURVE_GF_2M)
{
crpt->ECC_CTL = 0UL;
}
else /* CURVE_GF_P */
{
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
g_ECC_done = g_ECCERR_done = 0UL;
crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) |
ECCOP_POINT_MUL | CRPT_ECC_CTL_START_Msk;
i32TimeOutCnt = TIMEOUT_ECC;
while (g_ECC_done == 0UL)
{
if ((i32TimeOutCnt-- <= 0) || g_ECCERR_done)
{
ret = -1;
break;
}
}
}
if (ret == 0)
{
Reg2Hex(pCurve->Echar, crpt->ECC_X1, public_k1);
Reg2Hex(pCurve->Echar, crpt->ECC_Y1, public_k2);
}
return ret;
}
/**
* @brief Given a private key and curve to generate the public key pair.
* @param[in] crpt Reference to Crypto module.
* @param[out] x1 The x-coordinate of input point.
* @param[out] y1 The y-coordinate of input point.
* @param[in] k The private key
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[out] x2 The x-coordinate of output point.
* @param[out] y2 The y-coordinate of output point.
* @return 0 Success.
* @return -1 Hardware error or time-out.
* @return -2 "ecc_curve" value is invalid.
*/
int32_t ECC_Mutiply(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char x1[], char y1[], char *k, char x2[], char y2[])
{
int32_t i, ret = 0, i32TimeOutCnt;
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -2;
}
if (ret == 0)
{
for (i = 0; i < 9; i++)
{
crpt->ECC_X1[i] = 0UL;
crpt->ECC_Y1[i] = 0UL;
crpt->ECC_K[i] = 0UL;
}
Hex2Reg(x1, crpt->ECC_X1);
Hex2Reg(y1, crpt->ECC_Y1);
Hex2Reg(k, crpt->ECC_K);
/* set FSEL (Field selection) */
if (pCurve->GF == (int)CURVE_GF_2M)
{
crpt->ECC_CTL = 0UL;
}
else
{
/* CURVE_GF_P */
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
g_ECC_done = g_ECCERR_done = 0UL;
if (ecc_curve == CURVE_25519)
{
printf("!! Is curve-25519 !!\n");
crpt->ECC_CTL |= CRPT_ECC_CTL_SCAP_Msk;
crpt->ECC_CTL |= CRPT_ECC_CTL_CSEL_Msk;
/* If SCAP enabled, the curve order must be written to ECC_X2 */
if (crpt->ECC_CTL & CRPT_ECC_CTL_SCAP_Msk)
{
Hex2Reg(pCurve->Eorder, crpt->ECC_X2);
}
}
crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) |
ECCOP_POINT_MUL | CRPT_ECC_CTL_START_Msk;
i32TimeOutCnt = TIMEOUT_ECC;
while (g_ECC_done == 0UL)
{
if ((i32TimeOutCnt-- <= 0) || g_ECCERR_done)
{
ret = -1;
break;
}
}
}
if (ret == 0)
{
Reg2Hex(pCurve->Echar, crpt->ECC_X1, x2);
Reg2Hex(pCurve->Echar, crpt->ECC_Y1, y2);
}
return ret;
}
/**
* @brief Given a curve parameter, the other party's public key, and one's own private key to generate the secret Z.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] private_k One's own private key.
* @param[in] public_k1 The other party's publick key 1.
* @param[in] public_k2 The other party's publick key 2.
* @param[out] secret_z The ECC CDH secret Z.
* @return 0 Success.
* @return -1 Hardware error or time-out.
* @return -2 "ecc_curve" value is invalid.
*/
int32_t ECC_GenerateSecretZ(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *private_k, char public_k1[], char public_k2[], char secret_z[])
{
int32_t i, ret = 0, i32TimeOutCnt;
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -2;
}
if (ret == 0)
{
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = 0UL;
crpt->ECC_X1[i] = 0UL;
crpt->ECC_Y1[i] = 0UL;
}
if ((ecc_curve == CURVE_B_163) || (ecc_curve == CURVE_B_233) || (ecc_curve == CURVE_B_283) ||
(ecc_curve == CURVE_B_409) || (ecc_curve == CURVE_B_571) || (ecc_curve == CURVE_K_163))
{
Hex2RegEx(private_k, crpt->ECC_K, 1);
}
else if ((ecc_curve == CURVE_K_233) || (ecc_curve == CURVE_K_283) ||
(ecc_curve == CURVE_K_409) || (ecc_curve == CURVE_K_571))
{
Hex2RegEx(private_k, crpt->ECC_K, 2);
}
else
{
Hex2Reg(private_k, crpt->ECC_K);
}
Hex2Reg(public_k1, crpt->ECC_X1);
Hex2Reg(public_k2, crpt->ECC_Y1);
/* set FSEL (Field selection) */
if (pCurve->GF == (int)CURVE_GF_2M)
{
crpt->ECC_CTL = 0UL;
}
else /* CURVE_GF_P */
{
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
g_ECC_done = g_ECCERR_done = 0UL;
crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) |
ECCOP_POINT_MUL | CRPT_ECC_CTL_START_Msk;
i32TimeOutCnt = TIMEOUT_ECC;
while (g_ECC_done == 0UL)
{
if ((i32TimeOutCnt-- <= 0) || g_ECCERR_done)
{
ret = -1;
break;
}
}
}
if (ret == 0)
{
Reg2Hex(pCurve->Echar, crpt->ECC_X1, secret_z);
}
return ret;
}
/**
* @brief Given a curve parameter, the other party's public key, and one's own private key to generate the secret Z.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] private_k One's own private key.
* @param[in] public_k1 The other party's publick key 1.
* @param[in] public_k2 The other party's publick key 2.
* @param[out] secret_z The ECC CDH secret Z.
* @return 0 Success.
* @return -1 Hardware error or time-out.
* @return -2 "ecc_curve" value is invalid.
