rt-thread/bsp/stm3210/enc28j60.c

765 lines
20 KiB
C

/*
* File : enc28j60.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2009, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2009-05-05 Bernard the first version
*/
#include "enc28j60.h"
#include <netif/ethernetif.h>
#include <stm32f10x.h>
#include <stm32f10x_spi.h>
#define MAX_ADDR_LEN 6
#define CSACTIVE GPIOB->BRR = GPIO_Pin_12;
#define CSPASSIVE GPIOB->BSRR = GPIO_Pin_12;
struct net_device
{
/* inherit from ethernet device */
struct eth_device parent;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
};
static struct net_device enc28j60_dev_entry;
static struct net_device *enc28j60_dev =&enc28j60_dev_entry;
static rt_uint8_t Enc28j60Bank;
static rt_uint16_t NextPacketPtr;
static struct rt_semaphore lock_sem;
void _delay_us(rt_uint32_t us)
{
rt_uint32_t len;
for (;us > 0; us --)
for (len = 0; len < 20; len++ );
}
void delay_ms(rt_uint32_t ms)
{
rt_uint32_t len;
for (;ms > 0; ms --)
for (len = 0; len < 100; len++ );
}
rt_uint8_t spi_read_op(rt_uint8_t op, rt_uint8_t address)
{
int temp=0;
CSACTIVE;
SPI_I2S_SendData(SPI2, (op | (address & ADDR_MASK)));
while(SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY)==SET);
SPI_I2S_ReceiveData(SPI2);
SPI_I2S_SendData(SPI2, 0x00);
while(SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY)==SET);
// do dummy read if needed (for mac and mii, see datasheet page 29)
if(address & 0x80)
{
SPI_I2S_ReceiveData(SPI2);
SPI_I2S_SendData(SPI2, 0x00);
while(SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY)==SET);
}
// release CS
temp=SPI_I2S_ReceiveData(SPI2);
// for(t=0;t<20;t++);
CSPASSIVE;
return (temp);
}
void spi_write_op(rt_uint8_t op, rt_uint8_t address, rt_uint8_t data)
{
rt_uint32_t level;
level = rt_hw_interrupt_disable();
CSACTIVE;
SPI_I2S_SendData(SPI2, op | (address & ADDR_MASK));
while(SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY)==SET);
SPI_I2S_SendData(SPI2,data);
while(SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY)==SET);
CSPASSIVE;
rt_hw_interrupt_enable(level);
}
void enc28j60_set_bank(rt_uint8_t address)
{
// set the bank (if needed)
if((address & BANK_MASK) != Enc28j60Bank)
{
// set the bank
spi_write_op(ENC28J60_BIT_FIELD_CLR, ECON1, (ECON1_BSEL1|ECON1_BSEL0));
spi_write_op(ENC28J60_BIT_FIELD_SET, ECON1, (address & BANK_MASK)>>5);
Enc28j60Bank = (address & BANK_MASK);
}
}
rt_uint8_t spi_read(rt_uint8_t address)
{
// set the bank
enc28j60_set_bank(address);
// do the read
return spi_read_op(ENC28J60_READ_CTRL_REG, address);
}
void spi_read_buffer(rt_uint8_t* data, rt_size_t len)
{
CSACTIVE;
SPI_I2S_SendData(SPI2,ENC28J60_READ_BUF_MEM);
while(SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY)==SET);
SPI_I2S_ReceiveData(SPI2);
while(len)
{
len--;
SPI_I2S_SendData(SPI2,0x00) ;
while(SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY)==SET);
*data= SPI_I2S_ReceiveData(SPI2);
data++;
}
CSPASSIVE;
}
void spi_write(rt_uint8_t address, rt_uint8_t data)
{
// set the bank
enc28j60_set_bank(address);
// do the write
spi_write_op(ENC28J60_WRITE_CTRL_REG, address, data);
