rt-thread/bsp/gd32450z-eval/Libraries/GD32F4xx_standard_peripheral/Source/gd32f4xx_rtc.c

1258 lines
43 KiB
C

/*!
\file gd32f4xx_rtc.c
\brief RTC driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_rtc.h"
/* RTC timeout value */
#define RTC_WTWF_TIMEOUT ((uint32_t)0x00004000U) /*!< wakeup timer can be write flag timeout */
#define RTC_INITM_TIMEOUT ((uint32_t)0x00004000U) /*!< initialization state flag timeout */
#define RTC_RSYNF_TIMEOUT ((uint32_t)0x00008000U) /*!< register synchronization flag timeout */
#define RTC_HRFC_TIMEOUT ((uint32_t)0x20000000U) /*!< recalibration pending flag timeout */
#define RTC_SHIFTCTL_TIMEOUT ((uint32_t)0x00001000U) /*!< shift function operation pending flag timeout */
#define RTC_ALRMXWF_TIMEOUT ((uint32_t)0x00008000U) /*!< alarm configuration can be write flag timeout */
/*!
\brief reset most of the RTC registers
\param[in] none
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_deinit(void)
{
ErrStatus error_status = ERROR;
volatile uint32_t time_index = RTC_WTWF_TIMEOUT;
uint32_t flag_status = RESET;
/* RTC_TAMP register is not under write protection */
RTC_TAMP = RTC_REGISTER_RESET;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* enter init mode */
error_status = rtc_init_mode_enter();
if(ERROR != error_status){
/* reset RTC_CTL register, but RTC_CTL[2£º0] */
RTC_CTL &= (RTC_REGISTER_RESET | RTC_CTL_WTCS);
/* before reset RTC_TIME and RTC_DATE, BPSHAD bit in RTC_CTL should be reset as the condition.
in order to read calendar from shadow register, not the real registers being reset */
RTC_TIME = RTC_REGISTER_RESET;
RTC_DATE = RTC_DATE_RESET;
RTC_PSC = RTC_PSC_RESET;
/* only when RTC_CTL_WTEN=0 and RTC_STAT_WTWF=1 can write RTC_CTL[2£º0] */
/* wait until the WTWF flag to be set */
do{
flag_status = RTC_STAT & RTC_STAT_WTWF;
}while((--time_index > 0U) && ((uint32_t)RESET == flag_status));
if ((uint32_t)RESET == flag_status){
error_status = ERROR;
}else{
RTC_CTL &= RTC_REGISTER_RESET;
RTC_WUT = RTC_WUT_RESET;
RTC_COSC = RTC_REGISTER_RESET;
/* to write RTC_ALRMxSS register, ALRMxEN bit in RTC_CTL register should be reset as the condition */
RTC_ALRM0TD = RTC_REGISTER_RESET;
RTC_ALRM1TD = RTC_REGISTER_RESET;
RTC_ALRM0SS = RTC_REGISTER_RESET;
RTC_ALRM1SS = RTC_REGISTER_RESET;
/* reset RTC_STAT register, also exit init mode.
at the same time, RTC_STAT_SOPF bit is reset, as the condition to reset RTC_SHIFTCTL register later */
RTC_STAT = RTC_STAT_RESET;
/* reset RTC_SHIFTCTL and RTC_HRFC register, this can be done without the init mode */
RTC_SHIFTCTL = RTC_REGISTER_RESET;
RTC_HRFC = RTC_REGISTER_RESET;
error_status = rtc_register_sync_wait();
}
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief initialize RTC registers
\param[in] rtc_initpara_struct: pointer to a rtc_parameter_struct structure which contains
parameters for initialization of the rtc peripheral
members of the structure and the member values are shown as below:
year: 0x0 - 0x99(BCD format)
month: RTC_JAN, RTC_FEB, RTC_MAR, RTC_APR, RTC_MAY, RTC_JUN,
RTC_JUL, RTC_AUG, RTC_SEP, RTC_OCT, RTC_NOV, RTC_DEC
date: 0x1 - 0x31(BCD format)
day_of_week: RTC_MONDAY, RTC_TUESDAY, RTC_WEDSDAY, RTC_THURSDAY
RTC_FRIDAY, RTC_SATURDAY, RTC_SUNDAY
hour: 0x0 - 0x12(BCD format) or 0x0 - 0x23(BCD format) depending on the rtc_display_format chose
minute: 0x0 - 0x59(BCD format)
second: 0x0 - 0x59(BCD format)
factor_asyn: 0x0 - 0x7F
factor_syn: 0x0 - 0x7FFF
am_pm: RTC_AM, RTC_PM
display_format: RTC_24HOUR, RTC_12HOUR
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_init(rtc_parameter_struct* rtc_initpara_struct)
{
ErrStatus error_status = ERROR;
uint32_t reg_time = 0U, reg_date = 0U;
reg_date = (DATE_YR(rtc_initpara_struct->year) | \
DATE_DOW(rtc_initpara_struct->day_of_week) | \
DATE_MON(rtc_initpara_struct->month) | \
DATE_DAY(rtc_initpara_struct->date));
reg_time = (rtc_initpara_struct->am_pm| \
TIME_HR(rtc_initpara_struct->hour) | \
TIME_MN(rtc_initpara_struct->minute) | \
TIME_SC(rtc_initpara_struct->second));
/* 1st: disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* 2nd: enter init mode */
error_status = rtc_init_mode_enter();
if(ERROR != error_status){
RTC_PSC = (uint32_t)(PSC_FACTOR_A(rtc_initpara_struct->factor_asyn)| \
PSC_FACTOR_S(rtc_initpara_struct->factor_syn));
RTC_TIME = (uint32_t)reg_time;
RTC_DATE = (uint32_t)reg_date;
RTC_CTL &= (uint32_t)(~RTC_CTL_CS);
RTC_CTL |= rtc_initpara_struct->display_format;
/* 3rd: exit init mode */
rtc_init_mode_exit();
/* 4th: wait the RSYNF flag to set */
error_status = rtc_register_sync_wait();
}
/* 5th: enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief enter RTC init mode
\param[in] none
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_init_mode_enter(void)
{
volatile uint32_t time_index = RTC_INITM_TIMEOUT;
uint32_t flag_status = RESET;
ErrStatus error_status = ERROR;
/* check whether it has been in init mode */
if ((uint32_t)RESET == (RTC_STAT & RTC_STAT_INITF)){
RTC_STAT |= RTC_STAT_INITM;
/* wait until the INITF flag to be set */
do{
flag_status = RTC_STAT & RTC_STAT_INITF;
}while((--time_index > 0U) && ((uint32_t)RESET == flag_status));
if ((uint32_t)RESET != flag_status){
error_status = SUCCESS;
}
}else{
error_status = SUCCESS;
}
return error_status;
}
/*!
