rt-thread/bsp/renesas/libraries/HAL_Drivers/drv_eth.c

445 lines
12 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-19 SummerGift first version
* 2018-12-25 zylx fix some bugs
* 2019-06-10 SummerGift optimize PHY state detection process
* 2019-09-03 xiaofan optimize link change detection process
*/
#include "drv_config.h"
#include "drv_eth.h"
#include <hal_data.h>
#include <netif/ethernetif.h>
#include <lwipopts.h>
/*
* Emac driver uses CubeMX tool to generate emac and phy's configuration,
* the configuration files can be found in CubeMX_Config folder.
*/
/* debug option */
//#define ETH_RX_DUMP
//#define ETH_TX_DUMP
#define MINIMUM_ETHERNET_FRAME_SIZE (60U)
#define ETH_MAX_PACKET_SIZE 1514
#define ETH_RX_BUF_SIZE ETH_MAX_PACKET_SIZE
#define ETH_TX_BUF_SIZE ETH_MAX_PACKET_SIZE
//#define DRV_DEBUG
#define LOG_TAG "drv.eth"
#ifdef DRV_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* DRV_DEBUG */
#include <rtdbg.h>
#define MAX_ADDR_LEN 6
#undef PHY_FULL_DUPLEX
#define PHY_LINK (1 << 0)
#define PHY_100M (1 << 1)
#define PHY_FULL_DUPLEX (1 << 2)
struct rt_ra6m3_eth
{
/* inherit from ethernet device */
struct eth_device parent;
#ifndef PHY_USING_INTERRUPT_MODE
rt_timer_t poll_link_timer;
#endif
/* interface address info, hw address */
rt_uint8_t dev_addr[MAX_ADDR_LEN];
};
static rt_uint8_t *Rx_Buff, *Tx_Buff;
//static ETH_HandleTypeDef EthHandle;
static struct rt_ra6m3_eth ra6m3_eth_device;
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
{
unsigned char *buf = (unsigned char *)ptr;
int i, j;
for (i = 0; i < buflen; i += 16)
{
rt_kprintf("%08X: ", i);
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%02X ", buf[i + j]);
else
rt_kprintf(" ");
rt_kprintf(" ");
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
rt_kprintf("\n");
}
}
#endif
extern void phy_reset(void);
/* EMAC initialization function */
static rt_err_t rt_ra6m3_eth_init(rt_device_t dev)
{
fsp_err_t res;
res = R_ETHER_Open(&g_ether0_ctrl, &g_ether0_cfg);
if (res != FSP_SUCCESS)
LOG_W("R_ETHER_Open failed!, res = %d", res);
return RT_EOK;
}
static rt_err_t rt_ra6m3_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
LOG_D("emac open");
return RT_EOK;
}
static rt_err_t rt_ra6m3_eth_close(rt_device_t dev)
{
LOG_D("emac close");
return RT_EOK;
}
static rt_ssize_t rt_ra6m3_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
LOG_D("emac read");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_ssize_t rt_ra6m3_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
LOG_D("emac write");
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_ra6m3_eth_control(rt_device_t dev, int cmd, void *args)
{
switch (cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if (args)
{
SMEMCPY(args, ra6m3_eth_device.dev_addr, 6);
}
else
{
return -RT_ERROR;
}
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit data*/
rt_err_t rt_ra6m3_eth_tx(rt_device_t dev, struct pbuf *p)
{
fsp_err_t res;
struct pbuf *q;
uint8_t *buffer = Tx_Buff;
uint32_t framelength = 0;
uint32_t bufferoffset = 0;
uint32_t byteslefttocopy = 0;
uint32_t payloadoffset = 0;
bufferoffset = 0;
LOG_D("send frame len : %d", p->tot_len);
/* copy frame from pbufs to driver buffers */
