rt-thread/src/memheap.c

999 lines
32 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
* File : memheap.c
*
* Change Logs:
* Date Author Notes
* 2012-04-10 Bernard first implementation
* 2012-10-16 Bernard add the mutex lock for heap object.
* 2012-12-29 Bernard memheap can be used as system heap.
* change mutex lock to semaphore lock.
* 2013-04-10 Bernard add rt_memheap_realloc function.
* 2013-05-24 Bernard fix the rt_memheap_realloc issue.
* 2013-07-11 Grissiom fix the memory block splitting issue.
* 2013-07-15 Grissiom optimize rt_memheap_realloc
* 2021-06-03 Flybreak Fix the crash problem after opening Oz optimization on ac6.
* 2023-03-01 Bernard Fix the alignment issue for minimal size
*/
#include <rthw.h>
#include <rtthread.h>
#ifdef RT_USING_MEMHEAP
#define DBG_TAG "kernel.memheap"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
/* dynamic pool magic and mask */
#define RT_MEMHEAP_MAGIC 0x1ea01ea0
#define RT_MEMHEAP_MASK 0xFFFFFFFE
#define RT_MEMHEAP_USED 0x01
#define RT_MEMHEAP_FREED 0x00
#define RT_MEMHEAP_IS_USED(i) ((i)->magic & RT_MEMHEAP_USED)
#define RT_MEMHEAP_MINIALLOC RT_ALIGN(12, RT_ALIGN_SIZE)
#define RT_MEMHEAP_SIZE RT_ALIGN(sizeof(struct rt_memheap_item), RT_ALIGN_SIZE)
#define MEMITEM_SIZE(item) ((rt_ubase_t)item->next - (rt_ubase_t)item - RT_MEMHEAP_SIZE)
#define MEMITEM(ptr) (struct rt_memheap_item*)((rt_uint8_t*)ptr - RT_MEMHEAP_SIZE)
static void _remove_next_ptr(volatile struct rt_memheap_item *next_ptr)
{
/* Fix the crash problem after opening Oz optimization on ac6 */
/* Fix IAR compiler warning */
next_ptr->next_free->prev_free = next_ptr->prev_free;
next_ptr->prev_free->next_free = next_ptr->next_free;
next_ptr->next->prev = next_ptr->prev;
next_ptr->prev->next = next_ptr->next;
}
/**
* @brief This function initializes a piece of memory called memheap.
*
* @note The initialized memory pool will be:
* +-----------------------------------+--------------------------+
* | whole freed memory block | Used Memory Block Tailer |
* +-----------------------------------+--------------------------+
*
* block_list --> whole freed memory block
*
* The length of Used Memory Block Tailer is 0,
* which is prevents block merging across list
*
* @param memheap is a pointer of the memheap object.
*
* @param name is the name of the memheap.
*
* @param start_addr is the start address of the memheap.
*
* @param size is the size of the memheap.
*
* @return RT_EOK
*/
rt_err_t rt_memheap_init(struct rt_memheap *memheap,
const char *name,
void *start_addr,
rt_size_t size)
{
struct rt_memheap_item *item;
RT_ASSERT(memheap != RT_NULL);
/* initialize pool object */
rt_object_init(&(memheap->parent), RT_Object_Class_MemHeap, name);
memheap->start_addr = start_addr;
memheap->pool_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE);
memheap->available_size = memheap->pool_size - (2 * RT_MEMHEAP_SIZE);
memheap->max_used_size = memheap->pool_size - memheap->available_size;
/* initialize the free list header */
item = &(memheap->free_header);
item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
item->pool_ptr = memheap;
item->next = RT_NULL;
item->prev = RT_NULL;
item->next_free = item;
item->prev_free = item;
/* set the free list to free list header */
memheap->free_list = item;
/* initialize the first big memory block */
item = (struct rt_memheap_item *)start_addr;
item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
item->pool_ptr = memheap;
item->next = RT_NULL;
item->prev = RT_NULL;
item->next_free = item;
item->prev_free = item;
#ifdef RT_USING_MEMTRACE
rt_memset(item->owner_thread_name, ' ', sizeof(item->owner_thread_name));
#endif /* RT_USING_MEMTRACE */
item->next = (struct rt_memheap_item *)
((rt_uint8_t *)item + memheap->available_size + RT_MEMHEAP_SIZE);
item->prev = item->next;
/* block list header */
memheap->block_list = item;
/* place the big memory block to free list */
item->next_free = memheap->free_list->next_free;
item->prev_free = memheap->free_list;
memheap->free_list->next_free->prev_free = item;
memheap->free_list->next_free = item;
/* move to the end of memory pool to build a small tailer block,
* which prevents block merging
*/
item = item->next;
/* it's a used memory block */
item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED);
item->pool_ptr = memheap;
item->next = (struct rt_memheap_item *)start_addr;
item->prev = (struct rt_memheap_item *)start_addr;
/* not in free list */
item->next_free = item->prev_free = RT_NULL;
/* initialize semaphore lock */
rt_sem_init(&(memheap->lock), name, 1, RT_IPC_FLAG_PRIO);
memheap->locked = RT_FALSE;
LOG_D("memory heap: start addr 0x%08x, size %d, free list header 0x%08x",
start_addr, size, &(memheap->free_header));
return RT_EOK;
}
RTM_EXPORT(rt_memheap_init);
/**
* @brief This function will remove a memheap from the system.