\brief exit RTC init mode
\param[in] none
\param[out] none
\retval none
*/
void rtc_init_mode_exit(void)
{
RTC_STAT &= (uint32_t)(~RTC_STAT_INITM);
}
/*!
\brief wait until RTC_TIME and RTC_DATE registers are synchronized with APB clock, and the shadow
registers are updated
\param[in] none
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_register_sync_wait(void)
{
volatile uint32_t time_index = RTC_RSYNF_TIMEOUT;
uint32_t flag_status = RESET;
ErrStatus error_status = ERROR;
if ((uint32_t)RESET == (RTC_CTL & RTC_CTL_BPSHAD)){
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* firstly clear RSYNF flag */
RTC_STAT &= (uint32_t)(~RTC_STAT_RSYNF);
/* wait until RSYNF flag to be set */
do{
flag_status = RTC_STAT & RTC_STAT_RSYNF;
}while((--time_index > 0U) && ((uint32_t)RESET == flag_status));
if ((uint32_t)RESET != flag_status){
error_status = SUCCESS;
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}else{
error_status = SUCCESS;
}
return error_status;
}
/*!
\brief get current time and date
\param[in] none
\param[out] rtc_initpara_struct: pointer to a rtc_parameter_struct structure which contains
parameters for initialization of the rtc peripheral
members of the structure and the member values are shown as below:
year: 0x0 - 0x99(BCD format)
month: RTC_JAN, RTC_FEB, RTC_MAR, RTC_APR, RTC_MAY, RTC_JUN,
RTC_JUL, RTC_AUG, RTC_SEP, RTC_OCT, RTC_NOV, RTC_DEC
date: 0x1 - 0x31(BCD format)
day_of_week: RTC_MONDAY, RTC_TUESDAY, RTC_WEDSDAY, RTC_THURSDAY
RTC_FRIDAY, RTC_SATURDAY, RTC_SUNDAY
hour: 0x0 - 0x12(BCD format) or 0x0 - 0x23(BCD format) depending on the rtc_display_format chose
minute: 0x0 - 0x59(BCD format)
second: 0x0 - 0x59(BCD format)
factor_asyn: 0x0 - 0x7F
factor_syn: 0x0 - 0x7FFF
am_pm: RTC_AM, RTC_PM
display_format: RTC_24HOUR, RTC_12HOUR
\retval none
*/
void rtc_current_time_get(rtc_parameter_struct* rtc_initpara_struct)
{
uint32_t temp_tr = 0U, temp_dr = 0U, temp_pscr = 0U, temp_ctlr = 0U;
temp_tr = (uint32_t)RTC_TIME;
temp_dr = (uint32_t)RTC_DATE;
temp_pscr = (uint32_t)RTC_PSC;
temp_ctlr = (uint32_t)RTC_CTL;
/* get current time and construct rtc_parameter_struct structure */
rtc_initpara_struct->year = (uint8_t)GET_DATE_YR(temp_dr);
rtc_initpara_struct->month = (uint8_t)GET_DATE_MON(temp_dr);
rtc_initpara_struct->date = (uint8_t)GET_DATE_DAY(temp_dr);
rtc_initpara_struct->day_of_week = (uint8_t)GET_DATE_DOW(temp_dr);
rtc_initpara_struct->hour = (uint8_t)GET_TIME_HR(temp_tr);
rtc_initpara_struct->minute = (uint8_t)GET_TIME_MN(temp_tr);
rtc_initpara_struct->second = (uint8_t)GET_TIME_SC(temp_tr);
rtc_initpara_struct->factor_asyn = (uint16_t)GET_PSC_FACTOR_A(temp_pscr);
rtc_initpara_struct->factor_syn = (uint16_t)GET_PSC_FACTOR_S(temp_pscr);
rtc_initpara_struct->am_pm = (uint32_t)(temp_pscr & RTC_TIME_PM);
rtc_initpara_struct->display_format = (uint32_t)(temp_ctlr & RTC_CTL_CS);
}
/*!
\brief get current subsecond value
\param[in] none
\param[out] none
\retval current subsecond value
*/
uint32_t rtc_subsecond_get(void)
{
uint32_t reg = 0U;
/* if BPSHAD bit is reset, reading RTC_SS will lock RTC_TIME and RTC_DATE automatically */
reg = (uint32_t)RTC_SS;
/* read RTC_DATE to unlock the 3 shadow registers */
(void) (RTC_DATE);
return reg;
}
/*!
