rt-thread/bsp/at32/libraries/rt_drivers/drv_emac.c

909 lines
24 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-05-16 shelton first version
*/
#include "drv_emac.h"
#include <netif/ethernetif.h>
#include <lwipopts.h>
/* debug option */
//#define EMAC_RX_DUMP
//#define EMAC_TX_DUMP
//#define DRV_DEBUG
#define LOG_TAG "drv.emac"
#include <drv_log.h>
#define CRYSTAL_ON_PHY 0
/* emac memory buffer configuration */
#define EMAC_NUM_RX_BUF 4 /* 0x1800 for rx (4 * 1536 = 6k) */
#define EMAC_NUM_TX_BUF 2 /* 0x0600 for tx (2 * 1536 = 3k) */
#define MAX_ADDR_LEN 6
struct rt_at32_emac
{
/* inherit from ethernet device */
struct eth_device parent;
#ifndef PHY_USING_INTERRUPT_MODE
rt_timer_t poll_link_timer;
#endif
/* interface address info, hw address */
rt_uint8_t dev_addr[MAX_ADDR_LEN];
/* emac_speed */
emac_speed_type emac_speed;
/* emac_duplex_mode */
emac_duplex_type emac_mode;
};
static emac_dma_desc_type *dma_rx_dscr_tab, *dma_tx_dscr_tab;
extern emac_dma_desc_type *dma_rx_desc_to_get, *dma_tx_desc_to_set;
static rt_uint8_t *rx_buff, *tx_buff;
static struct rt_at32_emac at32_emac_device;
static uint8_t phy_addr = 0xFF;
static struct rt_semaphore tx_wait;
static rt_bool_t tx_is_waiting = RT_FALSE;
#if defined(EMAC_RX_DUMP) || defined(EMAC_TX_DUMP)
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
{
unsigned char *buf = (unsigned char *)ptr;
int i, j;
for (i = 0; i < buflen; i += 16)
{
rt_kprintf("%08X: ", i);
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%02X ", buf[i + j]);
else
rt_kprintf(" ");
rt_kprintf(" ");
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
rt_kprintf("\n");
}
}
#endif
/**
* @brief phy reset
*/
static void phy_reset(void)
{
gpio_init_type gpio_init_struct;
#if defined (SOC_SERIES_AT32F437)
crm_periph_clock_enable(CRM_GPIOE_PERIPH_CLOCK, TRUE);
crm_periph_clock_enable(CRM_GPIOG_PERIPH_CLOCK, TRUE);
gpio_default_para_init(&gpio_init_struct);
gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT;
gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
gpio_init_struct.gpio_pull = GPIO_PULL_NONE;
gpio_init_struct.gpio_pins = GPIO_PINS_15;
gpio_init(GPIOE, &gpio_init_struct);
gpio_init_struct.gpio_pins = GPIO_PINS_15;
gpio_init(GPIOG, &gpio_init_struct);
gpio_bits_reset(GPIOE, GPIO_PINS_15);
gpio_bits_reset(GPIOG, GPIO_PINS_15);
rt_thread_mdelay(2);
gpio_bits_set(GPIOE, GPIO_PINS_15);
#endif
#if defined (SOC_SERIES_AT32F407)
crm_periph_clock_enable(CRM_GPIOC_PERIPH_CLOCK, TRUE);
gpio_default_para_init(&gpio_init_struct);
gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
gpio_init_struct.gpio_mode = GPIO_MODE_OUTPUT;
gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
gpio_init_struct.gpio_pull = GPIO_PULL_NONE;
gpio_init_struct.gpio_pins = GPIO_PINS_8;
gpio_init(GPIOC, &gpio_init_struct);
gpio_bits_reset(GPIOC, GPIO_PINS_8);
rt_thread_mdelay(2);