*/
int32_t ECC_GenerateSecretZ_KS(CRPT_T *crpt, E_ECC_CURVE ecc_curve, KS_MEM_Type mem, int32_t i32KeyIdx, char public_k1[], char public_k2[])
{
int32_t i, i32TimeOutCnt;
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
return -2;
}
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = 0UL;
crpt->ECC_X1[i] = 0UL;
crpt->ECC_Y1[i] = 0UL;
}
crpt->ECC_KSCTL = CRPT_ECC_KSCTL_ECDH_Msk | CRPT_ECC_KSCTL_RSRCK_Msk | CRPT_ECC_KSCTL_WDST_Msk |
(uint32_t)(mem << CRPT_ECC_KSCTL_RSSRCK_Pos)/* KS Memory Type */ |
(uint32_t)i32KeyIdx;
Hex2Reg(public_k1, crpt->ECC_X1);
Hex2Reg(public_k2, crpt->ECC_Y1);
/* set FSEL (Field selection) */
if (pCurve->GF == (int)CURVE_GF_2M)
{
crpt->ECC_CTL = 0UL;
}
else /* CURVE_GF_P */
{
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
g_ECC_done = g_ECCERR_done = 0UL;
crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) |
ECCOP_POINT_MUL | CRPT_ECC_CTL_START_Msk;
i32TimeOutCnt = TIMEOUT_ECC;
while (g_ECC_done == 0UL)
{
if ((i32TimeOutCnt-- <= 0) || g_ECCERR_done)
{
return -1;
}
}
return (crpt->ECC_KSSTS & 0x1f);
}
static int32_t run_ecc_codec(CRPT_T *crpt, uint32_t mode)
{
uint32_t eccop;
int32_t i32TimeOutCnt;
eccop = mode & CRPT_ECC_CTL_ECCOP_Msk;
if (eccop == ECCOP_MODULE)
{
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
else
{
if (pCurve->GF == (int)CURVE_GF_2M)
{
/* point */
crpt->ECC_CTL = 0UL;
}
else
{
/* CURVE_GF_P */
crpt->ECC_CTL = CRPT_ECC_CTL_FSEL_Msk;
}
#ifdef ECC_SCA_PROTECT
if (eccop == ECCOP_POINT_MUL)
{
/* Enable side-channel protection in some operation */
crpt->ECC_CTL |= CRPT_ECC_CTL_SCAP_Msk;
/* If SCAP enabled, the curve order must be written to ECC_X2 */
Hex2Reg(pCurve->Eorder, crpt->ECC_X2);
}
#endif
}
g_ECC_done = g_ECCERR_done = 0UL;
crpt->ECC_CTL |= ((uint32_t)pCurve->key_len << CRPT_ECC_CTL_CURVEM_Pos) | mode | CRPT_ECC_CTL_START_Msk;
i32TimeOutCnt = TIMEOUT_ECC;
while (g_ECC_done == 0UL)
{
if ((i32TimeOutCnt-- <= 0) || g_ECCERR_done)
{
return -1;
}
}
i32TimeOutCnt = TIMEOUT_ECC;
while (crpt->ECC_STS & CRPT_ECC_STS_BUSY_Msk)
{
if (i32TimeOutCnt-- <= 0)
{
return -1;
}
}
return 0;
}
/**
* @brief ECDSA digital signature generation.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] message The hash value of source context.
* @param[in] d The private key.
* @param[in] k The selected random integer.
* @param[out] R R of the (R,S) pair digital signature
* @param[out] S S of the (R,S) pair digital signature
* @return 0 Success.
* @return -1 "ecc_curve" value is invalid.
*/
int32_t ECC_GenerateSignature(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *message,
char *d, char *k, char *R, char *S)
{
uint32_t volatile temp_result1[18], temp_result2[18];
int32_t i, ret = 0;
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -1;
}
if (ret == 0)
{
CRPT->ECC_KSCTL = 0;
/*
* 1. Calculate e = HASH(m), where HASH is a cryptographic hashing algorithm, (i.e. SHA-1)
* (1) Use SHA to calculate e
*/
/* 2. Select a random integer k form [1, n-1]
* (1) Notice that n is order, not prime modulus or irreducible polynomial function
*/
/*
* 3. Compute r = x1 (mod n), where (x1, y1) = k * G. If r = 0, go to step 2
* (1) Write the curve parameter A, B, and curve length M to corresponding registers
* (2) Write the prime modulus or irreducible polynomial function to N registers according
* (3) Write the point G(x, y) to X1, Y1 registers
* (4) Write the random integer k to K register
* (5) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
* (6) Set FSEL(CRPT_ECC_CTL[8]) according to used curve of prime field or binary field
* (7) Set START(CRPT_ECC_CTL[0]) to 1
* (8) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (9) Write the curve order and curve length to N ,M registers according
* (10) Write 0x0 to Y1 registers
* (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (12) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
* (13) Set START(CRPT_ECC_CTL[0]) to 1 *
* (14) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (15) Read X1 registers to get r
*/
/* 3-(4) Write the random integer k to K register */
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = 0UL;
}
Hex2Reg(k, crpt->ECC_K);
run_ecc_codec(crpt, ECCOP_POINT_MUL);
/* 3-(9) Write the curve order to N registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 3-(10) Write 0x0 to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_ADD);
/* 3-(15) Read X1 registers to get r */
for (i = 0; i < 18; i++)
{
temp_result1[i] = crpt->ECC_X1[i];
}
Reg2Hex(pCurve->Echar, temp_result1, R);
/*
* 4. Compute s = k^-1 * (e + d * r)(mod n). If s = 0, go to step 2
* (1) Write the curve order to N registers according
* (2) Write 0x1 to Y1 registers
* (3) Write the random integer k to X1 registers according
* (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (5) Set MOPOP(CRPT_ECC_CTL[12:11]) to 00
* (6) Set START(CRPT_ECC_CTL[0]) to 1
* (7) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (8) Read X1 registers to get k^-1
* (9) Write the curve order and curve length to N ,M registers
* (10) Write r, d to X1, Y1 registers
* (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (12) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (13) Set START(CRPT_ECC_CTL[0]) to 1
* (14) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (15) Write the curve order to N registers
* (16) Write e to Y1 registers
* (17) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (18) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
* (19) Set START(CRPT_ECC_CTL[0]) to 1
* (20) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (21) Write the curve order and curve length to N ,M registers
* (22) Write k^-1 to Y1 registers
* (23) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (24) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (25) Set START(CRPT_ECC_CTL[0]) to 1
* (26) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (27) Read X1 registers to get s
*/
/* S/W: GFp_add_mod_order(pCurve->key_len+2, 0, x1, a, R); */
/* 4-(1) Write the curve order to N registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(2) Write 0x1 to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
crpt->ECC_Y1[0] = 0x1UL;
/* 4-(3) Write the random integer k to X1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
}
Hex2Reg(k, crpt->ECC_X1);
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_DIV);
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("(7) output = %s\n", temp_hex_str);
#endif
/* 4-(8) Read X1 registers to get k^-1 */
for (i = 0; i < 18; i++)
{
temp_result2[i] = crpt->ECC_X1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
CRPT_DBGMSG("k^-1 = %s\n", temp_hex_str);
#endif
/* 4-(9) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(10) Write r, d to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = temp_result1[i];
}
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
Hex2Reg(d, crpt->ECC_Y1);
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("(14) output = %s\n", temp_hex_str);
#endif
/* 4-(15) Write the curve order to N registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(16) Write e to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
Hex2Reg(message, crpt->ECC_Y1);
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_ADD);
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("(20) output = %s\n", temp_hex_str);
#endif
/* 4-(21) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(22) Write k^-1 to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = temp_result2[i];
}
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
/* 4-(27) Read X1 registers to get s */
for (i = 0; i < 18; i++)
{
temp_result2[i] = crpt->ECC_X1[i];
}
Reg2Hex(pCurve->Echar, temp_result2, S);
} /* ret == 0 */
return ret;
}
/**
* @brief ECDSA digital signature generation.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] message The hash value of source context.
* @param[in] d The private key.
* @param[in] k The selected random integer.
* @param[out] R R of the (R,S) pair digital signature
* @param[out] S S of the (R,S) pair digital signature
* @return 0 Success.
* @return -1 "ecc_curve" value is invalid.