\brief configure RTC alarm
\param[in] rtc_alarm: RTC_ALARM0 or RTC_ALARM1
\param[in] rtc_alarm_time: pointer to a rtc_alarm_struct structure which contains
parameters for RTC alarm configuration
members of the structure and the member values are shown as below:
alarm_mask: RTC_ALARM_NONE_MASK, RTC_ALARM_DATE_MASK, RTC_ALARM_HOUR_MASK
RTC_ALARM_MINUTE_MASK, RTC_ALARM_SECOND_MASK, RTC_ALARM_ALL_MASK
weekday_or_date: RTC_ALARM_DATE_SELECTED, RTC_ALARM_WEEKDAY_SELECTED
alarm_day: 1) 0x1 - 0x31(BCD format) if RTC_ALARM_DATE_SELECTED is set
2) RTC_MONDAY, RTC_TUESDAY, RTC_WEDSDAY, RTC_THURSDAY, RTC_FRIDAY,
RTC_SATURDAY, RTC_SUNDAY if RTC_ALARM_WEEKDAY_SELECTED is set
alarm_hour: 0x0 - 0x12(BCD format) or 0x0 - 0x23(BCD format) depending on the rtc_display_format
alarm_minute: 0x0 - 0x59(BCD format)
alarm_second: 0x0 - 0x59(BCD format)
am_pm: RTC_AM, RTC_PM
\param[out] none
\retval none
*/
void rtc_alarm_config(uint8_t rtc_alarm, rtc_alarm_struct* rtc_alarm_time)
{
uint32_t reg_alrmtd = 0U;
reg_alrmtd =(rtc_alarm_time->alarm_mask | \
rtc_alarm_time->weekday_or_date | \
rtc_alarm_time->am_pm | \
ALRMTD_DAY(rtc_alarm_time->alarm_day) | \
ALRMTD_HR(rtc_alarm_time->alarm_hour) | \
ALRMTD_MN(rtc_alarm_time->alarm_minute) | \
ALRMTD_SC(rtc_alarm_time->alarm_second));
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
if(RTC_ALARM0 == rtc_alarm){
RTC_ALRM0TD = (uint32_t)reg_alrmtd;
}else{
RTC_ALRM1TD = (uint32_t)reg_alrmtd;
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief configure subsecond of RTC alarm
\param[in] rtc_alarm: RTC_ALARM0 or RTC_ALARM1
\param[in] mask_subsecond: alarm subsecond mask
\arg RTC_MASKSSC_0_14: mask alarm subsecond configuration
\arg RTC_MASKSSC_1_14: mask RTC_ALRMXSS_SSC[14:1], and RTC_ALRMXSS_SSC[0] is to be compared
\arg RTC_MASKSSC_2_14: mask RTC_ALRMXSS_SSC[14:2], and RTC_ALRMXSS_SSC[1:0] is to be compared
\arg RTC_MASKSSC_3_14: mask RTC_ALRMXSS_SSC[14:3], and RTC_ALRMXSS_SSC[2:0] is to be compared
\arg RTC_MASKSSC_4_14: mask RTC_ALRMXSS_SSC[14:4]], and RTC_ALRMXSS_SSC[3:0] is to be compared
\arg RTC_MASKSSC_5_14: mask RTC_ALRMXSS_SSC[14:5], and RTC_ALRMXSS_SSC[4:0] is to be compared
\arg RTC_MASKSSC_6_14: mask RTC_ALRMXSS_SSC[14:6], and RTC_ALRMXSS_SSC[5:0] is to be compared
\arg RTC_MASKSSC_7_14: mask RTC_ALRMXSS_SSC[14:7], and RTC_ALRMXSS_SSC[6:0] is to be compared
\arg RTC_MASKSSC_8_14: mask RTC_ALRMXSS_SSC[14:8], and RTC_ALRMXSS_SSC[7:0] is to be compared
\arg RTC_MASKSSC_9_14: mask RTC_ALRMXSS_SSC[14:9], and RTC_ALRMXSS_SSC[8:0] is to be compared
\arg RTC_MASKSSC_10_14: mask RTC_ALRMXSS_SSC[14:10], and RTC_ALRMXSS_SSC[9:0] is to be compared
\arg RTC_MASKSSC_11_14: mask RTC_ALRMXSS_SSC[14:11], and RTC_ALRMXSS_SSC[10:0] is to be compared
\arg RTC_MASKSSC_12_14: mask RTC_ALRMXSS_SSC[14:12], and RTC_ALRMXSS_SSC[11:0] is to be compared
\arg RTC_MASKSSC_13_14: mask RTC_ALRMXSS_SSC[14:13], and RTC_ALRMXSS_SSC[12:0] is to be compared
\arg RTC_MASKSSC_14: mask RTC_ALRMXSS_SSC[14], and RTC_ALRMXSS_SSC[13:0] is to be compared
\arg RTC_MASKSSC_NONE: mask none, and RTC_ALRMXSS_SSC[14:0] is to be compared
\param[in] subsecond: alarm subsecond value(0x000 - 0x7FFF)
\param[out] none
\retval none
*/
void rtc_alarm_subsecond_config(uint8_t rtc_alarm, uint32_t mask_subsecond, uint32_t subsecond)
{
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
if(RTC_ALARM0 == rtc_alarm){
RTC_ALRM0SS = mask_subsecond | subsecond;
}else{
RTC_ALRM1SS = mask_subsecond | subsecond;
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief get RTC alarm
\param[in] rtc_alarm: RTC_ALARM0 or RTC_ALARM1
\param[out] rtc_alarm_time: pointer to a rtc_alarm_struct structure which contains
parameters for RTC alarm configuration
members of the structure and the member values are shown as below:
alarm_mask: RTC_ALARM_NONE_MASK, RTC_ALARM_DATE_MASK, RTC_ALARM_HOUR_MASK
RTC_ALARM_MINUTE_MASK, RTC_ALARM_SECOND_MASK, RTC_ALARM_ALL_MASK
weekday_or_date: RTC_ALARM_DATE_SELECTED, RTC_ALARM_WEEKDAY_SELECTED