*
* @param heap is a pointer of memheap object.
*
* @return RT_EOK
*/
rt_err_t rt_memheap_detach(struct rt_memheap *heap)
{
RT_ASSERT(heap);
RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
RT_ASSERT(rt_object_is_systemobject(&heap->parent));
rt_sem_detach(&heap->lock);
rt_object_detach(&(heap->parent));
/* Return a successful completion. */
return RT_EOK;
}
RTM_EXPORT(rt_memheap_detach);
/**
* @brief Allocate a block of memory with a minimum of 'size' bytes on memheap.
*
* @param heap is a pointer for memheap object.
*
* @param size is the minimum size of the requested block in bytes.
*
* @return the pointer to allocated memory or NULL if no free memory was found.
*/
void *rt_memheap_alloc(struct rt_memheap *heap, rt_size_t size)
{
rt_err_t result;
rt_size_t free_size;
struct rt_memheap_item *header_ptr;
RT_ASSERT(heap != RT_NULL);
RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
/* align allocated size */
size = RT_ALIGN(size, RT_ALIGN_SIZE);
if (size < RT_MEMHEAP_MINIALLOC)
size = RT_MEMHEAP_MINIALLOC;
LOG_D("allocate %d on heap:%8.*s",
size, RT_NAME_MAX, heap->parent.name);
if (size < heap->available_size)
{
/* search on free list */
free_size = 0;
/* lock memheap */
if (heap->locked == RT_FALSE)
{
result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_set_errno(result);
return RT_NULL;
}
}
/* get the first free memory block */
header_ptr = heap->free_list->next_free;
while (header_ptr != heap->free_list && free_size < size)
{
/* get current freed memory block size */
free_size = MEMITEM_SIZE(header_ptr);
if (free_size < size)
{
/* move to next free memory block */
header_ptr = header_ptr->next_free;
}
}
/* determine if the memory is available. */
if (free_size >= size)
{
/* a block that satisfies the request has been found. */
/* determine if the block needs to be split. */
if (free_size >= (size + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC))
{
struct rt_memheap_item *new_ptr;
/* split the block. */
new_ptr = (struct rt_memheap_item *)
(((rt_uint8_t *)header_ptr) + size + RT_MEMHEAP_SIZE);
LOG_D("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]",
header_ptr,
header_ptr->next,
header_ptr->prev,
new_ptr);
/* mark the new block as a memory block and freed. */
new_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
/* put the pool pointer into the new block. */
new_ptr->pool_ptr = heap;
#ifdef RT_USING_MEMTRACE
rt_memset(new_ptr->owner_thread_name, ' ', sizeof(new_ptr->owner_thread_name));
#endif /* RT_USING_MEMTRACE */
/* break down the block list */
new_ptr->prev = header_ptr;
new_ptr->next = header_ptr->next;
header_ptr->next->prev = new_ptr;
header_ptr->next = new_ptr;
/* remove header ptr from free list */
header_ptr->next_free->prev_free = header_ptr->prev_free;
header_ptr->prev_free->next_free = header_ptr->next_free;
header_ptr->next_free = RT_NULL;
header_ptr->prev_free = RT_NULL;
/* insert new_ptr to free list */
new_ptr->next_free = heap->free_list->next_free;
new_ptr->prev_free = heap->free_list;
heap->free_list->next_free->prev_free = new_ptr;
heap->free_list->next_free = new_ptr;
LOG_D("new ptr: next_free 0x%08x, prev_free 0x%08x",
new_ptr->next_free,
new_ptr->prev_free);
/* decrement the available byte count. */
heap->available_size = heap->available_size -
size -
RT_MEMHEAP_SIZE;
if (heap->pool_size - heap->available_size > heap->max_used_size)
heap->max_used_size = heap->pool_size - heap->available_size;
}
else
{
/* decrement the entire free size from the available bytes count. */
heap->available_size = heap->available_size - free_size;
if (heap->pool_size - heap->available_size > heap->max_used_size)
heap->max_used_size = heap->pool_size - heap->available_size;
/* remove header_ptr from free list */