*/
int32_t ECC_GenerateSignature_KS(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *message, KS_MEM_Type mem_d, int32_t i32KeyIdx_d, KS_MEM_Type mem_k, int32_t i32KeyIdx_k, char *R, char *S)
{
uint32_t volatile temp_result1[18], temp_result2[18];
int32_t i, ret = 0;
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -1;
}
if (ret == 0)
{
CRPT->ECC_KSCTL = 0;
CRPT->ECC_KSXY = 0;
/*
* 1. Calculate e = HASH(m), where HASH is a cryptographic hashing algorithm, (i.e. SHA-1)
* (1) Use SHA to calculate e
*/
/* 2. Select a random integer k form [1, n-1]
* (1) Notice that n is order, not prime modulus or irreducible polynomial function
*/
/*
* 3. Compute r = x1 (mod n), where (x1, y1) = k * G. If r = 0, go to step 2
* (1) Write the curve parameter A, B, and curve length M to corresponding registers
* (2) Write the prime modulus or irreducible polynomial function to N registers according
* (3) Write the point G(x, y) to X1, Y1 registers
* (4) Write the random integer k to K register
* (5) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
* (6) Set FSEL(CRPT_ECC_CTL[8]) according to used curve of prime field or binary field
* (7) Set START(CRPT_ECC_CTL[0]) to 1
* (8) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (9) Write the curve order and curve length to N ,M registers according
* (10) Write 0x0 to Y1 registers
* (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (12) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
* (13) Set START(CRPT_ECC_CTL[0]) to 1 *
* (14) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (15) Read X1 registers to get r
*/
/* 3-(4) Use k in Key Store */
crpt->ECC_KSCTL = (uint32_t)(mem_k << CRPT_ECC_KSCTL_RSSRCK_Pos)/* KS Memory Type */ |
CRPT_ECC_KSCTL_RSRCK_Msk/* Key from KS */ |
(uint32_t)i32KeyIdx_k;
run_ecc_codec(crpt, ECCOP_POINT_MUL | OP_ECDSAR);
/* 3-(9) Write the curve order to N registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 3-(10) Write 0x0 to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_ADD);
/* 3-(15) Read X1 registers to get r */
for (i = 0; i < 18; i++)
{
temp_result1[i] = crpt->ECC_X1[i];
}
Reg2Hex(pCurve->Echar, temp_result1, R);
/*
* 4. Compute s = k ^-1 * (e + d * r)(mod n). If s = 0, go to step 2
* (1) Write the curve order to N registers according
* (2) Write 0x1 to Y1 registers
* (3) Write the random integer k to X1 registers according
* (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (5) Set MOPOP(CRPT_ECC_CTL[12:11]) to 00
* (6) Set START(CRPT_ECC_CTL[0]) to 1
* (7) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (8) Read X1 registers to get k^-1
* (9) Write the curve order and curve length to N ,M registers
* (10) Write r, d to X1, Y1 registers
* (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (12) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (13) Set START(CRPT_ECC_CTL[0]) to 1
* (14) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (15) Write the curve order to N registers
* (16) Write e to Y1 registers
* (17) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (18) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
* (19) Set START(CRPT_ECC_CTL[0]) to 1
* (20) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (21) Write the curve order and curve length to N ,M registers
* (22) Write k^-1 to Y1 registers
* (23) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (24) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (25) Set START(CRPT_ECC_CTL[0]) to 1
* (26) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (27) Read X1 registers to get s
*/
/* S/W: GFp_add_mod_order(pCurve->key_len+2, 0, x1, a, R); */
/* 4-(1) Write the curve order to N registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(2)(3)(4)(5) Use d, k in Key Store */
crpt->ECC_CTL = 0;
crpt->ECC_KSXY = CRPT_ECC_KSXY_RSRCXY_Msk |
(uint32_t)(mem_k << CRPT_ECC_KSXY_RSSRCX_Pos) | ((uint32_t)i32KeyIdx_k << CRPT_ECC_KSXY_NUMX_Pos) | // Key Store index of k
(uint32_t)(mem_d << CRPT_ECC_KSXY_RSSRCY_Pos) | ((uint32_t)i32KeyIdx_d << CRPT_ECC_KSXY_NUMY_Pos); // Key Store index of d
// 4-5
for (i = 0; i < 18; i++)
{
crpt->ECC_X2[i] = temp_result1[i];
crpt->ECC_Y2[i] = 0;
}
Hex2Reg(message, crpt->ECC_Y2);
run_ecc_codec(crpt, ECCOP_MODULE | OP_ECDSAS);
/* 4-11 Read X1 registers to get s */
for (i = 0; i < 18; i++)
{
temp_result2[i] = crpt->ECC_X1[i];
}
Reg2Hex(pCurve->Echar, temp_result2, S);
/* Clear KS Control */
CRPT->ECC_KSCTL = 0;
CRPT->ECC_KSXY = 0;
} /* ret == 0 */
return ret;
}
/**
* @brief ECDSA dogotal signature verification.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] message The hash value of source context.
* @param[in] public_k1 The public key 1.
* @param[in] public_k2 The public key 2.
* @param[in] R R of the (R,S) pair digital signature
* @param[in] S S of the (R,S) pair digital signature
* @return 0 Success.
* @return -1 "ecc_curve" value is invalid.
* @return -2 Verification failed.
*/
int32_t ECC_VerifySignature(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *message,
char *public_k1, char *public_k2, char *R, char *S)
{
uint32_t temp_result1[18], temp_result2[18];
uint32_t temp_x[18], temp_y[18];
int32_t i, ret = 0;
/*
* 1. Verify that r and s are integers in the interval [1, n-1]. If not, the signature is invalid
* 2. Compute e = HASH (m), where HASH is the hashing algorithm in signature generation
* (1) Use SHA to calculate e
*/
/*
* 3. Compute w = s^-1 (mod n)
* (1) Write the curve order to N registers
* (2) Write 0x1 to Y1 registers
* (3) Write s to X1 registers
* (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (5) Set MOPOP(CRPT_ECC_CTL[12:11]) to 00
* (6) Set FSEL(CRPT_ECC_CTL[8]) according to used curve of prime field or binary field
* (7) Set START(CRPT_ECC_CTL[0]) to 1
* (8) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (9) Read X1 registers to get w
*/
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -1;
}
if (ret == 0)
{
/* 3-(1) Write the curve order to N registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 3-(2) Write 0x1 to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
crpt->ECC_Y1[0] = 0x1UL;
/* 3-(3) Write s to X1 registers */
for (i = 0; i < 18; i++)
{
CRPT->ECC_X1[i] = 0UL;
}
Hex2Reg(S, crpt->ECC_X1);
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_DIV);
/* 3-(9) Read X1 registers to get w */
for (i = 0; i < 18; i++)
{
temp_result2[i] = crpt->ECC_X1[i];
}
#if ENABLE_DEBUG
CRPT_DBGMSG("e = %s\n", message);
Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
CRPT_DBGMSG("w = %s\n", temp_hex_str);
CRPT_DBGMSG("o = %s (order)\n", pCurve->Eorder);
#endif
/*
* 4. Compute u1 = e * w (mod n) and u2 = r * w (mod n)
* (1) Write the curve order and curve length to N ,M registers
* (2) Write e, w to X1, Y1 registers