alarm_day: 1) 0x1 - 0x31(BCD format) if RTC_ALARM_DATE_SELECTED is set
2) RTC_MONDAY, RTC_TUESDAY, RTC_WEDSDAY, RTC_THURSDAY, RTC_FRIDAY,
RTC_SATURDAY, RTC_SUNDAY if RTC_ALARM_WEEKDAY_SELECTED is set
alarm_hour: 0x0 - 0x12(BCD format) or 0x0 - 0x23(BCD format) depending on the rtc_display_format
alarm_minute: 0x0 - 0x59(BCD format)
alarm_second: 0x0 - 0x59(BCD format)
am_pm: RTC_AM, RTC_PM
\retval none
*/
void rtc_alarm_get(uint8_t rtc_alarm, rtc_alarm_struct* rtc_alarm_time)
{
uint32_t reg_alrmtd = 0U;
/* get the value of RTC_ALRM0TD register */
if(RTC_ALARM0 == rtc_alarm){
reg_alrmtd = RTC_ALRM0TD;
}else{
reg_alrmtd = RTC_ALRM1TD;
}
/* get alarm parameters and construct the rtc_alarm_struct structure */
rtc_alarm_time->alarm_mask = reg_alrmtd & RTC_ALARM_ALL_MASK;
rtc_alarm_time->am_pm = (uint32_t)(reg_alrmtd & RTC_ALRMXTD_PM);
rtc_alarm_time->weekday_or_date = (uint32_t)(reg_alrmtd & RTC_ALRMXTD_DOWS);
rtc_alarm_time->alarm_day = (uint8_t)GET_ALRMTD_DAY(reg_alrmtd);
rtc_alarm_time->alarm_hour = (uint8_t)GET_ALRMTD_HR(reg_alrmtd);
rtc_alarm_time->alarm_minute = (uint8_t)GET_ALRMTD_MN(reg_alrmtd);
rtc_alarm_time->alarm_second = (uint8_t)GET_ALRMTD_SC(reg_alrmtd);
}
/*!
\brief get RTC alarm subsecond
\param[in] rtc_alarm: RTC_ALARM0 or RTC_ALARM1
\param[out] none
\retval RTC alarm subsecond value
*/
uint32_t rtc_alarm_subsecond_get(uint8_t rtc_alarm)
{
if(RTC_ALARM0 == rtc_alarm){
return ((uint32_t)(RTC_ALRM0SS & RTC_ALRM0SS_SSC));
}else{
return ((uint32_t)(RTC_ALRM1SS & RTC_ALRM1SS_SSC));
}
}
/*!
\brief enable RTC alarm
\param[in] rtc_alarm: RTC_ALARM0 or RTC_ALARM1
\param[out] none
\retval none
*/
void rtc_alarm_enable(uint8_t rtc_alarm)
{
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
if(RTC_ALARM0 == rtc_alarm){
RTC_CTL |= RTC_CTL_ALRM0EN;
}else{
RTC_CTL |= RTC_CTL_ALRM1EN;
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief disable RTC alarm
\param[in] rtc_alarm: RTC_ALARM0 or RTC_ALARM1
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_alarm_disable(uint8_t rtc_alarm)
{
volatile uint32_t time_index = RTC_ALRMXWF_TIMEOUT;
ErrStatus error_status = ERROR;
uint32_t flag_status = RESET;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* clear the state of alarm */
if(RTC_ALARM0 == rtc_alarm){
RTC_CTL &= (uint32_t)(~RTC_CTL_ALRM0EN);
/* wait until ALRM0WF flag to be set after the alarm is disabled */
do{
flag_status = RTC_STAT & RTC_STAT_ALRM0WF;
}while((--time_index > 0U) && ((uint32_t)RESET == flag_status));
}else{
RTC_CTL &= (uint32_t)(~RTC_CTL_ALRM1EN);
/* wait until ALRM1WF flag to be set after the alarm is disabled */
do{
flag_status = RTC_STAT & RTC_STAT_ALRM1WF;
}while((--time_index > 0U) && ((uint32_t)RESET == flag_status));
}
if ((uint32_t)RESET != flag_status){
error_status = SUCCESS;
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief enable RTC time-stamp
\param[in] edge: specify which edge to detect of time-stamp
\arg RTC_TIMESTAMP_RISING_EDGE: rising edge is valid event edge for timestamp event
\arg RTC_TIMESTAMP_FALLING_EDGE: falling edge is valid event edge for timestamp event
\param[out] none
\retval none
*/
void rtc_timestamp_enable(uint32_t edge)
{
uint32_t reg_ctl = 0U;
/* clear the bits to be configured in RTC_CTL */
reg_ctl = (uint32_t)(RTC_CTL & (uint32_t)(~(RTC_CTL_TSEG | RTC_CTL_TSEN)));
/* new configuration */
reg_ctl |= (uint32_t)(edge | RTC_CTL_TSEN);
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
RTC_CTL = (uint32_t)reg_ctl;
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief disable RTC time-stamp
\param[in] none
\param[out] none
\retval none
*/
void rtc_timestamp_disable(void)
{
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* clear the TSEN bit */
RTC_CTL &= (uint32_t)(~ RTC_CTL_TSEN);
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief get RTC timestamp time and date
\param[in] none
\param[out] rtc_timestamp: pointer to a rtc_timestamp_struct structure which contains
parameters for RTC time-stamp configuration