LOG_D("one block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x",
header_ptr,
header_ptr->next_free,
header_ptr->prev_free);
header_ptr->next_free->prev_free = header_ptr->prev_free;
header_ptr->prev_free->next_free = header_ptr->next_free;
header_ptr->next_free = RT_NULL;
header_ptr->prev_free = RT_NULL;
}
/* Mark the allocated block as not available. */
header_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED);
#ifdef RT_USING_MEMTRACE
if (rt_thread_self())
rt_memcpy(header_ptr->owner_thread_name, rt_thread_self()->parent.name, sizeof(header_ptr->owner_thread_name));
else
rt_memcpy(header_ptr->owner_thread_name, "NONE", sizeof(header_ptr->owner_thread_name));
#endif /* RT_USING_MEMTRACE */
if (heap->locked == RT_FALSE)
{
/* release lock */
rt_sem_release(&(heap->lock));
}
/* Return a memory address to the caller. */
LOG_D("alloc mem: memory[0x%08x], heap[0x%08x], size: %d",
(void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE),
header_ptr,
size);
return (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE);
}
if (heap->locked == RT_FALSE)
{
/* release lock */
rt_sem_release(&(heap->lock));
}
}
LOG_D("allocate memory: failed");
/* Return the completion status. */
return RT_NULL;
}
RTM_EXPORT(rt_memheap_alloc);
/**
* @brief This function will change the size of previously allocated memory block.
*
* @param heap is a pointer to the memheap object, which will reallocate
* memory from the block
*
* @param ptr is a pointer to start address of memory.
*
* @param newsize is the required new size.
*
* @return the changed memory block address.
*/
void *rt_memheap_realloc(struct rt_memheap *heap, void *ptr, rt_size_t newsize)
{
rt_err_t result;
rt_size_t oldsize;
struct rt_memheap_item *header_ptr;
struct rt_memheap_item *new_ptr;
RT_ASSERT(heap);
RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
if (newsize == 0)
{
rt_memheap_free(ptr);
return RT_NULL;
}
/* align allocated size */
newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
if (newsize < RT_MEMHEAP_MINIALLOC)
newsize = RT_MEMHEAP_MINIALLOC;
if (ptr == RT_NULL)
{
return rt_memheap_alloc(heap, newsize);
}
/* get memory block header and get the size of memory block */
header_ptr = (struct rt_memheap_item *)
((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE);
oldsize = MEMITEM_SIZE(header_ptr);
/* re-allocate memory */
if (newsize > oldsize)
{
void *new_ptr;
volatile struct rt_memheap_item *next_ptr;
if (heap->locked == RT_FALSE)
{
/* lock memheap */
result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_set_errno(result);
return RT_NULL;
}
}
next_ptr = header_ptr->next;
/* header_ptr should not be the tail */
RT_ASSERT(next_ptr > header_ptr);
/* check whether the following free space is enough to expand */
if (!RT_MEMHEAP_IS_USED(next_ptr))
{
rt_int32_t nextsize;
nextsize = MEMITEM_SIZE(next_ptr);
RT_ASSERT(next_ptr > 0);
/* Here is the ASCII art of the situation that we can make use of
* the next free node without alloc/memcpy, |*| is the control
* block:
*
* oldsize free node
* |*|-----------|*|----------------------|*|
* newsize >= minialloc
* |*|----------------|*|-----------------|*|
*/
if (nextsize + oldsize > newsize + RT_MEMHEAP_MINIALLOC)
{
/* decrement the entire free size from the available bytes count. */
heap->available_size = heap->available_size - (newsize - oldsize);
if (heap->pool_size - heap->available_size > heap->max_used_size)
heap->max_used_size = heap->pool_size - heap->available_size;
/* remove next_ptr from free list */
LOG_D("remove block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x",
next_ptr,
next_ptr->next_free,
next_ptr->prev_free);
_remove_next_ptr(next_ptr);
/* build a new one on the right place */
next_ptr = (struct rt_memheap_item *)((char *)ptr + newsize);