for (q = p; q != NULL; q = q->next)
{
/* Get bytes in current lwIP buffer */
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of data to copy is bigger than Tx buffer size*/
while ((byteslefttocopy + bufferoffset) > ETH_TX_BUF_SIZE)
{
/* Copy data to Tx buffer*/
SMEMCPY((uint8_t *)((uint8_t *)buffer + bufferoffset), (uint8_t *)((uint8_t *)q->payload + payloadoffset), (ETH_TX_BUF_SIZE - bufferoffset));
byteslefttocopy = byteslefttocopy - (ETH_TX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_TX_BUF_SIZE - bufferoffset);
framelength = framelength + (ETH_TX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy the remaining bytes */
SMEMCPY((uint8_t *)((uint8_t *)buffer + bufferoffset), (uint8_t *)((uint8_t *)q->payload + payloadoffset), byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
framelength = framelength + byteslefttocopy;
}
#ifdef ETH_TX_DUMP
dump_hex(buffer, p->tot_len);
#endif
#ifdef ETH_RX_DUMP
if (p)
{
LOG_E("******p buf frame *********");
for (q = p; q != NULL; q = q->next)
{
dump_hex(q->payload, q->len);
}
}
#endif
res = R_ETHER_Write(&g_ether0_ctrl, buffer, p->tot_len);//>MINIMUM_ETHERNET_FRAME_SIZE?p->tot_len:MINIMUM_ETHERNET_FRAME_SIZE);
if (res != FSP_SUCCESS)
LOG_W("R_ETHER_Write failed!, res = %d", res);
return RT_EOK;
}
/* receive data*/
struct pbuf *rt_ra6m3_eth_rx(rt_device_t dev)
{
struct pbuf *p = NULL;
struct pbuf *q = NULL;
uint32_t len = 0;
uint8_t *buffer = Rx_Buff;
fsp_err_t res;
res = R_ETHER_Read(&g_ether0_ctrl, buffer, &len);
if (res != FSP_SUCCESS)
LOG_D("R_ETHER_Read failed!, res = %d", res);
uint32_t bufferoffset = 0;
uint32_t payloadoffset = 0;
uint32_t byteslefttocopy = 0;
LOG_D("receive frame len : %d", len);
if (len > 0)
{
/* We allocate a pbuf chain of pbufs from the Lwip buffer pool */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
}
#ifdef ETH_RX_DUMP
if (p)
{
dump_hex(buffer, p->tot_len);
}
#endif
if (p != NULL)
{
bufferoffset = 0;
for (q = p; q != NULL; q = q->next)
{
byteslefttocopy = q->len;
payloadoffset = 0;
/* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
while ((byteslefttocopy + bufferoffset) > ETH_RX_BUF_SIZE)
{
/* Copy data to pbuf */
SMEMCPY((uint8_t *)((uint8_t *)q->payload + payloadoffset), (uint8_t *)((uint8_t *)buffer + bufferoffset), (ETH_RX_BUF_SIZE - bufferoffset));
byteslefttocopy = byteslefttocopy - (ETH_RX_BUF_SIZE - bufferoffset);
payloadoffset = payloadoffset + (ETH_RX_BUF_SIZE - bufferoffset);
bufferoffset = 0;
}
/* Copy remaining data in pbuf */
SMEMCPY((uint8_t *)((uint8_t *)q->payload + payloadoffset), (uint8_t *)((uint8_t *)buffer + bufferoffset), byteslefttocopy);
bufferoffset = bufferoffset + byteslefttocopy;
}
}
#ifdef ETH_RX_DUMP
if (p)
{
LOG_E("******p buf frame *********");
for (q = p; q != NULL; q = q->next)
{
dump_hex(q->payload, q->len);
}
}
#endif
return p;
}
static void phy_linkchange()
{
static uint32_t phy_speed = 0;
uint32_t phy_speed_new = 0;
fsp_err_t res;
uint32_t p_local_pause;
uint32_t p_partner_pause;
res = R_ETHER_LinkProcess(&g_ether0_ctrl);
if (res != FSP_SUCCESS)
LOG_D("R_ETHER_LinkProcess failed!, res = %d", res);
res = R_ETHER_PHY_LinkStatusGet(&g_ether_phy0_ctrl);
if (res != FSP_SUCCESS)
LOG_D("R_ETHER_PHY_LinkStatusGet failed!, res = %d", res);