* (3) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (4) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (5) Set START(CRPT_ECC_CTL[0]) to 1
* (6) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (7) Read X1 registers to get u1
* (8) Write the curve order and curve length to N ,M registers
* (9) Write r, w to X1, Y1 registers
* (10) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (11) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (12) Set START(CRPT_ECC_CTL[0]) to 1
* (13) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (14) Read X1 registers to get u2
*/
/* 4-(1) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(2) Write e, w to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
}
Hex2Reg(message, crpt->ECC_X1);
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = temp_result2[i];
}
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
/* 4-(7) Read X1 registers to get u1 */
for (i = 0; i < 18; i++)
{
temp_result1[i] = crpt->ECC_X1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_result1, temp_hex_str);
CRPT_DBGMSG("u1 = %s\n", temp_hex_str);
#endif
/* 4-(8) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(9) Write r, w to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
}
Hex2Reg(R, crpt->ECC_X1);
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = temp_result2[i];
}
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
/* 4-(14) Read X1 registers to get u2 */
for (i = 0; i < 18; i++)
{
temp_result2[i] = crpt->ECC_X1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
CRPT_DBGMSG("u2 = %s\n", temp_hex_str);
#endif
/*
* 5. Compute X * (x1', y1') = u1 * G + u2 * Q
* (1) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (2) Write the point G(x, y) to X1, Y1 registers
* (3) Write u1 to K registers
* (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
* (5) Set START(CRPT_ECC_CTL[0]) to 1
* (6) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (7) Read X1, Y1 registers to get u1*G
* (8) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (9) Write the public key Q(x,y) to X1, Y1 registers
* (10) Write u2 to K registers
* (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
* (12) Set START(CRPT_ECC_CTL[0]) to 1
* (13) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (14) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (15) Write the result data u1*G to X2, Y2 registers
* (16) Set ECCOP(CRPT_ECC_CTL[10:9]) to 10
* (17) Set START(CRPT_ECC_CTL[0]) to 1
* (18) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (19) Read X1, Y1 registers to get X *(x1', y1')
* (20) Write the curve order and curve length to N ,M registers
* (21) Write x1 * to X1 registers
* (22) Write 0x0 to Y1 registers
* (23) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (24) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
* (25) Set START(CRPT_ECC_CTL[0]) to 1
* (26) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (27) Read X1 registers to get x1 * (mod n)
*
* 6. The signature is valid if x1 * = r, otherwise it is invalid
*/
/*
* (1) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (2) Write the point G(x, y) to X1, Y1 registers
*/
ecc_init_curve(crpt, ecc_curve);
/* (3) Write u1 to K registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = temp_result1[i];
}
run_ecc_codec(crpt, ECCOP_POINT_MUL);
/* (7) Read X1, Y1 registers to get u1*G */
for (i = 0; i < 18; i++)
{
temp_x[i] = crpt->ECC_X1[i];
temp_y[i] = crpt->ECC_Y1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_x, temp_hex_str);
CRPT_DBGMSG("5-(7) u1*G, x = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, temp_y, temp_hex_str);
CRPT_DBGMSG("5-(7) u1*G, y = %s\n", temp_hex_str);
#endif
/* (8) Write the curve parameter A, B, N, and curve length M to corresponding registers */
ecc_init_curve(crpt, ecc_curve);
/* (9) Write the public key Q(x,y) to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
crpt->ECC_Y1[i] = 0UL;
}
Hex2Reg(public_k1, crpt->ECC_X1);
Hex2Reg(public_k2, crpt->ECC_Y1);
/* (10) Write u2 to K registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = temp_result2[i];
}
run_ecc_codec(crpt, ECCOP_POINT_MUL);
for (i = 0; i < 18; i++)
{
temp_result1[i] = crpt->ECC_X1[i];
temp_result2[i] = crpt->ECC_Y1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_result1, temp_hex_str);
CRPT_DBGMSG("5-(13) u2*Q, x = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
CRPT_DBGMSG("5-(13) u2*Q, y = %s\n", temp_hex_str);
#endif
/* (14) Write the curve parameter A, B, N, and curve length M to corresponding registers */
ecc_init_curve(crpt, ecc_curve);
/* Write the result data u2*Q to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = temp_result1[i];
crpt->ECC_Y1[i] = temp_result2[i];
}
/* (15) Write the result data u1*G to X2, Y2 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X2[i] = temp_x[i];
crpt->ECC_Y2[i] = temp_y[i];
}
run_ecc_codec(crpt, ECCOP_POINT_ADD);
/* (19) Read X1, Y1 registers to get X * (x1', y1') */
for (i = 0; i < 18; i++)
{
temp_x[i] = crpt->ECC_X1[i];
temp_y[i] = crpt->ECC_Y1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_x, temp_hex_str);
CRPT_DBGMSG("5-(19) x' = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, temp_y, temp_hex_str);
CRPT_DBGMSG("5-(19) y' = %s\n", temp_hex_str);
#endif
/* (20) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/*
* (21) Write x1 * to X1 registers
* (22) Write 0x0 to Y1 registers
*/
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = temp_x[i];
crpt->ECC_Y1[i] = 0UL;
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("5-(21) x' = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, crpt->ECC_Y1, temp_hex_str);
CRPT_DBGMSG("5-(22) y' = %s\n", temp_hex_str);
#endif
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_ADD);
/* (27) Read X1 registers to get x1 * (mod n) */
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("5-(27) x1' (mod n) = %s\n", temp_hex_str);
/* 6. The signature is valid if x1 * = r, otherwise it is invalid */
/* Compare with test pattern to check if r is correct or not */
if (strcasecmp(temp_hex_str, R) != 0)
{
CRPT_DBGMSG("x1' (mod n) != R Test filed!!\n");
CRPT_DBGMSG("Signature R [%s] is not matched with expected R [%s]!\n", temp_hex_str, R);
ret = -2;
}
} /* ret == 0 */
return ret;
}
/**
* @brief ECDSA signature verification with Key Store
* @param[in] crpt The pointer of CRYPTO module
* @param[in] ecc_curve The pre-defined ECC curve.
* @param[in] message The hash value of source context.
* @param[in] public_k1 The public key 1.
* @param[in] public_k2 The public key 2.
* @param[in] R R of the (R,S) pair digital signature
* @param[in] S S of the (R,S) pair digital signature
* @return 0 Success.
* @return -1 "ecc_curve" value is invalid.
* @return -2 Verification failed.
