Fan YANG 6c085218a3 [bsp][hpmicro][hpm6e00evk] add hpm6e00evk support
- added hpm6e00evk support

Signed-off-by: Fan YANG <fan.yang@hpmicro.com>
2024-08-26 10:41:15 +08:00

1133 lines
37 KiB
C

/*
* Copyright (c) 2023-2024 HPMicro
* SPDX-License-Identifier: BSD-3-Clause
*
*
*/
#include "board.h"
#include "hpm_uart_drv.h"
#include "hpm_gptmr_drv.h"
#include "hpm_i2c_drv.h"
#include "hpm_gpio_drv.h"
#include "pinmux.h"
#include "hpm_pmp_drv.h"
#include "hpm_clock_drv.h"
#include "hpm_sysctl_drv.h"
#include "hpm_pllctlv2_drv.h"
#include "hpm_pcfg_drv.h"
#include "hpm_enet_drv.h"
#include "hpm_usb_drv.h"
#include "hpm_femc_drv.h"
#include "hpm_pwmv2_drv.h"
#include "hpm_esc_drv.h"
static board_timer_cb timer_cb;
/**
* @brief FLASH configuration option definitions:
* option[0]:
* [31:16] 0xfcf9 - FLASH configuration option tag
* [15:4] 0 - Reserved
* [3:0] option words (exclude option[0])
* option[1]:
* [31:28] Flash probe type
* 0 - SFDP SDR / 1 - SFDP DDR
* 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address)
* 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V
* 6 - OctaBus DDR (SPI -> OPI DDR)
* 8 - Xccela DDR (SPI -> OPI DDR)
* 10 - EcoXiP DDR (SPI -> OPI DDR)
* [27:24] Command Pads after Power-on Reset
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [23:20] Command Pads after Configuring FLASH
* 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI
* [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only)
* 0 - Not needed
* 1 - QE bit is at bit 6 in Status Register 1
* 2 - QE bit is at bit1 in Status Register 2
* 3 - QE bit is at bit7 in Status Register 2
* 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31
* [15:8] Dummy cycles
* 0 - Auto-probed / detected / default value
* Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet
* [7:4] Misc.
* 0 - Not used
* 1 - SPI mode
* 2 - Internal loopback
* 3 - External DQS
* [3:0] Frequency option
* 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz
*
* option[2] (Effective only if the bit[3:0] in option[0] > 1)
* [31:20] Reserved
* [19:16] IO voltage
* 0 - 3V / 1 - 1.8V
* [15:12] Pin group
* 0 - 1st group / 1 - 2nd group
* [11:8] Connection selection
* 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively)
* [7:0] Drive Strength
* 0 - Default value
* option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports
* JESD216)
* [31:16] reserved
* [15:12] Sector Erase Command Option, not required here
* [11:8] Sector Size Option, not required here
* [7:0] Flash Size Option
* 0 - 4MB / 1 - 8MB / 2 - 16MB
*/
#if defined(FLASH_XIP) && FLASH_XIP
__attribute__((section(".nor_cfg_option"))) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 };
#endif
#if defined(FLASH_UF2) && FLASH_UF2
ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE;
#endif
void board_init_console(void)
{
#if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE
#if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART
console_config_t cfg;
/* uart needs to configure pin function before enabling clock, otherwise the level change of
* uart rx pin when configuring pin function will cause a wrong data to be received.
* And a uart rx dma request will be generated by default uart fifo dma trigger level.