gpio_bits_set(GPIOC, GPIO_PINS_8);
#endif
rt_thread_mdelay(2000);
}
/**
* @brief phy clock config
*/
static void phy_clock_config(void)
{
#if (CRYSTAL_ON_PHY == 0)
/* if CRYSTAL_NO_PHY, output clock with pa8 of mcu */
gpio_init_type gpio_init_struct;
crm_periph_clock_enable(CRM_GPIOA_PERIPH_CLOCK, TRUE);
gpio_default_para_init(&gpio_init_struct);
gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
gpio_init_struct.gpio_mode = GPIO_MODE_MUX;
gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
gpio_init_struct.gpio_pull = GPIO_PULL_NONE;
gpio_init_struct.gpio_pins = GPIO_PINS_8;
gpio_init(GPIOA, &gpio_init_struct);
/* 9162 clkout output 25 mhz */
/* 83848 clkout output 50 mhz */
#if defined (SOC_SERIES_AT32F407)
crm_clock_out_set(CRM_CLKOUT_SCLK);
#if defined (PHY_USING_DM9162)
crm_clkout_div_set(CRM_CLKOUT_DIV_8);
#elif defined (PHY_USING_DP83848)
crm_clkout_div_set(CRM_CLKOUT_DIV_4);
#endif
#endif
#if defined (SOC_SERIES_AT32F437)
crm_clock_out1_set(CRM_CLKOUT1_PLL);
#if defined (PHY_USING_DM9162)
crm_clkout_div_set(CRM_CLKOUT_INDEX_1, CRM_CLKOUT_DIV1_5, CRM_CLKOUT_DIV2_2);
#elif defined (PHY_USING_DP83848)
crm_clkout_div_set(CRM_CLKOUT_INDEX_1, CRM_CLKOUT_DIV1_5, CRM_CLKOUT_DIV2_1);
#endif
#endif
#endif
}
/**
* @brief reset phy register
*/
static error_status emac_phy_register_reset(void)
{
uint16_t data = 0;
uint32_t timeout = 0;
uint32_t i = 0;
if(emac_phy_register_write(phy_addr, PHY_CONTROL_REG, PHY_RESET_BIT) == ERROR)
{
return ERROR;
}
for(i = 0; i < 0x000FFFFF; i++);
do
{
timeout++;
if(emac_phy_register_read(phy_addr, PHY_CONTROL_REG, &data) == ERROR)
{
return ERROR;
}
} while((data & PHY_RESET_BIT) && (timeout < PHY_TIMEOUT));
for(i = 0; i < 0x00FFFFF; i++);
if(timeout == PHY_TIMEOUT)
{
return ERROR;
}
return SUCCESS;
}
/**
* @brief set mac speed related parameters
*/
static error_status emac_speed_config(emac_auto_negotiation_type nego, emac_duplex_type mode, emac_speed_type speed)
{
uint16_t data = 0;
uint32_t timeout = 0;
if(nego == EMAC_AUTO_NEGOTIATION_ON)
{
do
{
timeout++;
if(emac_phy_register_read(phy_addr, PHY_STATUS_REG, &data) == ERROR)
{
return ERROR;
}
} while(!(data & PHY_LINKED_STATUS_BIT) && (timeout < PHY_TIMEOUT));
if(timeout == PHY_TIMEOUT)
{
return ERROR;
}
timeout = 0;
if(emac_phy_register_write(phy_addr, PHY_CONTROL_REG, PHY_AUTO_NEGOTIATION_BIT) == ERROR)
{
return ERROR;
}
do
{
timeout++;
if(emac_phy_register_read(phy_addr, PHY_STATUS_REG, &data) == ERROR)
{
return ERROR;
}
} while(!(data & PHY_NEGO_COMPLETE_BIT) && (timeout < PHY_TIMEOUT));
if(timeout == PHY_TIMEOUT)
{
return ERROR;
}
if(emac_phy_register_read(phy_addr, PHY_SPECIFIED_CS_REG, &data) == ERROR)
{
return ERROR;
}
#ifdef PHY_USING_DM9162
if(data & PHY_FULL_DUPLEX_100MBPS_BIT)
{
emac_fast_speed_set(EMAC_SPEED_100MBPS);
emac_duplex_mode_set(EMAC_FULL_DUPLEX);
}
else if(data & PHY_HALF_DUPLEX_100MBPS_BIT)
