rt-thread/bsp/gd32303e-eval/Libraries/GD32F30x_standard_peripheral/Source/gd32f30x_spi.c

793 lines
23 KiB
C

/*!
\file gd32f30x_spi.c
\brief SPI driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_spi.h"
#define SPI_INIT_MASK ((uint32_t)0x00003040U) /*!< SPI parameter initialization mask */
#define I2S_INIT_MASK ((uint32_t)0x0000F047U) /*!< I2S parameter initialization mask */
#define I2S1_CLOCK_SEL ((uint32_t)0x00020000U) /* I2S1 clock source selection */
#define I2S2_CLOCK_SEL ((uint32_t)0x00040000U) /* I2S2 clock source selection */
#define I2S_CLOCK_MUL_MASK ((uint32_t)0x0000F000U) /* I2S clock multiplication mask */
#define I2S_CLOCK_DIV_MASK ((uint32_t)0x000000F0U) /* I2S clock division mask */
/*!
\brief reset SPI and I2S
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_i2s_deinit(uint32_t spi_periph)
{
switch(spi_periph){
case SPI0:
/* reset SPI0 */
rcu_periph_reset_enable(RCU_SPI0RST);
rcu_periph_reset_disable(RCU_SPI0RST);
break;
case SPI1:
/* reset SPI1 and I2S1 */
rcu_periph_reset_enable(RCU_SPI1RST);
rcu_periph_reset_disable(RCU_SPI1RST);
break;
case SPI2:
/* reset SPI2 and I2S2 */
rcu_periph_reset_enable(RCU_SPI2RST);
rcu_periph_reset_disable(RCU_SPI2RST);
break;
default :
break;
}
}
/*!
\brief initialize SPI parameter
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] spi_struct: SPI parameter initialization stuct members of the structure
and the member values are shown as below:
device_mode: SPI_MASTER, SPI_SLAVE
trans_mode: SPI_TRANSMODE_FULLDUPLEX, SPI_TRANSMODE_RECEIVEONLY,
SPI_TRANSMODE_BDRECEIVE, SPI_TRANSMODE_BDTRANSMIT
frame_size: SPI_FRAMESIZE_16BIT, SPI_FRAMESIZE_8BIT
nss: SPI_NSS_SOFT, SPI_NSS_HARD
endian: SPI_ENDIAN_MSB, SPI_ENDIAN_LSB
clock_polarity_phase: SPI_CK_PL_LOW_PH_1EDGE, SPI_CK_PL_HIGH_PH_1EDGE
SPI_CK_PL_LOW_PH_2EDGE, SPI_CK_PL_HIGH_PH_2EDGE
prescale: SPI_PSC_n (n=2,4,8,16,32,64,128,256)
\param[out] none
\retval none
*/
void spi_init(uint32_t spi_periph, spi_parameter_struct* spi_struct)
{
uint32_t reg = 0U;
reg = SPI_CTL0(spi_periph);
reg &= SPI_INIT_MASK;
/* select SPI as master or slave */
reg |= spi_struct->device_mode;
/* select SPI transfer mode */
reg |= spi_struct->trans_mode;
/* select SPI frame size */
reg |= spi_struct->frame_size;
/* select SPI NSS use hardware or software */
reg |= spi_struct->nss;
/* select SPI LSB or MSB */
reg |= spi_struct->endian;
/* select SPI polarity and phase */
reg |= spi_struct->clock_polarity_phase;
/* select SPI prescale to adjust transmit speed */
reg |= spi_struct->prescale;
/* write to SPI_CTL0 register */
SPI_CTL0(spi_periph) = (uint32_t)reg;
SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SSEL);
}
/*!
\brief enable SPI
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_enable(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SPIEN;
}
/*!
\brief disable SPI
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_disable(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SPIEN);
}
/*!