}
void enc28j60_phy_write(rt_uint8_t address, rt_uint16_t data)
{
// set the PHY register address
spi_write(MIREGADR, address);
// write the PHY data
spi_write(MIWRL, data);
spi_write(MIWRH, data>>8);
// wait until the PHY write completes
while(spi_read(MISTAT) & MISTAT_BUSY)
{
_delay_us(15);
}
}
// read upper 8 bits
rt_uint16_t enc28j60_phy_read(rt_uint8_t address)
{
// Set the right address and start the register read operation
spi_write(MIREGADR, address);
spi_write(MICMD, MICMD_MIIRD);
_delay_us(15);
// wait until the PHY read completes
while(spi_read(MISTAT) & MISTAT_BUSY);
// reset reading bit
spi_write(MICMD, 0x00);
return (spi_read(MIRDH));
}
void enc28j60_clkout(rt_uint8_t clk)
{
//setup clkout: 2 is 12.5MHz:
spi_write(ECOCON, clk & 0x7);
}
rt_inline rt_uint32_t enc28j60_interrupt_disable()
{
rt_uint32_t level;
/* switch to bank 0 */
enc28j60_set_bank(EIE);
/* get last interrupt level */
level = spi_read(EIE);
/* disable interrutps */
spi_write_op(ENC28J60_BIT_FIELD_CLR, EIE, level);
return level;
}
rt_inline void enc28j60_interrupt_enable(rt_uint32_t level)
{
/* switch to bank 0 */
enc28j60_set_bank(EIE);
spi_write_op(ENC28J60_BIT_FIELD_SET, EIE, level);
}
/*
* Access the PHY to determine link status
*/
static rt_bool_t enc28j60_check_link_status()
{
rt_uint16_t reg;
int duplex;
reg = enc28j60_phy_read(PHSTAT2);
duplex = reg & PHSTAT2_DPXSTAT;
if (reg & PHSTAT2_LSTAT)
{
/* on */
return RT_TRUE;
}
else
{
/* off */
return RT_FALSE;
}
}
#ifdef RT_USING_FINSH
/*
* Debug routine to dump useful register contents
*/
static void enc28j60(void)
{
rt_kprintf("-- enc28j60 registers:\n");
rt_kprintf("HwRevID: 0x%02x\n", spi_read(EREVID));
rt_kprintf("Cntrl: ECON1 ECON2 ESTAT EIR EIE\n");
rt_kprintf(" 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n",spi_read(ECON1), spi_read(ECON2), spi_read(ESTAT), spi_read(EIR), spi_read(EIE));
rt_kprintf("MAC : MACON1 MACON3 MACON4\n");
rt_kprintf(" 0x%02x 0x%02x 0x%02x\n", spi_read(MACON1), spi_read(MACON3), spi_read(MACON4));
rt_kprintf("Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n");
rt_kprintf(" 0x%04x 0x%04x 0x%04x 0x%04x ",
(spi_read(ERXSTH) << 8) | spi_read(ERXSTL),
(spi_read(ERXNDH) << 8) | spi_read(ERXNDL),
(spi_read(ERXWRPTH) << 8) | spi_read(ERXWRPTL),
(spi_read(ERXRDPTH) << 8) | spi_read(ERXRDPTL));
rt_kprintf("0x%02x 0x%02x 0x%04x\n", spi_read(ERXFCON), spi_read(EPKTCNT),
(spi_read(MAMXFLH) << 8) | spi_read(MAMXFLL));
rt_kprintf("Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n");
rt_kprintf(" 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n",
(spi_read(ETXSTH) << 8) | spi_read(ETXSTL),
(spi_read(ETXNDH) << 8) | spi_read(ETXNDL),
spi_read(MACLCON1), spi_read(MACLCON2), spi_read(MAPHSUP));
}
#include <finsh.h>
FINSH_FUNCTION_EXPORT(enc28j60, dump enc28j60 registers);
#endif
/*
* RX handler
* ignore PKTIF because is unreliable! (look at the errata datasheet)
* check EPKTCNT is the suggested workaround.
* We don't need to clear interrupt flag, automatically done when
* enc28j60_hw_rx() decrements the packet counter.