{
emac_fast_speed_set(EMAC_SPEED_100MBPS);
emac_duplex_mode_set(EMAC_HALF_DUPLEX);
}
else if(data & PHY_FULL_DUPLEX_10MBPS_BIT)
{
emac_fast_speed_set(EMAC_SPEED_10MBPS);
emac_duplex_mode_set(EMAC_FULL_DUPLEX);
}
else if(data & PHY_HALF_DUPLEX_10MBPS_BIT)
{
emac_fast_speed_set(EMAC_SPEED_10MBPS);
emac_duplex_mode_set(EMAC_HALF_DUPLEX);
}
#endif
#ifdef PHY_USING_DP83848
if(data & PHY_DUPLEX_MODE)
{
emac_duplex_mode_set(EMAC_FULL_DUPLEX);
}
else
{
emac_duplex_mode_set(EMAC_HALF_DUPLEX);
}
if(data & PHY_SPEED_MODE)
{
emac_fast_speed_set(EMAC_SPEED_10MBPS);
}
else
{
emac_fast_speed_set(EMAC_SPEED_100MBPS);
}
#endif
}
else
{
if(emac_phy_register_write(phy_addr, PHY_CONTROL_REG, (uint16_t)((mode << 8) | (speed << 13))) == ERROR)
{
return ERROR;
}
if(speed == EMAC_SPEED_100MBPS)
{
emac_fast_speed_set(EMAC_SPEED_100MBPS);
}
else
{
emac_fast_speed_set(EMAC_SPEED_10MBPS);
}
if(mode == EMAC_FULL_DUPLEX)
{
emac_duplex_mode_set(EMAC_FULL_DUPLEX);
}
else
{
emac_duplex_mode_set(EMAC_HALF_DUPLEX);
}
}
return SUCCESS;
}
/**
* @brief initialize emac phy
*/
static error_status emac_phy_init(emac_control_config_type *control_para)
{
emac_clock_range_set();
if(emac_phy_register_reset() == ERROR)
{
return ERROR;
}
if(emac_speed_config(control_para->auto_nego, control_para->duplex_mode, control_para->fast_ethernet_speed) == ERROR)
{
return ERROR;
}
emac_control_config(control_para);
return SUCCESS;
}
/**
* @brief emac initialization function
*/
static rt_err_t rt_at32_emac_init(rt_device_t dev)
{
emac_control_config_type mac_control_para;
emac_dma_config_type dma_control_para;
/* check till phy detected */
while(phy_addr == 0xFF)
{
rt_thread_mdelay(1000);
}
/* emac reset */
emac_reset();
/* software reset emac dma */
emac_dma_software_reset_set();
while(emac_dma_software_reset_get() == SET);
emac_control_para_init(&mac_control_para);
mac_control_para.auto_nego = EMAC_AUTO_NEGOTIATION_ON;
if(emac_phy_init(&mac_control_para) == ERROR)
{
LOG_E("emac hardware init failed");
return -RT_ERROR;
}
else
{
LOG_D("emac hardware init success");
}
emac_transmit_flow_control_enable(TRUE);
emac_zero_quanta_pause_disable(TRUE);
/* set mac address */
emac_local_address_set(at32_emac_device.dev_addr);
/* set emac dma rx link list */
emac_dma_descriptor_list_address_set(EMAC_DMA_RECEIVE, dma_rx_dscr_tab, rx_buff, EMAC_NUM_RX_BUF);
/* set emac dma tx link list */
emac_dma_descriptor_list_address_set(EMAC_DMA_TRANSMIT, dma_tx_dscr_tab, tx_buff, EMAC_NUM_TX_BUF);
/* emac interrupt init */
emac_dma_config(&dma_control_para);
emac_dma_interrupt_enable(EMAC_DMA_INTERRUPT_NORMAL_SUMMARY, TRUE);
emac_dma_interrupt_enable(EMAC_DMA_INTERRUPT_RX, TRUE);
nvic_irq_enable(EMAC_IRQn, 0x07, 0);
/* enable emac */
emac_start();
return RT_EOK;
}
static rt_err_t rt_at32_emac_open(rt_device_t dev, rt_uint16_t oflag)
{
LOG_D("emac open");