\brief configure I2S prescaler
\param[in] spi_periph: SPIx(x=1,2)
\param[in] audiosample: I2S audio sample rate
\arg I2S_AUDIOSAMPLE_8K: audio sample rate is 8KHz
\arg I2S_AUDIOSAMPLE_11K: audio sample rate is 11KHz
\arg I2S_AUDIOSAMPLE_16K: audio sample rate is 16KHz
\arg I2S_AUDIOSAMPLE_22K: audio sample rate is 22KHz
\arg I2S_AUDIOSAMPLE_32K: audio sample rate is 32KHz
\arg I2S_AUDIOSAMPLE_44K: audio sample rate is 44KHz
\arg I2S_AUDIOSAMPLE_48K: audio sample rate is 48KHz
\arg I2S_AUDIOSAMPLE_96K: audio sample rate is 96KHz
\arg I2S_AUDIOSAMPLE_192K: audio sample rate is 192KHz
\param[in] frameformat: I2S data length and channel length
\arg I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit
\arg I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit
\param[in] mckout: I2S master clock output
\arg I2S_MCKOUT_ENABLE: I2S master clock output enable
\arg I2S_MCKOUT_DISABLE: I2S master clock output disable
\param[out] none
\retval none
*/
void i2s_psc_config(uint32_t spi_periph, uint32_t audiosample, uint32_t frameformat, uint32_t mckout)
{
uint32_t i2sdiv = 2U, i2sof = 0U;
uint32_t clks = 0U;
uint32_t i2sclock = 0U;
#ifdef GD32F30X_CL
uint32_t pll2mf_4 = 0U;
#endif /* GD32F30X_CL */
/* deinit SPI_I2SPSC register */
SPI_I2SPSC(spi_periph) = 0x0002U;
#ifdef GD32F30X_CL
/* get the I2S clock source */
if(((uint32_t)spi_periph) == SPI1){
/* I2S1 clock source selection */
clks = I2S1_CLOCK_SEL;
}else{
/* I2S2 clock source selection */
clks = I2S2_CLOCK_SEL;
}
if(0U != (RCU_CFG1 & clks)){
/* get RCU PLL2 clock multiplication factor */
clks = (uint32_t)((RCU_CFG1 & I2S_CLOCK_MUL_MASK) >> 12U);
pll2mf_4 = RCU_CFG1 & RCU_CFG1_PLL2MF_4;
if( 0U == pll2mf_4){
if((clks > 5U) && (clks < 15U)){
/* multiplier is between 8 and 16 */
clks += 2U;
}else{
if(15U == clks){
/* multiplier is 20 */
clks = 20U;
}
}
}else{
if(clks < 15U){
/* multiplier is between 18 and 32 */
clks += 18U;
}else{
if(15U == clks){
/* multiplier is 40 */
clks = 40U;
}
}
}
/* get the PREDV1 value */
i2sclock = (uint32_t)(((RCU_CFG1 & I2S_CLOCK_DIV_MASK) >> 4U) + 1U);
/* calculate i2sclock based on PLL2 and PREDV1 */
i2sclock = (uint32_t)((HXTAL_VALUE / i2sclock) * clks * 2U);
}else{
/* get system clock */
i2sclock = rcu_clock_freq_get(CK_SYS);
}
#else
/* get system clock */
i2sclock = rcu_clock_freq_get(CK_SYS);
#endif /* GD32F30X_CL */
/* config the prescaler depending on the mclk output state, the frame format and audio sample rate */
if(I2S_MCKOUT_ENABLE == mckout){
clks = (uint32_t)(((i2sclock / 256U) * 10U) / audiosample);
}else{
if(I2S_FRAMEFORMAT_DT16B_CH16B == frameformat){
clks = (uint32_t)(((i2sclock / 32U) *10U ) / audiosample);
}else{
clks = (uint32_t)(((i2sclock / 64U) *10U ) / audiosample);
}
}
/* remove the floating point */
clks = (clks + 5U) / 10U;
i2sof = (clks & 0x00000001U);
i2sdiv = ((clks - i2sof) / 2U);
i2sof = (i2sof << 8U);
/* set the default values */
if((i2sdiv < 2U) || (i2sdiv > 255U)){
i2sdiv = 2U;
i2sof = 0U;
}
/* configure SPI_I2SPSC */
SPI_I2SPSC(spi_periph) = (uint32_t)(i2sdiv | i2sof | mckout);
/* clear SPI_I2SCTL_DTLEN and SPI_I2SCTL_CHLEN bits */
SPI_I2SCTL(spi_periph) &= (uint32_t)(~(SPI_I2SCTL_DTLEN | SPI_I2SCTL_CHLEN));
/* configure data frame format */
SPI_I2SCTL(spi_periph) |= (uint32_t)frameformat;
}
/*!