*/
void enc28j60_isr()
{
/* Variable definitions can be made now. */
volatile rt_uint32_t eir, pk_counter;
volatile rt_bool_t rx_activiated;
rx_activiated = RT_FALSE;
/* get EIR */
eir = spi_read(EIR);
// rt_kprintf("eir: 0x%08x\n", eir);
do
{
/* errata #4, PKTIF does not reliable */
pk_counter = spi_read(EPKTCNT);
if (pk_counter)
{
/* a frame has been received */
eth_device_ready((struct eth_device*)&(enc28j60_dev->parent));
// switch to bank 0
enc28j60_set_bank(EIE);
// disable rx interrutps
spi_write_op(ENC28J60_BIT_FIELD_CLR, EIE, EIE_PKTIE);
}
/* clear PKTIF */
if (eir & EIR_PKTIF)
{
enc28j60_set_bank(EIR);
spi_write_op(ENC28J60_BIT_FIELD_CLR, EIR, EIR_PKTIF);
rx_activiated = RT_TRUE;
}
/* clear DMAIF */
if (eir & EIR_DMAIF)
{
enc28j60_set_bank(EIR);
spi_write_op(ENC28J60_BIT_FIELD_CLR, EIR, EIR_DMAIF);
}
/* LINK changed handler */
if ( eir & EIR_LINKIF)
{
enc28j60_check_link_status();
/* read PHIR to clear the flag */
enc28j60_phy_read(PHIR);
enc28j60_set_bank(EIR);
spi_write_op(ENC28J60_BIT_FIELD_CLR, EIR, EIR_LINKIF);
}
if (eir & EIR_TXIF)
{
/* A frame has been transmitted. */
enc28j60_set_bank(EIR);
spi_write_op(ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXIF);
}
/* TX Error handler */
if ((eir & EIR_TXERIF) != 0)
{
spi_write_op(ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXERIF);
}
eir = spi_read(EIR);
// rt_kprintf("inner eir: 0x%08x\n", eir);
} while ((rx_activiated != RT_TRUE && eir != 0));
}
/* RT-Thread Device Interface */
/* initialize the interface */
rt_err_t enc28j60_init(rt_device_t dev)
{
CSPASSIVE;
// perform system reset
spi_write_op(ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
delay_ms(50);
NextPacketPtr = RXSTART_INIT;
// Rx start
spi_write(ERXSTL, RXSTART_INIT&0xFF);
spi_write(ERXSTH, RXSTART_INIT>>8);
// set receive pointer address
spi_write(ERXRDPTL, RXSTOP_INIT&0xFF);
spi_write(ERXRDPTH, RXSTOP_INIT>>8);
// RX end
spi_write(ERXNDL, RXSTOP_INIT&0xFF);
spi_write(ERXNDH, RXSTOP_INIT>>8);
// TX start
spi_write(ETXSTL, TXSTART_INIT&0xFF);
spi_write(ETXSTH, TXSTART_INIT>>8);
// set transmission pointer address
spi_write(EWRPTL, TXSTART_INIT&0xFF);
spi_write(EWRPTH, TXSTART_INIT>>8);
// TX end
spi_write(ETXNDL, TXSTOP_INIT&0xFF);
spi_write(ETXNDH, TXSTOP_INIT>>8);
// do bank 1 stuff, packet filter:
// For broadcast packets we allow only ARP packtets
// All other packets should be unicast only for our mac (MAADR)
//
// The pattern to match on is therefore
// Type ETH.DST
// ARP BROADCAST
// 06 08 -- ff ff ff ff ff ff -> ip checksum for theses bytes=f7f9
// in binary these poitions are:11 0000 0011 1111
// This is hex 303F->EPMM0=0x3f,EPMM1=0x30
spi_write(ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_BCEN);
// do bank 2 stuff
// enable MAC receive
spi_write(MACON1, MACON1_MARXEN|MACON1_TXPAUS|MACON1_RXPAUS);
// enable automatic padding to 60bytes and CRC operations
// spi_write_op(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN);
spi_write_op(ENC28J60_BIT_FIELD_SET, MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN | MACON3_FULDPX);
// bring MAC out of reset
// set inter-frame gap (back-to-back)
// spi_write(MABBIPG, 0x12);
spi_write(MABBIPG, 0x15);
spi_write(MACON4, MACON4_DEFER);
spi_write(MACLCON2, 63);
// set inter-frame gap (non-back-to-back)
spi_write(MAIPGL, 0x12);
spi_write(MAIPGH, 0x0C);
// Set the maximum packet size which the controller will accept
// Do not send packets longer than MAX_FRAMELEN:
spi_write(MAMXFLL, MAX_FRAMELEN&0xFF);
spi_write(MAMXFLH, MAX_FRAMELEN>>8);
// do bank 3 stuff
// write MAC address
// NOTE: MAC address in ENC28J60 is byte-backward
spi_write(MAADR0, enc28j60_dev->dev_addr[5]);
spi_write(MAADR1, enc28j60_dev->dev_addr[4]);
spi_write(MAADR2, enc28j60_dev->dev_addr[3]);
spi_write(MAADR3, enc28j60_dev->dev_addr[2]);
spi_write(MAADR4, enc28j60_dev->dev_addr[1]);
spi_write(MAADR5, enc28j60_dev->dev_addr[0]);
/* output off */
spi_write(ECOCON, 0x00);
// enc28j60_phy_write(PHCON1, 0x00);
enc28j60_phy_write(PHCON1, PHCON1_PDPXMD); // full duplex
// no loopback of transmitted frames
enc28j60_phy_write(PHCON2, PHCON2_HDLDIS);
enc28j60_set_bank(ECON2);
spi_write_op(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_AUTOINC);
// switch to bank 0
enc28j60_set_bank(ECON1);
// enable interrutps
spi_write_op(ENC28J60_BIT_FIELD_SET, EIE, EIE_INTIE|EIE_PKTIE|EIR_TXIF);
// enable packet reception
spi_write_op(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
/* clock out */
// enc28j60_clkout(2);
enc28j60_phy_write(PHLCON, 0xD76); //0x476
delay_ms(20);
return RT_EOK;
}
/* control the interface */
rt_err_t enc28j60_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
switch(cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if(args) rt_memcpy(args, enc28j60_dev_entry.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* Open the ethernet interface */
rt_err_t enc28j60_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
/* Close the interface */
rt_err_t enc28j60_close(rt_device_t dev)
{
return RT_EOK;
}
/* Read */
rt_size_t enc28j60_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
/* Write */
rt_size_t enc28j60_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
/* ethernet device interface */
/*
* Transmit packet.