members of the structure and the member values are shown as below:
timestamp_month: RTC_JAN, RTC_FEB, RTC_MAR, RTC_APR, RTC_MAY, RTC_JUN,
RTC_JUL, RTC_AUG, RTC_SEP, RTC_OCT, RTC_NOV, RTC_DEC
timestamp_date: 0x1 - 0x31(BCD format)
timestamp_day: RTC_MONDAY, RTC_TUESDAY, RTC_WEDSDAY, RTC_THURSDAY, RTC_FRIDAY,
RTC_SATURDAY, RTC_SUNDAY if RTC_ALARM_WEEKDAY_SELECTED is set
timestamp_hour: 0x0 - 0x12(BCD format) or 0x0 - 0x23(BCD format) depending on the rtc_display_format
timestamp_minute: 0x0 - 0x59(BCD format)
timestamp_second: 0x0 - 0x59(BCD format)
am_pm: RTC_AM, RTC_PM
\retval none
*/
void rtc_timestamp_get(rtc_timestamp_struct* rtc_timestamp)
{
uint32_t temp_tts = 0U, temp_dts = 0U;
/* get the value of time_stamp registers */
temp_tts = (uint32_t)RTC_TTS;
temp_dts = (uint32_t)RTC_DTS;
/* get timestamp time and construct the rtc_timestamp_struct structure */
rtc_timestamp->am_pm = (uint32_t)(temp_tts & RTC_TTS_PM);
rtc_timestamp->timestamp_month = (uint8_t)GET_DTS_MON(temp_dts);
rtc_timestamp->timestamp_date = (uint8_t)GET_DTS_DAY(temp_dts);
rtc_timestamp->timestamp_day = (uint8_t)GET_DTS_DOW(temp_dts);
rtc_timestamp->timestamp_hour = (uint8_t)GET_TTS_HR(temp_tts);
rtc_timestamp->timestamp_minute = (uint8_t)GET_TTS_MN(temp_tts);
rtc_timestamp->timestamp_second = (uint8_t)GET_TTS_SC(temp_tts);
}
/*!
\brief get RTC time-stamp subsecond
\param[in] none
\param[out] none
\retval RTC time-stamp subsecond value
*/
uint32_t rtc_timestamp_subsecond_get(void)
{
return ((uint32_t)RTC_SSTS);
}
/*!
\brief RTC time-stamp mapping
\param[in] rtc_af:
\arg RTC_AF0_TIMESTAMP: RTC_AF0 use for timestamp
\arg RTC_AF1_TIMESTAMP: RTC_AF1 use for timestamp
\param[out] none
\retval none
*/
void rtc_timestamp_pin_map(uint32_t rtc_af)
{
RTC_TAMP &= ~RTC_TAMP_TSSEL;
RTC_TAMP |= rtc_af;
}
/*!
\brief enable RTC tamper
\param[in] rtc_tamper: pointer to a rtc_tamper_struct structure which contains
parameters for RTC tamper configuration
members of the structure and the member values are shown as below:
tamper_source: RTC_TAMPER0, RTC_TAMPER1
tamper_trigger: RTC_TAMPER_TRIGGER_EDGE_RISING, RTC_TAMPER_TRIGGER_EDGE_FALLING
RTC_TAMPER_TRIGGER_LEVEL_LOW, RTC_TAMPER_TRIGGER_LEVEL_HIGH
tamper_filter: RTC_FLT_EDGE, RTC_FLT_2S, RTC_FLT_4S, RTC_FLT_8S
tamper_sample_frequency: RTC_FREQ_DIV32768, RTC_FREQ_DIV16384, RTC_FREQ_DIV8192,
RTC_FREQ_DIV4096, RTC_FREQ_DIV2048, RTC_FREQ_DIV1024,
RTC_FREQ_DIV512, RTC_FREQ_DIV256
tamper_precharge_enable: DISABLE, ENABLE
tamper_precharge_time: RTC_PRCH_1C, RTC_PRCH_2C, RTC_PRCH_4C, RTC_PRCH_8C
tamper_with_timestamp: DISABLE, ENABLE
\param[out] none
\retval none
*/
void rtc_tamper_enable(rtc_tamper_struct* rtc_tamper)
{
/* disable tamper */
RTC_TAMP &= (uint32_t)~(rtc_tamper->tamper_source);
/* tamper filter must be used when the tamper source is voltage level detection */
RTC_TAMP &= (uint32_t)~RTC_TAMP_FLT;
/* the tamper source is voltage level detection */
if((uint32_t)(rtc_tamper->tamper_filter) != RTC_FLT_EDGE ){
RTC_TAMP &= (uint32_t)~(RTC_TAMP_DISPU | RTC_TAMP_PRCH | RTC_TAMP_FREQ | RTC_TAMP_FLT);
/* check if the tamper pin need precharge, if need, then configure the precharge time */
if(DISABLE == rtc_tamper->tamper_precharge_enable){
RTC_TAMP |= (uint32_t)RTC_TAMP_DISPU;
}else{
RTC_TAMP |= (uint32_t)(rtc_tamper->tamper_precharge_time);
}
RTC_TAMP |= (uint32_t)(rtc_tamper->tamper_sample_frequency);
RTC_TAMP |= (uint32_t)(rtc_tamper->tamper_filter);
}
RTC_TAMP &= (uint32_t)~RTC_TAMP_TPTS;
if(DISABLE != rtc_tamper->tamper_with_timestamp){
/* the tamper event also cause a time-stamp event */
RTC_TAMP |= (uint32_t)RTC_TAMP_TPTS;
}
/* configure the tamper trigger */
RTC_TAMP &= ((uint32_t)~((rtc_tamper->tamper_source) << RTC_TAMPER_TRIGGER_POS));
if(RTC_TAMPER_TRIGGER_EDGE_RISING != rtc_tamper->tamper_trigger){
RTC_TAMP |= (uint32_t)((rtc_tamper->tamper_source)<< RTC_TAMPER_TRIGGER_POS);
}
/* enable tamper */
RTC_TAMP |= (uint32_t)(rtc_tamper->tamper_source);
}
/*!