\brief initialize I2S parameter
\param[in] spi_periph: SPIx(x=1,2)
\param[in] mode: I2S operation mode
\arg I2S_MODE_SLAVETX: I2S slave transmit mode
\arg I2S_MODE_SLAVERX: I2S slave receive mode
\arg I2S_MODE_MASTERTX: I2S master transmit mode
\arg I2S_MODE_MASTERRX: I2S master receive mode
\param[in] standard: I2S standard
\arg I2S_STD_PHILLIPS: I2S phillips standard
\arg I2S_STD_MSB: I2S MSB standard
\arg I2S_STD_LSB: I2S LSB standard
\arg I2S_STD_PCMSHORT: I2S PCM short standard
\arg I2S_STD_PCMLONG: I2S PCM long standard
\param[in] ckpl: I2S idle state clock polarity
\arg I2S_CKPL_LOW: I2S clock polarity low level
\arg I2S_CKPL_HIGH: I2S clock polarity high level
\param[out] none
\retval none
*/
void i2s_init(uint32_t spi_periph, uint32_t mode, uint32_t standard, uint32_t ckpl)
{
uint32_t reg= 0U;
reg = SPI_I2SCTL(spi_periph);
reg &= I2S_INIT_MASK;
/* enable I2S mode */
reg |= (uint32_t)SPI_I2SCTL_I2SSEL;
/* select I2S mode */
reg |= (uint32_t)mode;
/* select I2S standard */
reg |= (uint32_t)standard;
/* select I2S polarity */
reg |= (uint32_t)ckpl;
/* write to SPI_I2SCTL register */
SPI_I2SCTL(spi_periph) = (uint32_t)reg;
}
/*!
\brief enable I2S
\param[in] spi_periph: SPIx(x=1,2)
\param[out] none
\retval none
*/
void i2s_enable(uint32_t spi_periph)
{
SPI_I2SCTL(spi_periph) |= (uint32_t)SPI_I2SCTL_I2SEN;
}
/*!
\brief disable I2S
\param[in] spi_periph: SPIx(x=1,2)
\param[out] none
\retval none
*/
void i2s_disable(uint32_t spi_periph)
{
SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SEN);
}
/*!
\brief enable SPI NSS output
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nss_output_enable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSDRV;
}
/*!
\brief disable SPI NSS output
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nss_output_disable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSDRV);
}
/*!
\brief SPI NSS pin high level in software mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nss_internal_high(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SWNSS;
}
/*!
\brief SPI NSS pin low level in software mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nss_internal_low(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SWNSS);
}
/*!
\brief enable SPI DMA send or receive
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] dma: SPI DMA mode
\arg SPI_DMA_TRANSMIT: SPI transmit data use DMA
\arg SPI_DMA_RECEIVE: SPI receive data use DMA
\param[out] none
\retval none
*/
void spi_dma_enable(uint32_t spi_periph, uint8_t dma)
{
if(SPI_DMA_TRANSMIT == dma){
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMATEN;
}else{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMAREN;
}
}
/*!
\brief disable SPI DMA send or receive
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] dma: SPI DMA mode
\arg SPI_DMA_TRANSMIT: SPI transmit data use DMA
\arg SPI_DMA_RECEIVE: SPI receive data use DMA
\param[out] none
\retval none
*/
void spi_dma_disable(uint32_t spi_periph, uint8_t dma)
{
if(SPI_DMA_TRANSMIT == dma){
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMATEN);
}else{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMAREN);
}
}
/*!
\brief configure SPI/I2S data frame format
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] frame_format: SPI frame size
\arg SPI_FRAMESIZE_16BIT: SPI frame size is 16 bits
\arg SPI_FRAMESIZE_8BIT: SPI frame size is 8 bits
\param[out] none
\retval none
*/
void spi_i2s_data_frame_format_config(uint32_t spi_periph, uint16_t frame_format)
{
/* clear SPI_CTL0_FF16 bit */
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_FF16);
/* confige SPI_CTL0_FF16 bit */
SPI_CTL0(spi_periph) |= (uint32_t)frame_format;
}
/*!