if(res == FSP_ERR_ETHER_PHY_ERROR_LINK)
{
LOG_D("link down");
eth_device_linkchange(&ra6m3_eth_device.parent, RT_FALSE);
return;
}
res = R_ETHER_PHY_LinkPartnerAbilityGet(&g_ether_phy0_ctrl,
&phy_speed_new,
&p_local_pause,
&p_partner_pause);
if (res != FSP_SUCCESS)
LOG_D("R_ETHER_PHY_LinkPartnerAbilityGet failed!, res = %d", res);
if(res == FSP_ERR_ETHER_PHY_ERROR_LINK)
{
LOG_I("link down");
eth_device_linkchange(&ra6m3_eth_device.parent, RT_FALSE);
return;
}
if (phy_speed != phy_speed_new)
{
phy_speed = phy_speed_new;
if (phy_speed != ETHER_PHY_LINK_SPEED_NO_LINK)
{
LOG_D("link up");
if (phy_speed == ETHER_PHY_LINK_SPEED_100H || phy_speed == ETHER_PHY_LINK_SPEED_100F)
{
LOG_D("100Mbps");
}
else
{
LOG_D("10Mbps");
}
if (phy_speed == ETHER_PHY_LINK_SPEED_100F || phy_speed == ETHER_PHY_LINK_SPEED_10F)
{
LOG_D("full-duplex");
}
else
{
LOG_D("half-duplex");
}
/* send link up. */
LOG_I("link up");
eth_device_linkchange(&ra6m3_eth_device.parent, RT_TRUE);
}
else
{
LOG_D("link down");
eth_device_linkchange(&ra6m3_eth_device.parent, RT_FALSE);
}
}
}
void user_ether0_callback(ether_callback_args_t * p_args)
{
rt_err_t result;
result = eth_device_ready(&(ra6m3_eth_device.parent));
if (result != RT_EOK)
rt_kprintf("RX err =%d\n", result);
}
/* Register the EMAC device */
static int rt_hw_ra6m3_eth_init(void)
{
rt_err_t state = RT_EOK;
/* Prepare receive and send buffers */
Rx_Buff = (rt_uint8_t *)rt_calloc(1, ETH_MAX_PACKET_SIZE);
if (Rx_Buff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
Tx_Buff = (rt_uint8_t *)rt_calloc(1, ETH_MAX_PACKET_SIZE);
if (Tx_Buff == RT_NULL)
{
LOG_E("No memory");
state = -RT_ENOMEM;
goto __exit;
}
/* OUI 00-80-E1 STMICROELECTRONICS. */
ra6m3_eth_device.dev_addr[0] = 0x00;
ra6m3_eth_device.dev_addr[1] = 0x80;
ra6m3_eth_device.dev_addr[2] = 0xE1;
/* generate MAC addr from 96bit unique ID (only for test). */
ra6m3_eth_device.dev_addr[3] = (10 + 4);
ra6m3_eth_device.dev_addr[4] = (10 + 2);
ra6m3_eth_device.dev_addr[5] = (10 + 0);
ra6m3_eth_device.parent.parent.init = rt_ra6m3_eth_init;
ra6m3_eth_device.parent.parent.open = rt_ra6m3_eth_open;
ra6m3_eth_device.parent.parent.close = rt_ra6m3_eth_close;
ra6m3_eth_device.parent.parent.read = rt_ra6m3_eth_read;
ra6m3_eth_device.parent.parent.write = rt_ra6m3_eth_write;
ra6m3_eth_device.parent.parent.control = rt_ra6m3_eth_control;
ra6m3_eth_device.parent.parent.user_data = RT_NULL;
ra6m3_eth_device.parent.eth_rx = rt_ra6m3_eth_rx;
ra6m3_eth_device.parent.eth_tx = rt_ra6m3_eth_tx;
/* register eth device */
state = eth_device_init(&(ra6m3_eth_device.parent), "e0");
if (RT_EOK == state)
{
LOG_D("emac device init success");
}
else
{
LOG_E("emac device init faild: %d", state);
state = -RT_ERROR;
goto __exit;
}
ra6m3_eth_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange,
NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
if (!ra6m3_eth_device.poll_link_timer || rt_timer_start(ra6m3_eth_device.poll_link_timer) != RT_EOK)
{
LOG_E("Start link change detection timer failed");
}
__exit:
if (state != RT_EOK)
{
if (Rx_Buff)
{
rt_free(Rx_Buff);
}
if (Tx_Buff)
{
rt_free(Tx_Buff);
}
}
return state;
}
INIT_DEVICE_EXPORT(rt_hw_ra6m3_eth_init);