return RT_EOK;
}
static rt_err_t rt_at32_emac_close(rt_device_t dev)
{
LOG_D("emac close");
return RT_EOK;
}
static rt_size_t rt_at32_emac_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
LOG_D("emac read");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t rt_at32_emac_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
LOG_D("emac write");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_at32_emac_control(rt_device_t dev, int cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args)
{
SMEMCPY(args, at32_emac_device.dev_addr, 6);
}
else
{
return -RT_ERROR;
}
break;
default :
break;
}
return RT_EOK;
}
/**
* @brief transmit data
*/
rt_err_t rt_at32_emac_tx(rt_device_t dev, struct pbuf *p)
{
struct pbuf *q;
rt_uint32_t offset;
while ((dma_tx_desc_to_set->status & EMAC_DMATXDESC_OWN) != RESET)
{
rt_err_t result;
rt_uint32_t level;
level = rt_hw_interrupt_disable();
tx_is_waiting = RT_TRUE;
rt_hw_interrupt_enable(level);
/* it's own bit set, wait it */
result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER);
if (result == RT_EOK) break;
if (result == -RT_ERROR) return -RT_ERROR;
}
offset = 0;
for (q = p; q != NULL; q = q->next)
{
uint8_t *buffer;
/* copy the frame to be sent into memory pointed by the current ethernet dma tx descriptor */
buffer = (uint8_t*)((dma_tx_desc_to_set->buf1addr) + offset);
SMEMCPY(buffer, q->payload, q->len);
offset += q->len;
}
#ifdef EMAC_TX_DUMP
dump_hex(p->payload, p->tot_len);
#endif
/* prepare transmit descriptors to give to dma */
LOG_D("transmit frame length :%d", p->tot_len);
/* setting the frame length: bits[12:0] */
dma_tx_desc_to_set->controlsize = (p->tot_len & EMAC_DMATXDESC_TBS1);
/* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
dma_tx_desc_to_set->status |= EMAC_DMATXDESC_LS | EMAC_DMATXDESC_FS;
/* enable tx completion interrupt */
dma_tx_desc_to_set->status |= EMAC_DMATXDESC_IC;
/* set own bit of the tx descriptor status: gives the buffer back to ethernet dma */
dma_tx_desc_to_set->status |= EMAC_DMATXDESC_OWN;
/* When Tx Buffer unavailable flag is set: clear it and resume transmission */
if(emac_dma_flag_get(EMAC_DMA_TBU_FLAG) != RESET)
{
emac_dma_flag_clear(EMAC_DMA_TBU_FLAG);
emac_dma_poll_demand_set(EMAC_DMA_TRANSMIT, 0);
}
/* selects the next dma tx descriptor list for next buffer to send */
dma_tx_desc_to_set = (emac_dma_desc_type*) (dma_tx_desc_to_set->buf2nextdescaddr);
return ERR_OK;
}
/**
* @brief receive data
*/
struct pbuf *rt_at32_emac_rx(rt_device_t dev)
{
struct pbuf *p = NULL;
struct pbuf *q = NULL;
rt_uint32_t offset = 0;
uint16_t len = 0;
uint8_t *buffer;
/* get received frame */
len = emac_received_packet_size_get();
if(len > 0)
{
LOG_D("receive frame len : %d", len);
/* we allocate a pbuf chain of pbufs from the lwip buffer pool */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