\brief disable RTC tamper
\param[in] source: specify which tamper source to be disabled
\arg RTC_TAMPER0
\arg RTC_TAMPER1
\param[out] none
\retval none
*/
void rtc_tamper_disable(uint32_t source)
{
/* disable tamper */
RTC_TAMP &= (uint32_t)~source;
}
/*!
\brief RTC tamper0 mapping
\param[in] rtc_af:
\arg RTC_AF0_TAMPER0: RTC_AF0 use for tamper0
\arg RTC_AF1_TAMPER0: RTC_AF1 use for tamper0
\param[out] none
\retval none
*/
void rtc_tamper0_pin_map(uint32_t rtc_af)
{
RTC_TAMP &= ~(RTC_TAMP_TP0EN | RTC_TAMP_TP0SEL);
RTC_TAMP |= rtc_af;
}
/*!
\brief enable specified RTC interrupt
\param[in] interrupt: specify which interrupt source to be enabled
\arg RTC_INT_TIMESTAMP: timestamp interrupt
\arg RTC_INT_ALARM0: alarm0 interrupt
\arg RTC_INT_ALARM1: alarm1 interrupt
\arg RTC_INT_TAMP: tamp interrupt
\arg RTC_INT_WAKEUP: wakeup timer interrupt
\param[out] none
\retval none
*/
void rtc_interrupt_enable(uint32_t interrupt)
{
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* enable the interrupts in RTC_CTL register */
RTC_CTL |= (uint32_t)(interrupt & (uint32_t)~RTC_TAMP_TPIE);
/* enable the interrupts in RTC_TAMP register */
RTC_TAMP |= (uint32_t)(interrupt & RTC_TAMP_TPIE);
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief disble specified RTC interrupt
\param[in] interrupt: specify which interrupt source to be disabled
\arg RTC_INT_TIMESTAMP: timestamp interrupt
\arg RTC_INT_ALARM0: alarm interrupt
\arg RTC_INT_ALARM1: alarm interrupt
\arg RTC_INT_TAMP: tamp interrupt
\arg RTC_INT_WAKEUP: wakeup timer interrupt
\param[out] none
\retval none
*/
void rtc_interrupt_disable(uint32_t interrupt)
{
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* disable the interrupts in RTC_CTL register */
RTC_CTL &= (uint32_t)~(interrupt & (uint32_t)~RTC_TAMP_TPIE);
/* disable the interrupts in RTC_TAMP register */
RTC_TAMP &= (uint32_t)~(interrupt & RTC_TAMP_TPIE);
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief check specified flag
\param[in] flag: specify which flag to check
\arg RTC_STAT_RECPF: recalibration pending flag
\arg RTC_STAT_TP1F: tamper 1 event flag
\arg RTC_STAT_TP0F: tamper 0 event flag
\arg RTC_STAT_TSOVRF: time-stamp overflow event flag
\arg RTC_STAT_TSF: time-stamp event flag
\arg RTC_STAT_ALRM0F: alarm0 event flag
\arg RTC_STAT_ALRM1F: alarm1 event flag
\arg RTC_STAT_WTF: wakeup timer event flag
\arg RTC_STAT_INITF: init mode event flag
\arg RTC_STAT_RSYNF: time and date registers synchronized event flag
\arg RTC_STAT_YCM: year parameter configured event flag
\arg RTC_STAT_SOPF: shift operation pending flag
\arg RTC_STAT_ALRM0WF: alarm0 writen available flag
\arg RTC_STAT_ALRM1WF: alarm1 writen available flag
\arg RTC_STAT_WTWF: wakeup timer writen available flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus rtc_flag_get(uint32_t flag)
{
FlagStatus flag_state = RESET;
if ((uint32_t)RESET != (RTC_STAT & flag)){
flag_state = SET;
}
return flag_state;
}
/*!
\brief clear specified flag
\param[in] flag: specify which flag to clear
\arg RTC_STAT_TP1F: tamper 1 event flag
\arg RTC_STAT_TP0F: tamper 0 event flag
\arg RTC_STAT_TSOVRF: time-stamp overflow event flag
\arg RTC_STAT_TSF: time-stamp event flag
\arg RTC_STAT_WTF: time-stamp event flag
\arg RTC_STAT_ALRM0F: alarm0 event flag
\arg RTC_STAT_ALRM1F: alarm1 event flag
\arg RTC_STAT_RSYNF: time and date registers synchronized event flag
\param[out] none
\retval none
*/
void rtc_flag_clear(uint32_t flag)
{
RTC_STAT &= (uint32_t)(~flag);
}
/*!