LOG_D("new free block: block[0x%08x] nextm[0x%08x] prevm[0x%08x]",
next_ptr,
next_ptr->next,
next_ptr->prev);
/* mark the new block as a memory block and freed. */
next_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
/* put the pool pointer into the new block. */
next_ptr->pool_ptr = heap;
#ifdef RT_USING_MEMTRACE
rt_memset((void *)next_ptr->owner_thread_name, ' ', sizeof(next_ptr->owner_thread_name));
#endif /* RT_USING_MEMTRACE */
next_ptr->prev = header_ptr;
next_ptr->next = header_ptr->next;
header_ptr->next->prev = (struct rt_memheap_item *)next_ptr;
header_ptr->next = (struct rt_memheap_item *)next_ptr;
/* insert next_ptr to free list */
next_ptr->next_free = heap->free_list->next_free;
next_ptr->prev_free = heap->free_list;
heap->free_list->next_free->prev_free = (struct rt_memheap_item *)next_ptr;
heap->free_list->next_free = (struct rt_memheap_item *)next_ptr;
LOG_D("new ptr: next_free 0x%08x, prev_free 0x%08x",
next_ptr->next_free,
next_ptr->prev_free);
if (heap->locked == RT_FALSE)
{
/* release lock */
rt_sem_release(&(heap->lock));
}
return ptr;
}
}
if (heap->locked == RT_FALSE)
{
/* release lock */
rt_sem_release(&(heap->lock));
}
/* re-allocate a memory block */
new_ptr = (void *)rt_memheap_alloc(heap, newsize);
if (new_ptr != RT_NULL)
{
rt_memcpy(new_ptr, ptr, oldsize < newsize ? oldsize : newsize);
rt_memheap_free(ptr);
}
return new_ptr;
}
/* don't split when there is less than one node space left */
if (newsize + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC >= oldsize)
return ptr;
if (heap->locked == RT_FALSE)
{
/* lock memheap */
result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_set_errno(result);
return RT_NULL;
}
}
/* split the block. */
new_ptr = (struct rt_memheap_item *)
(((rt_uint8_t *)header_ptr) + newsize + RT_MEMHEAP_SIZE);
LOG_D("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]",
header_ptr,
header_ptr->next,
header_ptr->prev,
new_ptr);
/* mark the new block as a memory block and freed. */
new_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
/* put the pool pointer into the new block. */
new_ptr->pool_ptr = heap;
#ifdef RT_USING_MEMTRACE
rt_memset(new_ptr->owner_thread_name, ' ', sizeof(new_ptr->owner_thread_name));
#endif /* RT_USING_MEMTRACE */
/* break down the block list */
new_ptr->prev = header_ptr;
new_ptr->next = header_ptr->next;
header_ptr->next->prev = new_ptr;
header_ptr->next = new_ptr;
/* determine if the block can be merged with the next neighbor. */
if (!RT_MEMHEAP_IS_USED(new_ptr->next))
{
struct rt_memheap_item *free_ptr;
/* merge block with next neighbor. */
free_ptr = new_ptr->next;
heap->available_size = heap->available_size - MEMITEM_SIZE(free_ptr);
LOG_D("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x",
header_ptr, header_ptr->next_free, header_ptr->prev_free);
free_ptr->next->prev = new_ptr;
new_ptr->next = free_ptr->next;
/* remove free ptr from free list */
free_ptr->next_free->prev_free = free_ptr->prev_free;
free_ptr->prev_free->next_free = free_ptr->next_free;
}
/* insert the split block to free list */
new_ptr->next_free = heap->free_list->next_free;
new_ptr->prev_free = heap->free_list;
heap->free_list->next_free->prev_free = new_ptr;
heap->free_list->next_free = new_ptr;
LOG_D("new free ptr: next_free 0x%08x, prev_free 0x%08x",
new_ptr->next_free,
new_ptr->prev_free);
/* increment the available byte count. */
heap->available_size = heap->available_size + MEMITEM_SIZE(new_ptr);
if (heap->locked == RT_FALSE)
{
/* release lock */
rt_sem_release(&(heap->lock));
}
/* return the old memory block */
return ptr;
}
RTM_EXPORT(rt_memheap_realloc);
/**
* @brief This function will release the allocated memory block by
* rt_malloc. The released memory block is taken back to system heap.