if(p != NULL)
{
for (q = p; q != RT_NULL; q= q->next)
{
/* get rx buffer */
buffer = (uint8_t *)(dma_rx_desc_to_get->buf1addr);
#ifdef EMAC_RX_DUMP
dump_hex(buffer, len);
#endif
/* copy the received frame into buffer from memory pointed by the current ethernet dma rx descriptor */
SMEMCPY(q->payload, (buffer + offset), q->len);
offset += q->len;
}
}
}
else
{
return p;
}
/* release descriptors to dma */
dma_rx_desc_to_get->status |= EMAC_DMARXDESC_OWN;
/* when rx buffer unavailable flag is set: clear it and resume reception */
if(emac_dma_flag_get(EMAC_DMA_RBU_FLAG) != RESET)
{
/* clear rbu ethernet dma flag */
emac_dma_flag_clear(EMAC_DMA_RBU_FLAG);
/* resume dma reception */
emac_dma_poll_demand_set(EMAC_DMA_RECEIVE, 0);
}
/* update the ethernet dma global rx descriptor with next rx decriptor */
/* chained mode */
if((dma_rx_desc_to_get->controlsize & EMAC_DMARXDESC_RCH) != RESET)
{
/* selects the next dma rx descriptor list for next buffer to read */
dma_rx_desc_to_get = (emac_dma_desc_type*) (dma_rx_desc_to_get->buf2nextdescaddr);
}
/* ring mode */
else
{
if((dma_rx_desc_to_get->controlsize & EMAC_DMARXDESC_RER) != RESET)
{
/* selects the first dma rx descriptor for next buffer to read: last rx descriptor was used */
dma_rx_desc_to_get = (emac_dma_desc_type*) (EMAC_DMA->rdladdr);
}
else
{
/* selects the next dma rx descriptor list for next buffer to read */
dma_rx_desc_to_get = (emac_dma_desc_type*) ((uint32_t)dma_rx_desc_to_get + 0x10 + ((EMAC_DMA->bm & 0x0000007C) >> 2));
}
}
return p;
}
void EMAC_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
/* clear received it */
if(emac_dma_flag_get(EMAC_DMA_NIS_FLAG) != RESET)
{
emac_dma_flag_clear(EMAC_DMA_NIS_FLAG);
}
if(emac_dma_flag_get(EMAC_DMA_AIS_FLAG) != RESET)
{
emac_dma_flag_clear(EMAC_DMA_AIS_FLAG);
}
if(emac_dma_flag_get(EMAC_DMA_OVF_FLAG) != RESET)
{
emac_dma_flag_clear(EMAC_DMA_OVF_FLAG);
}
if(emac_dma_flag_get(EMAC_DMA_RBU_FLAG) != RESET)
{
emac_dma_flag_clear(EMAC_DMA_RBU_FLAG);
}
/* packet receiption */
if (emac_dma_flag_get(EMAC_DMA_RI_FLAG) == SET)
{
/* a frame has been received */
eth_device_ready(&(at32_emac_device.parent));
emac_dma_flag_clear(EMAC_DMA_RI_FLAG);
}
/* packet transmission */
if (emac_dma_flag_get(EMAC_DMA_TI_FLAG) == SET)
{
if (tx_is_waiting == RT_TRUE)
{
tx_is_waiting = RT_FALSE;
rt_sem_release(&tx_wait);
}
emac_dma_flag_clear(EMAC_DMA_TI_FLAG);
}
/* leave interrupt */
rt_interrupt_leave();
}
enum {
PHY_LINK = (1 << 0),
PHY_10M = (1 << 1),
PHY_FULLDUPLEX = (1 << 2),
};
static void phy_linkchange()
{
static rt_uint8_t phy_speed = 0;
rt_uint8_t phy_speed_new = 0;
rt_uint16_t status;
emac_phy_register_read(phy_addr, PHY_BASIC_STATUS_REG, (uint16_t *)&status);
LOG_D("phy basic status reg is 0x%X", status);
if (status & (PHY_AUTONEGO_COMPLETE_MASK | PHY_LINKED_STATUS_MASK))
{
rt_uint16_t SR = 0;