\brief configure rtc alarm output source
\param[in] source: specify signal to output
\arg RTC_ALARM0_HIGH: when the alarm0 flag is set, the output pin is high
\arg RTC_ALARM0_LOW: when the alarm0 flag is set, the output pin is low
\arg RTC_ALARM1_HIGH: when the alarm1 flag is set, the output pin is high
\arg RTC_ALARM1_LOW: when the alarm1 flag is set, the output pin is low
\arg RTC_WAKEUP_HIGH: when the wakeup flag is set, the output pin is high
\arg RTC_WAKEUP_LOW: when the wakeup flag is set, the output pin is low
\param[in] mode: specify the output pin mode when output alarm signal
\arg RTC_ALARM_OUTPUT_OD: open drain mode
\arg RTC_ALARM_OUTPUT_PP: push pull mode
\param[out] none
\retval none
*/
void rtc_alarm_output_config(uint32_t source, uint32_t mode)
{
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
RTC_CTL &= ~(RTC_CTL_OS | RTC_CTL_OPOL);
RTC_TAMP &= ~RTC_TAMP_AOT;
RTC_CTL |= (uint32_t)(source);
/* alarm output */
RTC_TAMP |= (uint32_t)(mode);
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief configure rtc calibration output source
\param[in] source: specify signal to output
\arg RTC_CALIBRATION_512HZ: when the LSE freqency is 32768Hz and the RTC_PSC
is the default value, output 512Hz signal
\arg RTC_CALIBRATION_1HZ: when the LSE freqency is 32768Hz and the RTC_PSC
is the default value, output 512Hz signal
\param[out] none
\retval none
*/
void rtc_calibration_output_config(uint32_t source)
{
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
RTC_CTL &= (uint32_t)~(RTC_CTL_COEN | RTC_CTL_COS);
RTC_CTL |= (uint32_t)(source);
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief adjust the daylight saving time by adding or substracting one hour from the current time
\param[in] operation: hour adjustment operation
\arg RTC_CTL_A1H: add one hour
\arg RTC_CTL_S1H: substract one hour
\param[out] none
\retval none
*/
void rtc_hour_adjust(uint32_t operation)
{
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
RTC_CTL |= (uint32_t)(operation);
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief adjust RTC second or subsecond value of current time
\param[in] add: add 1s to current time or not
\arg RTC_SHIFT_ADD1S_RESET: no effect
\arg RTC_SHIFT_ADD1S_SET: add 1s to current time
\param[in] minus: number of subsecond to minus from current time(0x0 - 0x7FFF)
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_second_adjust(uint32_t add, uint32_t minus)
{
volatile uint32_t time_index = RTC_SHIFTCTL_TIMEOUT;
ErrStatus error_status = ERROR;
uint32_t flag_status = RESET;
uint32_t temp=0U;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* check if a shift operation is ongoing */
do{
flag_status = RTC_STAT & RTC_STAT_SOPF;
}while((--time_index > 0U) && ((uint32_t)RESET != flag_status));
/* check if the function of reference clock detection is disabled */
temp = RTC_CTL & RTC_CTL_REFEN;
if((RESET == flag_status) && (RESET == temp)){
RTC_SHIFTCTL = (uint32_t)(add | SHIFTCTL_SFS(minus));
error_status = rtc_register_sync_wait();
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief enable RTC bypass shadow registers function
\param[in] none
\param[out] none
\retval none
*/
void rtc_bypass_shadow_enable(void)
{
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
RTC_CTL |= RTC_CTL_BPSHAD;
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief disable RTC bypass shadow registers function
\param[in] none
\param[out] none
\retval none
*/
void rtc_bypass_shadow_disable(void)
{
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
RTC_CTL &= ~RTC_CTL_BPSHAD;
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief enable RTC reference clock detection function
\param[in] none
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_refclock_detection_enable(void)
{
ErrStatus error_status = ERROR;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* enter init mode */
error_status = rtc_init_mode_enter();
if(ERROR != error_status){
RTC_CTL |= (uint32_t)RTC_CTL_REFEN;
/* exit init mode */
rtc_init_mode_exit();
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief disable RTC reference clock detection function
\param[in] none
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_refclock_detection_disable(void)
{
ErrStatus error_status = ERROR;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* enter init mode */
error_status = rtc_init_mode_enter();
if(ERROR != error_status){
RTC_CTL &= (uint32_t)~RTC_CTL_REFEN;
/* exit init mode */
rtc_init_mode_exit();
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief enable RTC auto wakeup function
\param[in] none
\param[out] none
\retval none
*/
void rtc_wakeup_enable(void)
{
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
RTC_CTL |= RTC_CTL_WTEN;
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
}
/*!