*/
int32_t ECC_VerifySignature_KS(CRPT_T *crpt, E_ECC_CURVE ecc_curve, char *message, KS_MEM_Type mem_pk1, int32_t i32KeyIdx_pk1, KS_MEM_Type mem_pk2, int32_t i32KeyIdx_pk2, char *R, char *S)
{
uint32_t temp_result1[18], temp_result2[18];
uint32_t temp_x[18], temp_y[18];
int32_t i, ret = 0;
/*
* 1. Verify that r and s are integers in the interval [1, n-1]. If not, the signature is invalid
* 2. Compute e = HASH (m), where HASH is the hashing algorithm in signature generation
* (1) Use SHA to calculate e
*/
/*
* 3. Compute w = s^-1 (mod n)
* (1) Write the curve order to N registers
* (2) Write 0x1 to Y1 registers
* (3) Write s to X1 registers
* (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (5) Set MOPOP(CRPT_ECC_CTL[12:11]) to 00
* (6) Set FSEL(CRPT_ECC_CTL[8]) according to used curve of prime field or binary field
* (7) Set START(CRPT_ECC_CTL[0]) to 1
* (8) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (9) Read X1 registers to get w
*/
if (ecc_init_curve(crpt, ecc_curve) != 0)
{
ret = -1;
}
if (ret == 0)
{
crpt->ECC_KSCTL = 0;
crpt->ECC_KSXY = 0;
/* 3-(1) Write the curve order to N registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 3-(2) Write 0x1 to Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = 0UL;
}
crpt->ECC_Y1[0] = 0x1UL;
/* 3-(3) Write s to X1 registers */
for (i = 0; i < 18; i++)
{
CRPT->ECC_X1[i] = 0UL;
}
Hex2Reg(S, crpt->ECC_X1);
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_DIV);
/* 3-(9) Read X1 registers to get w */
for (i = 0; i < 18; i++)
{
temp_result2[i] = crpt->ECC_X1[i];
}
#if ENABLE_DEBUG
CRPT_DBGMSG("e = %s\n", message);
Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
CRPT_DBGMSG("w = %s\n", temp_hex_str);
CRPT_DBGMSG("o = %s (order)\n", pCurve->Eorder);
#endif
/*
* 4. Compute u1 = e * w (mod n) and u2 = r * w (mod n)
* (1) Write the curve order and curve length to N ,M registers
* (2) Write e, w to X1, Y1 registers
* (3) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (4) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (5) Set START(CRPT_ECC_CTL[0]) to 1
* (6) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (7) Read X1 registers to get u1
* (8) Write the curve order and curve length to N ,M registers
* (9) Write r, w to X1, Y1 registers
* (10) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (11) Set MOPOP(CRPT_ECC_CTL[12:11]) to 01
* (12) Set START(CRPT_ECC_CTL[0]) to 1
* (13) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (14) Read X1 registers to get u2
*/
/* 4-(1) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(2) Write e, w to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
}
Hex2Reg(message, crpt->ECC_X1);
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = temp_result2[i];
}
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
/* 4-(7) Read X1 registers to get u1 */
for (i = 0; i < 18; i++)
{
temp_result1[i] = crpt->ECC_X1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_result1, temp_hex_str);
CRPT_DBGMSG("u1 = %s\n", temp_hex_str);
#endif
/* 4-(8) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/* 4-(9) Write r, w to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
}
Hex2Reg(R, crpt->ECC_X1);
for (i = 0; i < 18; i++)
{
crpt->ECC_Y1[i] = temp_result2[i];
}
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_MUL);
/* 4-(14) Read X1 registers to get u2 */
for (i = 0; i < 18; i++)
{
temp_result2[i] = crpt->ECC_X1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
CRPT_DBGMSG("u2 = %s\n", temp_hex_str);
#endif
/*
* 5. Compute X * (x1', y1') = u1 * G + u2 * Q
* (1) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (2) Write the point G(x, y) to X1, Y1 registers
* (3) Write u1 to K registers
* (4) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
* (5) Set START(CRPT_ECC_CTL[0]) to 1
* (6) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (7) Read X1, Y1 registers to get u1*G
* (8) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (9) Write the public key Q(x,y) to X1, Y1 registers
* (10) Write u2 to K registers
* (11) Set ECCOP(CRPT_ECC_CTL[10:9]) to 00
* (12) Set START(CRPT_ECC_CTL[0]) to 1
* (13) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (14) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (15) Write the result data u1*G to X2, Y2 registers
* (16) Set ECCOP(CRPT_ECC_CTL[10:9]) to 10
* (17) Set START(CRPT_ECC_CTL[0]) to 1
* (18) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (19) Read X1, Y1 registers to get X * (x1', y1')
* (20) Write the curve order and curve length to N ,M registers
* (21) Write x1 * to X1 registers
* (22) Write 0x0 to Y1 registers
* (23) Set ECCOP(CRPT_ECC_CTL[10:9]) to 01
* (24) Set MOPOP(CRPT_ECC_CTL[12:11]) to 10
* (25) Set START(CRPT_ECC_CTL[0]) to 1
* (26) Wait for BUSY(CRPT_ECC_STS[0]) be cleared
* (27) Read X1 registers to get x1 * (mod n)
*
* 6. The signature is valid if x1 * = r, otherwise it is invalid
*/
/*
* (1) Write the curve parameter A, B, N, and curve length M to corresponding registers
* (2) Write the point G(x, y) to X1, Y1 registers
*/
ecc_init_curve(crpt, ecc_curve);
/* (3) Write u1 to K registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = temp_result1[i];
}
run_ecc_codec(crpt, ECCOP_POINT_MUL);
/* (7) Read X1, Y1 registers to get u1*G */
for (i = 0; i < 18; i++)
{
temp_x[i] = crpt->ECC_X1[i];
temp_y[i] = crpt->ECC_Y1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_x, temp_hex_str);
CRPT_DBGMSG("5-(7) u1*G, x = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, temp_y, temp_hex_str);
CRPT_DBGMSG("5-(7) u1*G, y = %s\n", temp_hex_str);
#endif
/* (8) Write the curve parameter A, B, N, and curve length M to corresponding registers */
ecc_init_curve(crpt, ecc_curve);
/* (9) Write the public key Q(x,y) to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = 0UL;
crpt->ECC_Y1[i] = 0UL;
}
#if 0
Hex2Reg(public_k1, crpt->ECC_X1);
Hex2Reg(public_k2, crpt->ECC_Y1);
#else
/* 5-(2) Get the public key from key store */
crpt->ECC_KSCTL = 0ul;
crpt->ECC_KSXY = CRPT_ECC_KSXY_RSRCXY_Msk |
(uint32_t)(mem_pk1 << CRPT_ECC_KSXY_RSSRCX_Pos) | ((uint32_t)i32KeyIdx_pk1 << CRPT_ECC_KSXY_NUMX_Pos) | // Key Store index of pk1
(uint32_t)(mem_pk2 << CRPT_ECC_KSXY_RSSRCY_Pos) | ((uint32_t)i32KeyIdx_pk2 << CRPT_ECC_KSXY_NUMY_Pos); // Key Store index of pk2
#endif
/* (10) Write u2 to K registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_K[i] = temp_result2[i];
}
run_ecc_codec(crpt, ECCOP_POINT_MUL);
for (i = 0; i < 18; i++)
{
temp_result1[i] = crpt->ECC_X1[i];
temp_result2[i] = crpt->ECC_Y1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_result1, temp_hex_str);
CRPT_DBGMSG("5-(13) u2*Q, x = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, temp_result2, temp_hex_str);
CRPT_DBGMSG("5-(13) u2*Q, y = %s\n", temp_hex_str);
#endif
/* (14) Write the curve parameter A, B, N, and curve length M to corresponding registers */
ecc_init_curve(crpt, ecc_curve);
/* Write the result data u2*Q to X1, Y1 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = temp_result1[i];
crpt->ECC_Y1[i] = temp_result2[i];
}
/* (15) Write the result data u1*G to X2, Y2 registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_X2[i] = temp_x[i];
crpt->ECC_Y2[i] = temp_y[i];
}
run_ecc_codec(crpt, ECCOP_POINT_ADD);
/* (19) Read X1, Y1 registers to get X * (x1', y1') */
for (i = 0; i < 18; i++)
{
temp_x[i] = crpt->ECC_X1[i];
temp_y[i] = crpt->ECC_Y1[i];
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, temp_x, temp_hex_str);
CRPT_DBGMSG("5-(19) x' = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, temp_y, temp_hex_str);
CRPT_DBGMSG("5-(19) y' = %s\n", temp_hex_str);
#endif
/* (20) Write the curve order and curve length to N ,M registers */
for (i = 0; i < 18; i++)
{
crpt->ECC_N[i] = 0UL;
}
Hex2Reg(pCurve->Eorder, crpt->ECC_N);
/*
* (21) Write x1 * to X1 registers
* (22) Write 0x0 to Y1 registers
*/
for (i = 0; i < 18; i++)
{
crpt->ECC_X1[i] = temp_x[i];
crpt->ECC_Y1[i] = 0UL;
}
#if ENABLE_DEBUG
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("5-(21) x' = %s\n", temp_hex_str);
Reg2Hex(pCurve->Echar, crpt->ECC_Y1, temp_hex_str);
CRPT_DBGMSG("5-(22) y' = %s\n", temp_hex_str);
#endif
run_ecc_codec(crpt, ECCOP_MODULE | MODOP_ADD);
/* (27) Read X1 registers to get x1 * (mod n) */
Reg2Hex(pCurve->Echar, crpt->ECC_X1, temp_hex_str);
CRPT_DBGMSG("5-(27) x1' (mod n) = %s\n", temp_hex_str);
/* 6. The signature is valid if x1 * = r, otherwise it is invalid */
/* Compare with test pattern to check if r is correct or not */
if (strcasecmp(temp_hex_str, R) != 0)
{
CRPT_DBGMSG("x1' (mod n) != R Test filed!!\n");
CRPT_DBGMSG("Signature R [%s] is not matched with expected R [%s]!\n", temp_hex_str, R);
ret = -2;
}
} /* ret == 0 */
return ret;
}
static ECC_CURVE *get_curve(E_ECC_CURVE ecc_curve)
{
uint32_t i;
ECC_CURVE *ret = NULL;
for (i = 0UL; i < sizeof(_Curve) / sizeof(ECC_CURVE); i++)
{
if (ecc_curve == _Curve[i].curve_id)
{
memcpy((char *)&Curve_Copy, &_Curve[i], sizeof(ECC_CURVE));
ret = &Curve_Copy; /* (ECC_CURVE *)&_Curve[i]; */
}
if (ret != NULL)
{
break;
}
}
return ret;
}
/**
* @brief ECC interrupt service routine. User application must invoke this function in
* his CRYPTO_IRQHandler() to let Crypto driver know ECC processing was done.