*/
rt_err_t enc28j60_tx( rt_device_t dev, struct pbuf* p)
{
struct pbuf* q;
rt_uint32_t len;
rt_uint8_t* ptr;
rt_uint32_t level;
// rt_kprintf("tx pbuf: 0x%08x, total len %d\n", p, p->tot_len);
/* lock enc28j60 */
rt_sem_take(&lock_sem, RT_WAITING_FOREVER);
/* disable enc28j60 interrupt */
level = enc28j60_interrupt_disable();
// Set the write pointer to start of transmit buffer area
spi_write(EWRPTL, TXSTART_INIT&0xFF);
spi_write(EWRPTH, TXSTART_INIT>>8);
// Set the TXND pointer to correspond to the packet size given
spi_write(ETXNDL, (TXSTART_INIT+ p->tot_len + 1)&0xFF);
spi_write(ETXNDH, (TXSTART_INIT+ p->tot_len + 1)>>8);
// write per-packet control byte (0x00 means use macon3 settings)
spi_write_op(ENC28J60_WRITE_BUF_MEM, 0, 0x00);
for (q = p; q != NULL; q = q->next)
{
CSACTIVE;
SPI_I2S_SendData(SPI2, ENC28J60_WRITE_BUF_MEM);
while(SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY)==SET);
len = q->len;
ptr = q->payload;
while(len)
{
SPI_I2S_SendData(SPI2,*ptr) ;
while(SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY)==SET);;
ptr++;
len--;
}
CSPASSIVE;
}
// send the contents of the transmit buffer onto the network
spi_write_op(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
// Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12.
if( (spi_read(EIR) & EIR_TXERIF) )
{
spi_write_op(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRTS);
}
/* enable enc28j60 interrupt */
enc28j60_interrupt_enable(level);
rt_sem_release(&lock_sem);
return RT_EOK;
}
struct pbuf *enc28j60_rx(rt_device_t dev)
{
struct pbuf* p;
rt_uint32_t len;
rt_uint16_t rxstat;
rt_uint32_t pk_counter;
rt_uint32_t level;
p = RT_NULL;
/* lock enc28j60 */
rt_sem_take(&lock_sem, RT_WAITING_FOREVER);
/* disable enc28j60 interrupt */
level = enc28j60_interrupt_disable();
pk_counter = spi_read(EPKTCNT);
if (pk_counter)
{
// Set the read pointer to the start of the received packet
spi_write(ERDPTL, (NextPacketPtr));
spi_write(ERDPTH, (NextPacketPtr)>>8);
// read the next packet pointer
NextPacketPtr = spi_read_op(ENC28J60_READ_BUF_MEM, 0);
NextPacketPtr |= spi_read_op(ENC28J60_READ_BUF_MEM, 0)<<8;
// read the packet length (see datasheet page 43)
len = spi_read_op(ENC28J60_READ_BUF_MEM, 0); //0x54
len |= spi_read_op(ENC28J60_READ_BUF_MEM, 0) <<8; //5554
len-=4; //remove the CRC count
// read the receive status (see datasheet page 43)
rxstat = spi_read_op(ENC28J60_READ_BUF_MEM, 0);
rxstat |= ((rt_uint16_t)spi_read_op(ENC28J60_READ_BUF_MEM, 0))<<8;
// check CRC and symbol errors (see datasheet page 44, table 7-3):
// The ERXFCON.CRCEN is set by default. Normally we should not
// need to check this.