phy_speed_new |= PHY_LINK;
emac_phy_register_read(phy_addr, PHY_SPECIFIED_CS_REG, (uint16_t *)&SR);
LOG_D("phy control status reg is 0x%X", SR);
if (SR & (PHY_SPEED_MODE))
{
phy_speed_new |= PHY_10M;
}
if (SR & (PHY_DUPLEX_MODE))
{
phy_speed_new |= PHY_FULLDUPLEX;
}
}
if (phy_speed != phy_speed_new)
{
phy_speed = phy_speed_new;
if (phy_speed & PHY_LINK)
{
LOG_D("link up");
if (phy_speed & PHY_10M)
{
LOG_D("10Mbps");
at32_emac_device.emac_speed = EMAC_SPEED_10MBPS;
}
else
{
at32_emac_device.emac_speed = EMAC_SPEED_100MBPS;
LOG_D("100Mbps");
}
if (phy_speed & PHY_FULLDUPLEX)
{
LOG_D("full-duplex");
at32_emac_device.emac_mode = EMAC_FULL_DUPLEX;
}
else
{
LOG_D("half-duplex");
at32_emac_device.emac_mode = EMAC_HALF_DUPLEX;
}
/* send link up. */
eth_device_linkchange(&at32_emac_device.parent, RT_TRUE);
}
else
{
LOG_I("link down");
eth_device_linkchange(&at32_emac_device.parent, RT_FALSE);
}
}
}
#ifdef PHY_USING_INTERRUPT_MODE
static void emac_phy_isr(void *args)
{
rt_uint32_t status = 0;
emac_phy_register_read(phy_addr, PHY_INTERRUPT_FLAG_REG, (uint16_t *)&status);
LOG_D("phy interrupt status reg is 0x%X", status);
phy_linkchange();
}
#endif /* PHY_USING_INTERRUPT_MODE */
static void phy_monitor_thread_entry(void *parameter)
{
uint8_t detected_count = 0;
while(phy_addr == 0xFF)
{
/* phy search */
rt_uint32_t i, temp;
for (i = 0; i <= 0x1F; i++)
{
emac_phy_register_read(i, PHY_BASIC_STATUS_REG, (uint16_t *)&temp);
if (temp != 0xFFFF && temp != 0x00)
{
phy_addr = i;
break;
}
}
detected_count++;
rt_thread_mdelay(1000);
if (detected_count > 10)
{
LOG_E("No PHY device was detected, please check hardware!");
}
}
LOG_D("Found a phy, address:0x%02X", phy_addr);
/* reset phy */
LOG_D("RESET PHY!");
emac_phy_register_write(phy_addr, PHY_BASIC_CONTROL_REG, PHY_RESET_MASK);
rt_thread_mdelay(2000);
emac_phy_register_write(phy_addr, PHY_BASIC_CONTROL_REG, PHY_AUTO_NEGOTIATION_MASK);
phy_linkchange();
#ifdef PHY_USING_INTERRUPT_MODE
/* configuration intterrupt pin */
rt_pin_mode(PHY_INT_PIN, PIN_MODE_INPUT_PULLUP);
rt_pin_attach_irq(PHY_INT_PIN, PIN_IRQ_MODE_FALLING, emac_phy_isr, (void *)"callbackargs");
rt_pin_irq_enable(PHY_INT_PIN, PIN_IRQ_ENABLE);
/* enable phy interrupt */
emac_phy_register_write(phy_addr, PHY_INTERRUPT_MASK_REG, PHY_INT_MASK);
#if defined(PHY_INTERRUPT_CTRL_REG)
emac_phy_register_write(phy_addr, PHY_INTERRUPT_CTRL_REG, PHY_INTERRUPT_EN);
#endif
#else /* PHY_USING_INTERRUPT_MODE */
at32_emac_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange,
NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
if (!at32_emac_device.poll_link_timer || rt_timer_start(at32_emac_device.poll_link_timer) != RT_EOK)
{
LOG_E("Start link change detection timer failed");
}
#endif /* PHY_USING_INTERRUPT_MODE */
}
/* Register the EMAC device */
static int rt_hw_at32_emac_init(void)
{
rt_err_t state = RT_EOK;