*/
init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE);
/* Configure the UART clock to 24MHz */
clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U);
clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0);
cfg.type = BOARD_CONSOLE_TYPE;
cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE;
cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME);
cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE;
if (status_success != console_init(&cfg)) {
/* failed to initialize debug console */
while (1) {
}
}
#else
while (1)
;
#endif
#endif
}
void board_print_clock_freq(void)
{
printf("==============================\n");
printf(" %s clock summary\n", BOARD_NAME);
printf("==============================\n");
printf("cpu0:\t\t %dHz\n", clock_get_frequency(clock_cpu0));
printf("cpu1:\t\t %dHz\n", clock_get_frequency(clock_cpu1));
printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb0));
printf("axif:\t\t %dHz\n", clock_get_frequency(clock_axif));
printf("axis:\t\t %dHz\n", clock_get_frequency(clock_axis));
printf("axic:\t\t %dHz\n", clock_get_frequency(clock_axic));
printf("axin:\t\t %dHz\n", clock_get_frequency(clock_axin));
printf("xpi0:\t\t %dHz\n", clock_get_frequency(clock_xpi0));
printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc));
printf("mchtmr0:\t %dHz\n", clock_get_frequency(clock_mchtmr0));
printf("mchtmr1:\t %dHz\n", clock_get_frequency(clock_mchtmr1));
printf("==============================\n");
}
void board_init_uart(UART_Type *ptr)
{
/* configure uart's pin before opening uart's clock */
init_uart_pins(ptr);
board_init_uart_clock(ptr);
}
void board_print_banner(void)
{
const uint8_t banner[] = { "\n\
----------------------------------------------------------------------\n\
$$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\
$$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\
$$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\
$$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\
$$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\
$$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\
$$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\
\\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\
----------------------------------------------------------------------\n" };
#ifdef SDK_VERSION_STRING
printf("hpm_sdk: %s\n", SDK_VERSION_STRING);
#endif
printf("%s", banner);
}
void board_ungate_mchtmr_at_lp_mode(void)
{
/* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */
sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock);
}
static void board_turnoff_rgb_led(void)
{
uint32_t pad_ctl = IOC_PAD_PAD_CTL_PE_SET(1) | IOC_PAD_PAD_CTL_PE_SET(BOARD_LED_OFF_LEVEL);
HPM_IOC->PAD[IOC_PAD_PE14].FUNC_CTL = IOC_PE14_FUNC_CTL_GPIO_E_14;
HPM_IOC->PAD[IOC_PAD_PE15].FUNC_CTL = IOC_PE15_FUNC_CTL_GPIO_E_15;
HPM_IOC->PAD[IOC_PAD_PE04].FUNC_CTL = IOC_PE04_FUNC_CTL_GPIO_E_04;
HPM_IOC->PAD[IOC_PAD_PE14].PAD_CTL = pad_ctl;
HPM_IOC->PAD[IOC_PAD_PE15].PAD_CTL = pad_ctl;
HPM_IOC->PAD[IOC_PAD_PE04].PAD_CTL = pad_ctl;
}
void board_init(void)
{
board_turnoff_rgb_led();
board_init_clock();
board_init_console();
board_init_pmp();
#if BOARD_SHOW_CLOCK
board_print_clock_freq();
#endif
#if BOARD_SHOW_BANNER
board_print_banner();
#endif
}
void board_init_core1(void)
{
board_init_console();
board_init_pmp();
}
void board_init_sdram_pins(void)
{
init_femc_pins();
}
uint32_t board_init_femc_clock(void)
{
clock_add_to_group(clock_femc, 0);
/* Default FEMC clock is 166MHz */
/* Configure the FEMC to 133MHz */
/* clock_set_source_divider(clock_femc, clk_src_pll1_clk0, 6U); */
return clock_get_frequency(clock_femc);
}
void board_delay_us(uint32_t us)
{
clock_cpu_delay_us(us);
}
void board_delay_ms(uint32_t ms)
{
clock_cpu_delay_ms(ms);
}
void board_timer_isr(void)
{
if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) {
gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH));
timer_cb();
}
}
SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr);
void board_timer_create(uint32_t ms, board_timer_cb cb)
{
uint32_t gptmr_freq;
gptmr_channel_config_t config;
timer_cb = cb;
gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config);
clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0);
gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME);
config.reload = gptmr_freq / 1000 * ms;
gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false);
gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH));
intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1);
gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH);
}
void board_i2c_bus_clear(I2C_Type *ptr)
{