if ((rxstat & 0x80)==0)
{
// invalid
len=0;
}
else
{
/* allocation pbuf */
p = pbuf_alloc(PBUF_LINK, len, PBUF_RAM);
if (p != RT_NULL)
{
rt_uint8_t* data;
struct pbuf* q;
for (q = p; q != RT_NULL; q= q->next)
{
data = q->payload;
len = q->len;
CSACTIVE;
SPI_I2S_SendData(SPI2,ENC28J60_READ_BUF_MEM);
while(SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY)==SET);
SPI_I2S_ReceiveData(SPI2);
while(len)
{
len--;
SPI_I2S_SendData(SPI2,0x00) ;
while(SPI_I2S_GetFlagStatus(SPI2, SPI_I2S_FLAG_BSY)==SET);
*data= SPI_I2S_ReceiveData(SPI2);
data++;
}
CSPASSIVE;
}
}
}
// Move the RX read pointer to the start of the next received packet
// This frees the memory we just read out
spi_write(ERXRDPTL, (NextPacketPtr));
spi_write(ERXRDPTH, (NextPacketPtr)>>8);
// decrement the packet counter indicate we are done with this packet
spi_write_op(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC);
}
else
{
// switch to bank 0
enc28j60_set_bank(ECON1);
// enable packet reception
spi_write_op(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
level |= EIE_PKTIE;
}
/* enable enc28j60 interrupt */
enc28j60_interrupt_enable(level);
rt_sem_release(&lock_sem);
return p;
}
static void RCC_Configuration(void)
{
/* enable spi2 clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
/* enable gpiob port clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO, ENABLE);
}
static void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
/* Configure one bit for preemption priority */
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
/* Enable the EXTI0 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
static void GPIO_Configuration()
{
GPIO_InitTypeDef GPIO_InitStructure;
EXTI_InitTypeDef EXTI_InitStructure;
/* configure PB0 as external interrupt */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* Configure SPI2 pins: SCK, MISO and MOSI ----------------------------*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* Connect ENC28J60 EXTI Line to GPIOB Pin 0 */
GPIO_EXTILineConfig(GPIO_PortSourceGPIOB, GPIO_PinSource0);
/* Configure ENC28J60 EXTI Line to generate an interrupt on falling edge */
EXTI_InitStructure.EXTI_Line = EXTI_Line0;
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;
EXTI_InitStructure.EXTI_LineCmd = ENABLE;
EXTI_Init(&EXTI_InitStructure);
/* Clear the Key Button EXTI line pending bit */
EXTI_ClearITPendingBit(EXTI_Line0);
}
static void SetupSPI (void)
{
SPI_InitTypeDef SPI_InitStructure;
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4;
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_Init(SPI2, &SPI_InitStructure);
SPI_Cmd(SPI2, ENABLE);
}
void rt_hw_enc28j60_init()
{
/* configuration PB5 as INT */
RCC_Configuration();
NVIC_Configuration();
GPIO_Configuration();
SetupSPI();
/* init rt-thread device interface */
enc28j60_dev_entry.parent.parent.init = enc28j60_init;
enc28j60_dev_entry.parent.parent.open = enc28j60_open;
enc28j60_dev_entry.parent.parent.close = enc28j60_close;
enc28j60_dev_entry.parent.parent.read = enc28j60_read;
enc28j60_dev_entry.parent.parent.write = enc28j60_write;
enc28j60_dev_entry.parent.parent.control = enc28j60_control;
enc28j60_dev_entry.parent.eth_rx = enc28j60_rx;
enc28j60_dev_entry.parent.eth_tx = enc28j60_tx;
/* Update MAC address */
enc28j60_dev_entry.dev_addr[0] = 0x00;
enc28j60_dev_entry.dev_addr[1] = 0x30;
enc28j60_dev_entry.dev_addr[2] = 0x6c;
enc28j60_dev_entry.dev_addr[3] = 0x11;
enc28j60_dev_entry.dev_addr[4] = 0x22;
enc28j60_dev_entry.dev_addr[5] = 0x33;
rt_sem_init(&lock_sem, "lock", 1, RT_IPC_FLAG_FIFO);
eth_device_init(&(enc28j60_dev->parent), "e0");
}