/* Prepare receive and send buffers */
rx_buff = (rt_uint8_t *)rt_calloc(EMAC_NUM_RX_BUF, EMAC_MAX_PACKET_LENGTH);
if (rx_buff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
tx_buff = (rt_uint8_t *)rt_calloc(EMAC_NUM_TX_BUF, EMAC_MAX_PACKET_LENGTH);
if (tx_buff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
dma_rx_dscr_tab = (emac_dma_desc_type *)rt_calloc(EMAC_NUM_RX_BUF, sizeof(emac_dma_desc_type));
if (dma_rx_dscr_tab == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
dma_tx_dscr_tab = (emac_dma_desc_type *)rt_calloc(EMAC_NUM_TX_BUF, sizeof(emac_dma_desc_type));
if (dma_tx_dscr_tab == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
/* phy clock */
phy_clock_config();
/* enable periph clock */
crm_periph_clock_enable(CRM_EMAC_PERIPH_CLOCK, TRUE);
crm_periph_clock_enable(CRM_EMACTX_PERIPH_CLOCK, TRUE);
crm_periph_clock_enable(CRM_EMACRX_PERIPH_CLOCK, TRUE);
/* interface mode */
#if defined (SOC_SERIES_AT32F407)
gpio_pin_remap_config(MII_RMII_SEL_GMUX, TRUE);
#endif
#if defined (SOC_SERIES_AT32F437)
scfg_emac_interface_set(SCFG_EMAC_SELECT_RMII);
#endif
/* emac gpio init */
at32_msp_emac_init(NULL);
at32_emac_device.emac_speed = EMAC_SPEED_100MBPS;
at32_emac_device.emac_mode = EMAC_FULL_DUPLEX;
at32_emac_device.dev_addr[0] = 0x00;
at32_emac_device.dev_addr[1] = 0x66;
at32_emac_device.dev_addr[2] = 0x88;
/* generate mac addr from unique id (only for test). */
at32_emac_device.dev_addr[3] = *(rt_uint8_t *)(0x1FFFF7E8 + 4);
at32_emac_device.dev_addr[4] = *(rt_uint8_t *)(0x1FFFF7E8 + 2);
at32_emac_device.dev_addr[5] = *(rt_uint8_t *)(0x1FFFF7E8 + 0);
at32_emac_device.parent.parent.init = rt_at32_emac_init;
at32_emac_device.parent.parent.open = rt_at32_emac_open;
at32_emac_device.parent.parent.close = rt_at32_emac_close;
at32_emac_device.parent.parent.read = rt_at32_emac_read;
at32_emac_device.parent.parent.write = rt_at32_emac_write;
at32_emac_device.parent.parent.control = rt_at32_emac_control;
at32_emac_device.parent.parent.user_data = RT_NULL;
at32_emac_device.parent.eth_rx = rt_at32_emac_rx;
at32_emac_device.parent.eth_tx = rt_at32_emac_tx;
/* reset phy */
phy_reset();
/* start phy monitor */
rt_thread_t tid;
tid = rt_thread_create("phy",
phy_monitor_thread_entry,
RT_NULL,
1024,
RT_THREAD_PRIORITY_MAX - 2,
2);
if (tid != RT_NULL)
{
rt_thread_startup(tid);
}
else
{
state = -RT_ERROR;
}
/* register eth device */
state = eth_device_init(&(at32_emac_device.parent), "e0");
if (RT_EOK == state)
{
LOG_D("emac device init success");
}
else
{
LOG_E("emac device init faild: %d", state);
state = -RT_ERROR;
goto __exit;
}
__exit:
if (state != RT_EOK)
{
if (rx_buff)
{
rt_free(rx_buff);
}
if (tx_buff)
{
rt_free(tx_buff);
}
if (dma_rx_dscr_tab)
{
rt_free(dma_rx_dscr_tab);
}
if (dma_tx_dscr_tab)
{
rt_free(dma_tx_dscr_tab);
}
}
return state;
}
INIT_DEVICE_EXPORT(rt_hw_at32_emac_init);