*
* @param ptr the address of memory which will be released.
*/
void rt_memheap_free(void *ptr)
{
rt_err_t result;
struct rt_memheap *heap;
struct rt_memheap_item *header_ptr, *new_ptr;
rt_bool_t insert_header;
/* NULL check */
if (ptr == RT_NULL) return;
/* set initial status as OK */
insert_header = RT_TRUE;
new_ptr = RT_NULL;
header_ptr = (struct rt_memheap_item *)
((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE);
LOG_D("free memory: memory[0x%08x], block[0x%08x]",
ptr, header_ptr);
/* check magic */
if (header_ptr->magic != (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED) ||
(header_ptr->next->magic & RT_MEMHEAP_MASK) != RT_MEMHEAP_MAGIC)
{
LOG_D("bad magic:0x%08x @ memheap",
header_ptr->magic);
RT_ASSERT(header_ptr->magic == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED));
/* check whether this block of memory has been over-written. */
RT_ASSERT((header_ptr->next->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC);
}
/* get pool ptr */
heap = header_ptr->pool_ptr;
RT_ASSERT(heap);
RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap);
if (heap->locked == RT_FALSE)
{
/* lock memheap */
result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_set_errno(result);
return ;
}
}
/* Mark the memory as available. */
header_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED);
/* Adjust the available number of bytes. */
heap->available_size += MEMITEM_SIZE(header_ptr);
/* Determine if the block can be merged with the previous neighbor. */
if (!RT_MEMHEAP_IS_USED(header_ptr->prev))
{
LOG_D("merge: left node 0x%08x",
header_ptr->prev);
/* adjust the available number of bytes. */
heap->available_size += RT_MEMHEAP_SIZE;
/* yes, merge block with previous neighbor. */
(header_ptr->prev)->next = header_ptr->next;
(header_ptr->next)->prev = header_ptr->prev;
/* move header pointer to previous. */
header_ptr = header_ptr->prev;
/* don't insert header to free list */
insert_header = RT_FALSE;
}
/* determine if the block can be merged with the next neighbor. */
if (!RT_MEMHEAP_IS_USED(header_ptr->next))
{
/* adjust the available number of bytes. */
heap->available_size += RT_MEMHEAP_SIZE;
/* merge block with next neighbor. */
new_ptr = header_ptr->next;
LOG_D("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x",
new_ptr, new_ptr->next_free, new_ptr->prev_free);
new_ptr->next->prev = header_ptr;
header_ptr->next = new_ptr->next;
/* remove new ptr from free list */
new_ptr->next_free->prev_free = new_ptr->prev_free;
new_ptr->prev_free->next_free = new_ptr->next_free;
}
if (insert_header)
{
struct rt_memheap_item *n = heap->free_list->next_free;;
#if defined(RT_MEMHEAP_BEST_MODE)
rt_size_t blk_size = MEMITEM_SIZE(header_ptr);
for (;n != heap->free_list; n = n->next_free)
{
rt_size_t m = MEMITEM_SIZE(n);
if (blk_size <= m)
{
break;
}
}
#endif
/* no left merge, insert to free list */
header_ptr->next_free = n;
header_ptr->prev_free = n->prev_free;
n->prev_free->next_free = header_ptr;
n->prev_free = header_ptr;
LOG_D("insert to free list: next_free 0x%08x, prev_free 0x%08x",
header_ptr->next_free, header_ptr->prev_free);
}
#ifdef RT_USING_MEMTRACE
rt_memset(header_ptr->owner_thread_name, ' ', sizeof(header_ptr->owner_thread_name));
#endif /* RT_USING_MEMTRACE */
if (heap->locked == RT_FALSE)
{
/* release lock */
rt_sem_release(&(heap->lock));
}
}
RTM_EXPORT(rt_memheap_free);
/**
* @brief This function will caculate the total memory, the used memory, and
* the max used memory.