\brief SPI transmit data
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] data: 16-bit data
\param[out] none
\retval none
*/
void spi_i2s_data_transmit(uint32_t spi_periph, uint16_t data)
{
SPI_DATA(spi_periph) = (uint32_t)data;
}
/*!
\brief SPI receive data
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval 16-bit data
*/
uint16_t spi_i2s_data_receive(uint32_t spi_periph)
{
return ((uint16_t)SPI_DATA(spi_periph));
}
/*!
\brief configure SPI bidirectional transfer direction
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] transfer_direction: SPI transfer direction
\arg SPI_BIDIRECTIONAL_TRANSMIT: SPI work in transmit-only mode
\arg SPI_BIDIRECTIONAL_RECEIVE: SPI work in receive-only mode
\retval none
*/
void spi_bidirectional_transfer_config(uint32_t spi_periph, uint32_t transfer_direction)
{
if(SPI_BIDIRECTIONAL_TRANSMIT == transfer_direction){
/* set the transmit only mode */
SPI_CTL0(spi_periph) |= (uint32_t)SPI_BIDIRECTIONAL_TRANSMIT;
}else{
/* set the receive only mode */
SPI_CTL0(spi_periph) &= SPI_BIDIRECTIONAL_RECEIVE;
}
}
/*!
\brief enable SPI and I2S interrupt
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] interrupt: SPI/I2S interrupt
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
\arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
transmission underrun error and format error interrupt
\param[out] none
\retval none
*/
void spi_i2s_interrupt_enable(uint32_t spi_periph, uint8_t interrupt)
{
switch(interrupt){
/* SPI/I2S transmit buffer empty interrupt */
case SPI_I2S_INT_TBE:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TBEIE;
break;
/* SPI/I2S receive buffer not empty interrupt */
case SPI_I2S_INT_RBNE:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_RBNEIE;
break;
/* SPI/I2S error */
case SPI_I2S_INT_ERR:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_ERRIE;
break;
default:
break;
}
}
/*!
\brief disable SPI and I2S interrupt
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] interrupt: SPI/I2S interrupt
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
\arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
transmission underrun error and format error interrupt
\param[out] none
\retval none
*/
void spi_i2s_interrupt_disable(uint32_t spi_periph, uint8_t interrupt)
{
switch(interrupt){
/* SPI/I2S transmit buffer empty interrupt */
case SPI_I2S_INT_TBE:
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TBEIE);
break;
/* SPI/I2S receive buffer not empty interrupt */
case SPI_I2S_INT_RBNE:
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_RBNEIE);
break;
/* SPI/I2S error */
case SPI_I2S_INT_ERR:
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_ERRIE);
break;
default :
break;
}
}
/*!
\brief get SPI and I2S interrupt flag status
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] interrupt: SPI/I2S interrupt flag status
\arg SPI_I2S_INT_FLAG_TBE: transmit buffer empty interrupt flag
\arg SPI_I2S_INT_FLAG_RBNE: receive buffer not empty interrupt flag
\arg SPI_I2S_INT_FLAG_RXORERR: overrun interrupt flag
\arg SPI_INT_FLAG_CONFERR: config error interrupt flag
\arg SPI_INT_FLAG_CRCERR: CRC error interrupt flag
\arg I2S_INT_FLAG_TXURERR: underrun error interrupt flag
\arg SPI_I2S_INT_FLAG_FERR: format error interrupt flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph, uint8_t interrupt)
{
uint32_t reg1 = SPI_STAT(spi_periph);
uint32_t reg2 = SPI_CTL1(spi_periph);
switch(interrupt){
/* SPI/I2S transmit buffer empty interrupt */
case SPI_I2S_INT_FLAG_TBE:
reg1 = reg1 & SPI_STAT_TBE;
reg2 = reg2 & SPI_CTL1_TBEIE;
break;
/* SPI/I2S receive buffer not empty interrupt */
case SPI_I2S_INT_FLAG_RBNE:
reg1 = reg1 & SPI_STAT_RBNE;
reg2 = reg2 & SPI_CTL1_RBNEIE;
break;
/* SPI/I2S overrun interrupt */
case SPI_I2S_INT_FLAG_RXORERR:
reg1 = reg1 & SPI_STAT_RXORERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* SPI config error interrupt */
case SPI_INT_FLAG_CONFERR:
reg1 = reg1 & SPI_STAT_CONFERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* SPI CRC error interrupt */
case SPI_INT_FLAG_CRCERR:
reg1 = reg1 & SPI_STAT_CRCERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* I2S underrun error interrupt */
case I2S_INT_FLAG_TXURERR:
reg1 = reg1 & SPI_STAT_TXURERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* SPI/I2S format error interrupt */
case SPI_I2S_INT_FLAG_FERR:
reg1 = reg1 & SPI_STAT_FERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
default :
break;
}
/*get SPI/I2S interrupt flag status */
if(reg1 && reg2){
return SET;
}else{
return RESET;
}
}
/*!