\brief disable RTC auto wakeup function
\param[in] none
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_wakeup_disable(void)
{
ErrStatus error_status = ERROR;
volatile uint32_t time_index = RTC_WTWF_TIMEOUT;
uint32_t flag_status = RESET;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
RTC_CTL &= ~RTC_CTL_WTEN;
/* wait until the WTWF flag to be set */
do{
flag_status = RTC_STAT & RTC_STAT_WTWF;
}while((--time_index > 0U) && ((uint32_t)RESET == flag_status));
if ((uint32_t)RESET == flag_status){
error_status = ERROR;
}else{
error_status = SUCCESS;
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief set RTC auto wakeup timer clock
\param[in] wakeup_clock:
\arg WAKEUP_RTCCK_DIV16: RTC auto wakeup timer clock is RTC clock divided by 16
\arg WAKEUP_RTCCK_DIV8: RTC auto wakeup timer clock is RTC clock divided by 8
\arg WAKEUP_RTCCK_DIV4: RTC auto wakeup timer clock is RTC clock divided by 4
\arg WAKEUP_RTCCK_DIV2: RTC auto wakeup timer clock is RTC clock divided by 2
\arg WAKEUP_CKSPRE: RTC auto wakeup timer clock is ckspre
\arg WAKEUP_CKSPRE_2EXP16: RTC auto wakeup timer clock is ckspre and wakeup timer add 2exp16
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_wakeup_clock_set(uint8_t wakeup_clock)
{
ErrStatus error_status = ERROR;
volatile uint32_t time_index = RTC_WTWF_TIMEOUT;
uint32_t flag_status = RESET;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* only when RTC_CTL_WTEN=0 and RTC_STAT_WTWF=1 can write RTC_CTL[2£º0] */
/* wait until the WTWF flag to be set */
do{
flag_status = RTC_STAT & RTC_STAT_WTWF;
}while((--time_index > 0U) && ((uint32_t)RESET == flag_status));
if ((uint32_t)RESET == flag_status){
error_status = ERROR;
}else{
RTC_CTL &= (uint32_t)~ RTC_CTL_WTCS;
RTC_CTL |= (uint32_t)wakeup_clock;
error_status = SUCCESS;
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief set wakeup timer value
\param[in] wakeup_timer: 0x0000-0xffff
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_wakeup_timer_set(uint16_t wakeup_timer)
{
ErrStatus error_status = ERROR;
volatile uint32_t time_index = RTC_WTWF_TIMEOUT;
uint32_t flag_status = RESET;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* wait until the WTWF flag to be set */
do{
flag_status = RTC_STAT & RTC_STAT_WTWF;
}while((--time_index > 0U) && ((uint32_t)RESET == flag_status));
if ((uint32_t)RESET == flag_status){
error_status = ERROR;
}else{
RTC_WUT = (uint32_t)wakeup_timer;
error_status = SUCCESS;
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief get wakeup timer value
\param[in] none
\param[out] none
\retval wakeup timer value
*/
uint16_t rtc_wakeup_timer_get(void)
{
return (uint16_t)RTC_WUT;
}
/*!
\brief configure RTC smooth calibration
\param[in] window: select calibration window
\arg RTC_CALIBRATION_WINDOW_32S: 2exp20 RTCCLK cycles, 32s if RTCCLK = 32768 Hz
\arg RTC_CALIBRATION_WINDOW_16S: 2exp19 RTCCLK cycles, 16s if RTCCLK = 32768 Hz
\arg RTC_CALIBRATION_WINDOW_8S: 2exp18 RTCCLK cycles, 8s if RTCCLK = 32768 Hz
\param[in] plus: add RTC clock or not
\arg RTC_CALIBRATION_PLUS_SET: add one RTC clock every 2048 rtc clock
\arg RTC_CALIBRATION_PLUS_RESET: no effect
\param[in] minus: the RTC clock to minus during the calibration window(0x0 - 0x1FF)
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_smooth_calibration_config(uint32_t window, uint32_t plus, uint32_t minus)
{
volatile uint32_t time_index = RTC_HRFC_TIMEOUT;
ErrStatus error_status = ERROR;
uint32_t flag_status = RESET;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* check if a smooth calibration operation is ongoing */
do{
flag_status = RTC_STAT & RTC_STAT_SCPF;
}while((--time_index > 0U) && ((uint32_t)RESET != flag_status));
if((uint32_t)RESET == flag_status){
RTC_HRFC = (uint32_t)(window | plus | HRFC_CMSK(minus));
error_status = SUCCESS;
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief enable RTC coarse calibration
\param[in] none
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_coarse_calibration_enable(void)
{
ErrStatus error_status = ERROR;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* enter init mode */
error_status = rtc_init_mode_enter();
if(ERROR != error_status){
RTC_CTL |= (uint32_t)RTC_CTL_CCEN;
/* exit init mode */
rtc_init_mode_exit();
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief disable RTC coarse calibration
\param[in] none
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_coarse_calibration_disable(void)
{
ErrStatus error_status = ERROR;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* enter init mode */
error_status = rtc_init_mode_enter();
if(ERROR != error_status){
RTC_CTL &= (uint32_t)~RTC_CTL_CCEN;
/* exit init mode */
rtc_init_mode_exit();
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}
/*!
\brief config coarse calibration direction and step
\param[in] direction: CALIB_INCREASE or CALIB_DECREASE
\param[in] step: 0x00-0x1F
COSD=0:
0x00:+0 PPM
0x01:+4 PPM
0x02:+8 PPM
....
0x1F:+126 PPM
COSD=1:
0x00:-0 PPM
0x01:-2 PPM
0x02:-4 PPM
....
0x1F:-63 PPM
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus rtc_coarse_calibration_config(uint8_t direction, uint8_t step)
{
ErrStatus error_status = ERROR;
/* disable the write protection */
RTC_WPK = RTC_UNLOCK_KEY1;
RTC_WPK = RTC_UNLOCK_KEY2;
/* enter init mode */
error_status = rtc_init_mode_enter();
if(ERROR != error_status){
if(CALIB_DECREASE == direction){
RTC_COSC |= (uint32_t)RTC_COSC_COSD;
}else{
RTC_COSC &= (uint32_t)~RTC_COSC_COSD;
}
RTC_COSC &= ~RTC_COSC_COSS;
RTC_COSC |= (uint32_t)((uint32_t)step & 0x1FU);
/* exit init mode */
rtc_init_mode_exit();
}
/* enable the write protection */
RTC_WPK = RTC_LOCK_KEY;
return error_status;
}