*
* @param heap is a pointer to the memheap object, which will reallocate
* memory from the block
*
* @param total is a pointer to get the total size of the memory.
*
* @param used is a pointer to get the size of memory used.
*
* @param max_used is a pointer to get the maximum memory used.
*/
void rt_memheap_info(struct rt_memheap *heap,
rt_size_t *total,
rt_size_t *used,
rt_size_t *max_used)
{
rt_err_t result;
if (heap->locked == RT_FALSE)
{
/* lock memheap */
result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_set_errno(result);
return;
}
}
if (total != RT_NULL)
*total = heap->pool_size;
if (used != RT_NULL)
*used = heap->pool_size - heap->available_size;
if (max_used != RT_NULL)
*max_used = heap->max_used_size;
if (heap->locked == RT_FALSE)
{
/* release lock */
rt_sem_release(&(heap->lock));
}
}
#ifdef RT_USING_MEMHEAP_AS_HEAP
/*
* rt_malloc port function
*/
void *_memheap_alloc(struct rt_memheap *heap, rt_size_t size)
{
void *ptr;
/* try to allocate in system heap */
ptr = rt_memheap_alloc(heap, size);
#ifdef RT_USING_MEMHEAP_AUTO_BINDING
if (ptr == RT_NULL)
{
struct rt_object *object;
struct rt_list_node *node;
struct rt_memheap *_heap;
struct rt_object_information *information;
/* try to allocate on other memory heap */
information = rt_object_get_information(RT_Object_Class_MemHeap);
RT_ASSERT(information != RT_NULL);
for (node = information->object_list.next;
node != &(information->object_list);
node = node->next)
{
object = rt_list_entry(node, struct rt_object, list);
_heap = (struct rt_memheap *)object;
/* not allocate in the default system heap */
if (heap == _heap)
continue;
ptr = rt_memheap_alloc(_heap, size);
if (ptr != RT_NULL)
break;
}
}
#endif /* RT_USING_MEMHEAP_AUTO_BINDING */
return ptr;
}
/*
* rt_free port function
*/
void _memheap_free(void *rmem)
{
rt_memheap_free(rmem);
}
/*
* rt_realloc port function
*/
void *_memheap_realloc(struct rt_memheap *heap, void *rmem, rt_size_t newsize)
{
void *new_ptr;
struct rt_memheap_item *header_ptr;
if (rmem == RT_NULL)
return _memheap_alloc(heap, newsize);
if (newsize == 0)
{
_memheap_free(rmem);
return RT_NULL;
}
/* get old memory item */
header_ptr = (struct rt_memheap_item *)
((rt_uint8_t *)rmem - RT_MEMHEAP_SIZE);
new_ptr = rt_memheap_realloc(header_ptr->pool_ptr, rmem, newsize);
if (new_ptr == RT_NULL && newsize != 0)
{
/* allocate memory block from other memheap */
new_ptr = _memheap_alloc(heap, newsize);
if (new_ptr != RT_NULL && rmem != RT_NULL)
{
rt_size_t oldsize;
/* get the size of old memory block */
oldsize = MEMITEM_SIZE(header_ptr);
if (newsize > oldsize)
rt_memcpy(new_ptr, rmem, oldsize);
else
rt_memcpy(new_ptr, rmem, newsize);
_memheap_free(rmem);
}
}
return new_ptr;
}
#endif
#ifdef RT_USING_MEMTRACE
int memheapcheck(int argc, char *argv[])
{
struct rt_object_information *info;
struct rt_list_node *list;
struct rt_memheap *heap;
struct rt_list_node *node;
struct rt_memheap_item *item;
rt_bool_t has_bad = RT_FALSE;
rt_base_t level;
char *name;
name = argc > 1 ? argv[1] : RT_NULL;
level = rt_hw_interrupt_disable();
info = rt_object_get_information(RT_Object_Class_MemHeap);
list = &info->object_list;
for (node = list->next; node != list; node = node->next)
{
heap = (struct rt_memheap *)rt_list_entry(node, struct rt_object, list);
/* find the specified object */