\brief get SPI and I2S flag status
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] flag: SPI/I2S flag status
\arg SPI_FLAG_TBE: transmit buffer empty flag
\arg SPI_FLAG_RBNE: receive buffer not empty flag
\arg SPI_FLAG_TRANS: transmit on-going flag
\arg SPI_FLAG_RXORERR: receive overrun error flag
\arg SPI_FLAG_CONFERR: mode config error flag
\arg SPI_FLAG_CRCERR: CRC error flag
\arg SPI_FLAG_FERR: format error interrupt flag
\arg I2S_FLAG_TBE: transmit buffer empty flag
\arg I2S_FLAG_RBNE: receive buffer not empty flag
\arg I2S_FLAG_TRANS: transmit on-going flag
\arg I2S_FLAG_RXORERR: overrun error flag
\arg I2S_FLAG_TXURERR: underrun error flag
\arg I2S_FLAG_CH: channel side flag
\arg I2S_FLAG_FERR: format error interrupt flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_flag_get(uint32_t spi_periph, uint32_t flag)
{
if(SPI_STAT(spi_periph) & flag){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear SPI CRC error flag status
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_crc_error_clear(uint32_t spi_periph)
{
SPI_STAT(spi_periph) &= (uint32_t)(~SPI_FLAG_CRCERR);
}
/*!
\brief turn on CRC function
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_crc_on(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
}
/*!
\brief turn off CRC function
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_crc_off(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_CRCEN);
}
/*!
\brief set CRC polynomial
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] crc_poly: CRC polynomial value
\param[out] none
\retval none
*/
void spi_crc_polynomial_set(uint32_t spi_periph,uint16_t crc_poly)
{
/* enable SPI CRC */
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
/* set SPI CRC polynomial */
SPI_CRCPOLY(spi_periph) = (uint32_t)crc_poly;
}
/*!
\brief get SPI CRC polynomial
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval 16-bit CRC polynomial
*/
uint16_t spi_crc_polynomial_get(uint32_t spi_periph)
{
return ((uint16_t)SPI_CRCPOLY(spi_periph));
}
/*!
\brief SPI next data is CRC value
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_crc_next(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCNT;
}
/*!
\brief get SPI CRC send value or receive value
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] crc: SPI crc value
\arg SPI_CRC_TX: get transmit crc value
\arg SPI_CRC_RX: get receive crc value
\param[out] none
\retval 16-bit CRC value
*/
uint16_t spi_crc_get(uint32_t spi_periph,uint8_t crc)
{
if(SPI_CRC_TX == crc){
return ((uint16_t)(SPI_TCRC(spi_periph)));
}else{
return ((uint16_t)(SPI_RCRC(spi_periph)));
}
}
/*!
\brief enable SPI TI mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_ti_mode_enable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TMOD;
}
/*!
\brief disable SPI TI mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_ti_mode_disable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TMOD);
}
/*!
\brief enable SPI NSS pulse mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nssp_mode_enable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSP;
}
/*!
\brief disable SPI NSS pulse mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nssp_mode_disable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSP);
}
/*!
\brief enable quad wire SPI
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QMOD;
}
/*!
\brief disable quad wire SPI
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_disable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QMOD);
}
/*!
\brief enable quad wire SPI write
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_write_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QRD);
}
/*!
\brief enable quad wire SPI read
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_read_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QRD;
}
/*!
\brief enable SPI_IO2 and SPI_IO3 pin output
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_io23_output_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_IO23_DRV;
}
/*!
\brief disable SPI_IO2 and SPI_IO3 pin output
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_io23_output_disable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_IO23_DRV);
}