* @param[in] crpt Reference to Crypto module.
* @return none
*/
void ECC_Complete(CRPT_T *crpt)
{
if (crpt->INTSTS & CRPT_INTSTS_ECCIF_Msk)
{
g_ECC_done = 1UL;
crpt->INTSTS = CRPT_INTSTS_ECCIF_Msk;
/* printf("ECC done IRQ.\n"); */
}
if (crpt->INTSTS & CRPT_INTSTS_ECCEIF_Msk)
{
g_ECCERR_done = 1UL;
crpt->INTSTS = CRPT_INTSTS_ECCEIF_Msk;
printf("ECCEIF flag is set!!\n");
}
}
int32_t ECC_GetCurve(CRPT_T *crpt, E_ECC_CURVE ecc_curve, ECC_CURVE *curve)
{
int32_t err;
/* Update pCurve pointer */
err = ecc_init_curve(crpt, ecc_curve);
if (err == 0)
{
/* get curve */
memcpy(curve, pCurve, sizeof(ECC_CURVE));
}
return err;
}
/*-----------------------------------------------------------------------------------------------*/
/* */
/* RSA */
/* */
/*-----------------------------------------------------------------------------------------------*/
/** @cond HIDDEN_SYMBOLS */
static void *s_pRSABuf;
static uint32_t s_u32RsaOpMode;
typedef enum
{
BUF_NORMAL,
BUF_CRT,
BUF_CRTBYPASS,
BUF_SCAP,
BUF_CRT_SCAP,
BUF_CRTBYPASS_SCAP,
BUF_KS
} E_RSA_BUF_SEL;
static int32_t CheckRsaBufferSize(uint32_t u32OpMode, uint32_t u32BufSize, uint32_t u32UseKS);
/** @endcond HIDDEN_SYMBOLS */
/* Check the allocated buffer size for RSA operation. */
static int32_t CheckRsaBufferSize(uint32_t u32OpMode, uint32_t u32BufSize, uint32_t u32UseKS)
{
/* RSA buffer size for MODE_NORMAL, MODE_CRT, MODE_CRTBYPASS, MODE_SCAP, MODE_CRT_SCAP, MODE_CRTBYPASS_SCAP */
uint32_t s_au32RsaBufSizeTbl[] = {sizeof(RSA_BUF_NORMAL_T), sizeof(RSA_BUF_CRT_T), sizeof(RSA_BUF_CRT_T), \
sizeof(RSA_BUF_SCAP_T), sizeof(RSA_BUF_CRT_SCAP_T), sizeof(RSA_BUF_CRT_SCAP_T), \
sizeof(RSA_BUF_KS_T)
};
if (u32UseKS)
{
if (u32BufSize != s_au32RsaBufSizeTbl[BUF_KS])
return (-1);
}
else
{
switch (u32OpMode)
{
case RSA_MODE_NORMAL:
if (u32BufSize != s_au32RsaBufSizeTbl[BUF_NORMAL])
return (-1);
break;
case RSA_MODE_CRT:
if (u32BufSize != s_au32RsaBufSizeTbl[BUF_CRT])
return (-1);
break;
case RSA_MODE_CRTBYPASS:
if (u32BufSize != s_au32RsaBufSizeTbl[BUF_CRTBYPASS])
return (-1);
break;
case RSA_MODE_SCAP:
if (u32BufSize != s_au32RsaBufSizeTbl[BUF_SCAP])
return (-1);
break;
case RSA_MODE_CRT_SCAP:
if (u32BufSize != s_au32RsaBufSizeTbl[BUF_CRT_SCAP])
return (-1);
break;
case RSA_MODE_CRTBYPASS_SCAP:
if (u32BufSize != s_au32RsaBufSizeTbl[BUF_CRTBYPASS_SCAP])
return (-1);
break;
default:
return (-1);
}
}
return 0;
}
/**
* @brief Open RSA encrypt/decrypt function.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32OpMode RSA operation mode, including:
* - \ref RSA_MODE_NORMAL
* - \ref RSA_MODE_CRT
* - \ref RSA_MODE_CRTBYPASS
* - \ref RSA_MODE_SCAP
* - \ref RSA_MODE_CRT_SCAP
* - \ref RSA_MODE_CRTBYPASS_SCAP
* @param[in] u32KeySize is RSA key size, including:
* - \ref RSA_KEY_SIZE_1024
* - \ref RSA_KEY_SIZE_2048
* - \ref RSA_KEY_SIZE_3072
* - \ref RSA_KEY_SIZE_4096
* @param[in] psRSA_Buf The pointer of RSA buffer struct. User should declare correct RSA buffer for specific operation mode first.
* - \ref RSA_BUF_NORMAL_T The struct for normal mode
* - \ref RSA_BUF_CRT_T The struct for CRT ( + CRT bypass) mode
* - \ref RSA_BUF_SCAP_T The struct for SCAP mode
* - \ref RSA_BUF_CRT_SCAP_T The struct for CRT ( + CRT bypass) +SCAP mode
* - \ref RSA_BUF_KS_T The struct for using key store
* @param[in] u32BufSize is RSA buffer size.
* @param[in] u32UseKS is use key store function.
* - \ref 0 No use key store function
* - \ref 1 Use key store function
* @return 0 Success.
* @return -1 The value of pointer of RSA buffer struct is null.