if (name != RT_NULL && rt_strncmp(name, heap->parent.name, RT_NAME_MAX) != 0)
continue;
/* check memheap */
for (item = heap->block_list; item->next != heap->block_list; item = item->next)
{
/* check magic */
if (!((item->magic & (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED)) == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED) ||
(item->magic & (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED)) == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED)))
{
has_bad = RT_TRUE;
break;
}
/* check pool_ptr */
if (heap != item->pool_ptr)
{
has_bad = RT_TRUE;
break;
}
/* check next and prev */
if (!((rt_ubase_t)item->next <= (rt_ubase_t)((rt_ubase_t)heap->start_addr + heap->pool_size) &&
(rt_ubase_t)item->prev >= (rt_ubase_t)heap->start_addr) &&
(rt_ubase_t)item->next == RT_ALIGN((rt_ubase_t)item->next, RT_ALIGN_SIZE) &&
(rt_ubase_t)item->prev == RT_ALIGN((rt_ubase_t)item->prev, RT_ALIGN_SIZE))
{
has_bad = RT_TRUE;
break;
}
/* check item */
if (item->next == item->next->prev)
{
has_bad = RT_TRUE;
break;
}
}
}
rt_hw_interrupt_enable(level);
if (has_bad)
{
rt_kprintf("Memory block wrong:\n");
rt_kprintf("name: %s\n", heap->parent.name);
rt_kprintf("item: 0x%p\n", item);
}
return 0;
}
MSH_CMD_EXPORT(memheapcheck, check memory for memheap);
int memheaptrace(int argc, char *argv[])
{
struct rt_object_information *info;
struct rt_list_node *list;
struct rt_memheap *mh;
struct rt_list_node *node;
char *name;
name = argc > 1 ? argv[1] : RT_NULL;
info = rt_object_get_information(RT_Object_Class_MemHeap);
list = &info->object_list;
for (node = list->next; node != list; node = node->next)
{
struct rt_memheap_item *header_ptr;
long block_size;
mh = (struct rt_memheap *)rt_list_entry(node, struct rt_object, list);
/* find the specified object */
if (name != RT_NULL && rt_strncmp(name, mh->parent.name, RT_NAME_MAX) != 0)
continue;
/* memheap dump */
rt_kprintf("\nmemory heap address:\n");
rt_kprintf("name : %s\n", mh->parent.name);
rt_kprintf("heap_ptr: 0x%p\n", mh->start_addr);
rt_kprintf("free : 0x%08x\n", mh->available_size);
rt_kprintf("max_used: 0x%08x\n", mh->max_used_size);
rt_kprintf("size : 0x%08x\n", mh->pool_size);
rt_kprintf("\n--memory used information --\n");
/* memheap item */
for (header_ptr = mh->block_list;
header_ptr->next != mh->block_list;
header_ptr = header_ptr->next)
{
if ((header_ptr->magic & RT_MEMHEAP_MASK) != RT_MEMHEAP_MAGIC)
{
rt_kprintf("[0x%p - incorrect magic: 0x%08x\n",
header_ptr, header_ptr->magic);
break;
}
/* get current memory block size */
block_size = MEMITEM_SIZE(header_ptr);
if (block_size < 0)
break;
rt_kprintf("[0x%p - ", header_ptr);
if (block_size < 1024)
rt_kprintf("%5d", block_size);
else if (block_size < 1024 * 1024)
rt_kprintf("%4dK", block_size / 1024);
else if (block_size < 1024 * 1024 * 100)
rt_kprintf("%2d.%dM", block_size / (1024 * 1024), (block_size % (1024 * 1024) * 10) / (1024 * 1024));
else
rt_kprintf("%4dM", block_size / (1024 * 1024));
/* dump thread name */
rt_kprintf("] %c%c%c%c\n",
header_ptr->owner_thread_name[0],
header_ptr->owner_thread_name[1],
header_ptr->owner_thread_name[2],
header_ptr->owner_thread_name[3]);
}
}
return 0;
}
#ifdef RT_USING_FINSH
#include <finsh.h>
MSH_CMD_EXPORT(memheaptrace, dump memory trace for memheap);
#endif /* RT_USING_FINSH */
#endif /* RT_USING_MEMTRACE */
#endif /* RT_USING_MEMHEAP */