*/
int32_t RSA_Open(CRPT_T *crpt, uint32_t u32OpMode, uint32_t u32KeySize, \
void *psRSA_Buf, uint32_t u32BufSize, uint32_t u32UseKS)
{
if (psRSA_Buf == 0)
{
return (-1);
}
if (CheckRsaBufferSize(u32OpMode, u32BufSize, u32UseKS) != 0)
{
return (-1);
}
s_u32RsaOpMode = u32OpMode;
s_pRSABuf = psRSA_Buf;
crpt->RSA_CTL = (u32OpMode) | (u32KeySize << CRPT_RSA_CTL_KEYLENG_Pos);
return 0;
}
/**
* @brief Set the RSA key
* @param[in] crpt The pointer of CRYPTO module
* @param[in] Key The private or public key.
* @return 0 Success.
* @return -1 The value of pointer of RSA buffer struct is null.
*/
int32_t RSA_SetKey(CRPT_T *crpt, char *Key)
{
if (s_pRSABuf == 0)
{
return (-1);
}
Hex2Reg(Key, ((RSA_BUF_NORMAL_T *)s_pRSABuf)->au32RsaE);
crpt->RSA_SADDR[2] = (uint32_t) & ((RSA_BUF_NORMAL_T *)s_pRSABuf)->au32RsaE; /* the public key or private key */
return 0;
}
/**
* @brief Set RSA DMA transfer configuration.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] Src RSA DMA source data
* @param[in] n The modulus for both the public and private keys
* @param[in] P The factor of modulus operation(P) for CRT/SCAP mode
* @param[in] Q The factor of modulus operation(Q) for CRT/SCAP mode
* @return 0 Success.
* @return -1 The value of pointer of RSA buffer struct is null.
*/
int32_t RSA_SetDMATransfer(CRPT_T *crpt, char *Src, char *n, char *P, char *Q)
{
if (s_pRSABuf == 0)
{
return (-1);
}
Hex2Reg(Src, ((RSA_BUF_NORMAL_T *)s_pRSABuf)->au32RsaM);
Hex2Reg(n, ((RSA_BUF_NORMAL_T *)s_pRSABuf)->au32RsaN);
/* Assign the data to DMA */
crpt->RSA_SADDR[0] = (uint32_t) & ((RSA_BUF_NORMAL_T *)s_pRSABuf)->au32RsaM; /* plaintext / encrypt data */
crpt->RSA_SADDR[1] = (uint32_t) & ((RSA_BUF_NORMAL_T *)s_pRSABuf)->au32RsaN; /* the base of modulus operation */
crpt->RSA_DADDR = (uint32_t) & ((RSA_BUF_NORMAL_T *)s_pRSABuf)->au32RsaOutput; /* encrypt data / decrypt data */
if ((s_u32RsaOpMode & CRPT_RSA_CTL_CRT_Msk) && (s_u32RsaOpMode & CRPT_RSA_CTL_SCAP_Msk))
{
/* For RSA CRT/SCAP mode, two primes of private key */
Hex2Reg(P, ((RSA_BUF_CRT_SCAP_T *)s_pRSABuf)->au32RsaP);
Hex2Reg(Q, ((RSA_BUF_CRT_SCAP_T *)s_pRSABuf)->au32RsaQ);
crpt->RSA_SADDR[3] = (uint32_t) & ((RSA_BUF_CRT_SCAP_T *)s_pRSABuf)->au32RsaP; /* prime P */
crpt->RSA_SADDR[4] = (uint32_t) & ((RSA_BUF_CRT_SCAP_T *)s_pRSABuf)->au32RsaQ; /* prime Q */
crpt->RSA_MADDR[0] = (uint32_t) & ((RSA_BUF_CRT_SCAP_T *)s_pRSABuf)->au32RsaTmpCp; /* for storing the intermediate temporary value(Cp) */
crpt->RSA_MADDR[1] = (uint32_t) & ((RSA_BUF_CRT_SCAP_T *)s_pRSABuf)->au32RsaTmpCq; /* for storing the intermediate temporary value(Cq) */
crpt->RSA_MADDR[2] = (uint32_t) & ((RSA_BUF_CRT_SCAP_T *)s_pRSABuf)->au32RsaTmpDp; /* for storing the intermediate temporary value(Dp) */
crpt->RSA_MADDR[3] = (uint32_t) & ((RSA_BUF_CRT_SCAP_T *)s_pRSABuf)->au32RsaTmpDq; /* for storing the intermediate temporary value(Dq) */
crpt->RSA_MADDR[4] = (uint32_t) & ((RSA_BUF_CRT_SCAP_T *)s_pRSABuf)->au32RsaTmpRp; /* for storing the intermediate temporary value(Rp) */
crpt->RSA_MADDR[5] = (uint32_t) & ((RSA_BUF_CRT_SCAP_T *)s_pRSABuf)->au32RsaTmpRq; /* for storing the intermediate temporary value(Rq) */
/* For SCAP mode to store the intermediate temporary value(blind key) */
crpt->RSA_MADDR[6] = (uint32_t) & ((RSA_BUF_CRT_SCAP_T *)s_pRSABuf)->au32RsaTmpBlindKey;
}
else if (s_u32RsaOpMode & CRPT_RSA_CTL_CRT_Msk)
{
/* For RSA CRT/SCAP mode, two primes of private key */
Hex2Reg(P, ((RSA_BUF_CRT_T *)s_pRSABuf)->au32RsaP);
Hex2Reg(Q, ((RSA_BUF_CRT_T *)s_pRSABuf)->au32RsaQ);
crpt->RSA_SADDR[3] = (uint32_t) & ((RSA_BUF_CRT_T *)s_pRSABuf)->au32RsaP; /* prime P */
crpt->RSA_SADDR[4] = (uint32_t) & ((RSA_BUF_CRT_T *)s_pRSABuf)->au32RsaQ; /* prime Q */
crpt->RSA_MADDR[0] = (uint32_t) & ((RSA_BUF_CRT_T *)s_pRSABuf)->au32RsaTmpCp; /* for storing the intermediate temporary value(Cp) */
crpt->RSA_MADDR[1] = (uint32_t) & ((RSA_BUF_CRT_T *)s_pRSABuf)->au32RsaTmpCq; /* for storing the intermediate temporary value(Cq) */
crpt->RSA_MADDR[2] = (uint32_t) & ((RSA_BUF_CRT_T *)s_pRSABuf)->au32RsaTmpDp; /* for storing the intermediate temporary value(Dp) */
crpt->RSA_MADDR[3] = (uint32_t) & ((RSA_BUF_CRT_T *)s_pRSABuf)->au32RsaTmpDq; /* for storing the intermediate temporary value(Dq) */
crpt->RSA_MADDR[4] = (uint32_t) & ((RSA_BUF_CRT_T *)s_pRSABuf)->au32RsaTmpRp; /* for storing the intermediate temporary value(Rp) */
crpt->RSA_MADDR[5] = (uint32_t) & ((RSA_BUF_CRT_T *)s_pRSABuf)->au32RsaTmpRq; /* for storing the intermediate temporary value(Rq) */
}
else if (s_u32RsaOpMode & CRPT_RSA_CTL_SCAP_Msk)
{
/* For RSA CRT/SCAP mode, two primes of private key */
Hex2Reg(P, ((RSA_BUF_SCAP_T *)s_pRSABuf)->au32RsaP);
Hex2Reg(Q, ((RSA_BUF_SCAP_T *)s_pRSABuf)->au32RsaQ);
crpt->RSA_SADDR[3] = (uint32_t) & ((RSA_BUF_SCAP_T *)s_pRSABuf)->au32RsaP; /* prime P */
crpt->RSA_SADDR[4] = (uint32_t) & ((RSA_BUF_SCAP_T *)s_pRSABuf)->au32RsaQ; /* prime Q */
/* For SCAP mode to store the intermediate temporary value(blind key) */
crpt->RSA_MADDR[6] = (uint32_t) & ((RSA_BUF_SCAP_T *)s_pRSABuf)->au32RsaTmpBlindKey;
}
return 0;
}
/**
* @brief Start RSA encrypt/decrypt
* @param[in] crpt The pointer of CRYPTO module
* @return None
*/
void RSA_Start(CRPT_T *crpt)
{
crpt->RSA_CTL |= CRPT_RSA_CTL_START_Msk;
}
/**
* @brief Read the RSA output.
* @param[in] crpt The pointer of CRYPTO module
* @param[out] Output The RSA operation output data.
* @return 0 Success.
* @return -1 The value of pointer of RSA buffer struct is null.
*/
int32_t RSA_Read(CRPT_T *crpt, char *Output)
{
uint32_t au32CntTbl[4] = {256, 512, 768, 1024}; /* count is key length divided by 4 */
uint32_t u32CntIdx = 0;
if (s_pRSABuf == 0)
{
return (-1);
}
u32CntIdx = (crpt->RSA_CTL & CRPT_RSA_CTL_KEYLENG_Msk) >> CRPT_RSA_CTL_KEYLENG_Pos;
Reg2Hex((int32_t)au32CntTbl[u32CntIdx], ((RSA_BUF_NORMAL_T *)s_pRSABuf)->au32RsaOutput, Output);
return 0;
}
/**
* @brief Set the RSA key is read from key store
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32KeyNum The number of private or public key in key store.
* @param[in] u32KSMemType The key is read from selected memory type of key store. It could be:
\ref KS_SRAM
\ref KS_FLASH
\ref KS_OTP
* @param[in] u32BlindKeyNum The number of blind key in SRAM of key store for SCAP mode. This key is un-readable.
* @return 0 Success.
* @return -1 The value of pointer of RSA buffer struct is null.
*/
int32_t RSA_SetKey_KS(CRPT_T *crpt, uint32_t u32KeyNum, uint32_t u32KSMemType, uint32_t u32BlindKeyNum)
{
if (s_u32RsaOpMode & CRPT_RSA_CTL_SCAP_Msk)
{
crpt->RSA_KSCTL = (u32BlindKeyNum << 8) | (u32KSMemType << CRPT_RSA_KSCTL_RSSRC_Pos) | CRPT_RSA_KSCTL_RSRC_Msk | u32KeyNum;
}
else
{
crpt->RSA_KSCTL = (u32KSMemType << CRPT_RSA_KSCTL_RSSRC_Pos) | CRPT_RSA_KSCTL_RSRC_Msk | u32KeyNum;
}
return 0;
}
/**
* @brief Set RSA DMA transfer configuration while using key store.
* @param[in] crpt The pointer of CRYPTO module
* @param[in] u32OpMode RSA operation mode, including:
* - \ref RSA_MODE_NORMAL
* - \ref RSA_MODE_CRT
* - \ref RSA_MODE_CRTBYPASS
* - \ref RSA_MODE_SCAP
* - \ref RSA_MODE_CRT_SCAP
* - \ref RSA_MODE_CRTBYPASS_SCAP
* @param[in] Src RSA DMA source data
* @param[in] n The modulus for both the public and private keys
* @param[in] u32PNum The number of the factor of modulus operation(P) in SRAM of key store for CRT/SCAP mode
* @param[in] u32QNum The number of the factor of modulus operation(Q) in SRAM of key store for CRT/SCAP mode
* @param[in] u32CpNum The number of Cp in SRAM of key store for CRT mode
* @param[in] u32CqNum The number of Cq in SRAM of key store for CRT mode
* @param[in] u32DpNum The number of Dp in SRAM of key store for CRT mode
* @param[in] u32DqNum The number of Dq in SRAM of key store for CRT mode
* @param[in] u32RpNum The number of Rp in SRAM of key store for CRT mode
* @param[in] u32RqNum The number of Rq in SRAM of key store for CRT mode
* @return 0 Success.
* @return -1 The value of pointer of RSA buffer struct is null.
* @note P, Q, Dp, Dq are equal to half key length. Cp, Cq, Rp, Rq, Blind key are equal to key length.
*/
int32_t RSA_SetDMATransfer_KS(CRPT_T *crpt, char *Src, char *n, uint32_t u32PNum,
uint32_t u32QNum, uint32_t u32CpNum, uint32_t u32CqNum, uint32_t u32DpNum,
uint32_t u32DqNum, uint32_t u32RpNum, uint32_t u32RqNum)
{
if (s_pRSABuf == 0)
{
return (-1);
}
Hex2Reg(Src, ((RSA_BUF_KS_T *)s_pRSABuf)->au32RsaM);
Hex2Reg(n, ((RSA_BUF_KS_T *)s_pRSABuf)->au32RsaN);
/* Assign the data to DMA */
crpt->RSA_SADDR[0] = (uint32_t) & ((RSA_BUF_KS_T *)s_pRSABuf)->au32RsaM; /* plaintext / encrypt data */
crpt->RSA_SADDR[1] = (uint32_t) & ((RSA_BUF_KS_T *)s_pRSABuf)->au32RsaN; /* the base of modulus operation */
crpt->RSA_DADDR = (uint32_t) & ((RSA_BUF_KS_T *)s_pRSABuf)->au32RsaOutput; /* encrypt data / decrypt data */
if ((s_u32RsaOpMode & CRPT_RSA_CTL_CRT_Msk) || (s_u32RsaOpMode & CRPT_RSA_CTL_SCAP_Msk))
{
/* For RSA CRT/SCAP mode, two primes of private key */
crpt->RSA_KSSTS[0] = (crpt->RSA_KSSTS[0] & (~(CRPT_RSA_KSSTS0_NUM0_Msk | CRPT_RSA_KSSTS0_NUM1_Msk))) | \
(u32PNum << CRPT_RSA_KSSTS0_NUM0_Pos) | (u32QNum << CRPT_RSA_KSSTS0_NUM1_Pos);
}
if (s_u32RsaOpMode & CRPT_RSA_CTL_CRT_Msk)
{
/* For RSA CRT mode, Cp, Cq, Dp, Dq, Rp, Rq */
crpt->RSA_KSSTS[0] = (crpt->RSA_KSSTS[0] & (~(CRPT_RSA_KSSTS0_NUM2_Msk | CRPT_RSA_KSSTS0_NUM3_Msk))) | \
(u32CpNum << CRPT_RSA_KSSTS0_NUM2_Pos) | (u32CqNum << CRPT_RSA_KSSTS0_NUM3_Pos);
crpt->RSA_KSSTS[1] = (u32DpNum << CRPT_RSA_KSSTS1_NUM4_Pos) | (u32DqNum << CRPT_RSA_KSSTS1_NUM5_Pos) | \
(u32RpNum << CRPT_RSA_KSSTS1_NUM6_Pos) | (u32RqNum << CRPT_RSA_KSSTS1_NUM7_Pos);
}
return 0;
}
/**@}*/ /* end of group CRYPTO_EXPORTED_FUNCTIONS */
/**@}*/ /* end of group CRYPTO_Driver */
/**@}*/ /* end of group Standard_Driver */