if (i2c_get_line_scl_status(ptr) == false) {
printf("CLK is low, please power cycle the board\n");
while (1) {
}
}
if (i2c_get_line_sda_status(ptr) == false) {
printf("SDA is low, try to issue I2C bus clear\n");
} else {
printf("I2C bus is ready\n");
return;
}
i2s_gen_reset_signal(ptr, 9);
board_delay_ms(100);
printf("I2C bus is cleared\n");
}
void board_init_i2c(I2C_Type *ptr)
{
i2c_config_t config;
hpm_stat_t stat;
uint32_t freq;
if (ptr == NULL) {
return;
}
init_i2c_pins(ptr);
board_i2c_bus_clear(ptr);
if (ptr == HPM_I2C0) {
clock_add_to_group(clock_i2c0, 0);
} else if (ptr == HPM_I2C1) {
clock_add_to_group(clock_i2c1, 0);
} else if (ptr == HPM_I2C2) {
clock_add_to_group(clock_i2c2, 0);
} else if (ptr == HPM_I2C3) {
clock_add_to_group(clock_i2c3, 0);
} else if (ptr == HPM_I2C4) {
clock_add_to_group(clock_i2c4, 0);
} else if (ptr == HPM_I2C5) {
clock_add_to_group(clock_i2c5, 0);
} else if (ptr == HPM_I2C6) {
clock_add_to_group(clock_i2c6, 0);
} else if (ptr == HPM_I2C7) {
clock_add_to_group(clock_i2c7, 0);
} else {
;
}
/* Configure the I2C clock to 24MHz */
/* clock_set_source_divider(BOARD_APP_I2C_CLK_NAME, clk_src_osc24m, 1U); */
config.i2c_mode = i2c_mode_normal;
config.is_10bit_addressing = false;
freq = clock_get_frequency(BOARD_APP_I2C_CLK_NAME);
stat = i2c_init_master(ptr, freq, &config);
if (stat != status_success) {
printf("failed to initialize i2c 0x%lx\n", (uint32_t) ptr);
while (1) {
}
}
}
uint32_t board_init_spi_clock(SPI_Type *ptr)
{
if (ptr == HPM_SPI1) {
/* SPI1 clock configure */
clock_add_to_group(clock_spi1, 0);
/* clock_set_source_divider(clock_spi1, clk_src_pll0_clk0, 5U); */
return clock_get_frequency(clock_spi1);
} else if (ptr == HPM_SPI3) {
/* SPI3 clock configure */
clock_add_to_group(clock_spi3, 0);
/* clock_set_source_divider(clock_spi3, clk_src_pll0_clk0, 5U); */
return clock_get_frequency(clock_spi3);
} else if (ptr == HPM_SPI6) {
/* SPI6 clock configure */
clock_add_to_group(clock_spi6, 0);
/* clock_set_source_divider(clock_spi6, clk_src_pll0_clk0, 5U); */
return clock_get_frequency(clock_spi6);
} else if (ptr == HPM_SPI7) {
/* SPI6 clock configure */
clock_add_to_group(clock_spi7, 0);
/* clock_set_source_divider(clock_spi6, clk_src_pll0_clk0, 5U); */
return clock_get_frequency(clock_spi7);
}
return 0;
}
void board_init_gpio_pins(void)
{
init_gpio_pins();
/* Key A*/
gpio_set_pin_input(BOARD_APP_GPIO_CTRL, BOARD_APP_GPIO_INDEX, BOARD_APP_GPIO_PIN);
/* Key B*/
gpio_set_pin_input(BOARD_APP_GPIO_CTRL2, BOARD_APP_GPIO_INDEX2, BOARD_APP_GPIO_PIN2);
}
void board_init_spi_pins(SPI_Type *ptr)
{
init_spi_pins(ptr);
}
void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr)
{
init_spi_pins_with_gpio_as_cs(ptr);
gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN),
GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL);
}
void board_write_spi_cs(uint32_t pin, uint8_t state)
{
gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state);
}
uint8_t board_get_led_pwm_off_level(void)
{
return BOARD_LED_OFF_LEVEL;
}
uint8_t board_get_led_gpio_off_level(void)
{
return BOARD_LED_OFF_LEVEL;
}
void board_init_led_pins(void)
{
board_turnoff_rgb_led();
init_led_pins_as_gpio();
gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level());
gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level());
gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level());
}
void board_led_toggle(void)
{
#ifdef BOARD_LED_TOGGLE_RGB
static uint8_t i;
switch (i) {
case 1:
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL);
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
break;
case 2:
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL);
break;
case 0:
default:
gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL);
gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL);
gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL);
break;
}
i++;
i = i % 3;
#else
gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN);
#endif
}
void board_led_write(uint8_t state)
{
gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state);
}
static void set_rgb_output_off(PWMV2_Type *ptr, uint8_t counter, uint8_t channel, uint8_t shadow_id, uint8_t cmp_id)
{
}
void board_init_rgb_pwm_pins(void)
{
board_turnoff_rgb_led();
set_rgb_output_off(BOARD_RED_PWM, BOARD_RED_PWM_COUNTER_INDEX, BOARD_RED_PWM_OUT_CH, BOARD_RED_PWM_SHADOW_ID, BOARD_RED_PWM_CMP_ID);
set_rgb_output_off(BOARD_GREEN_PWM, BOARD_GREEN_PWM_COUNTER_INDEX, BOARD_GREEN_PWM_OUT_CH, BOARD_GREEN_PWM_SHADOW_ID, BOARD_GREEN_PWM_CMP_ID);
set_rgb_output_off(BOARD_BLUE_PWM, BOARD_BLUE_PWM_COUNTER_INDEX, BOARD_BLUE_PWM_OUT_CH, BOARD_BLUE_PWM_SHADOW_ID, BOARD_BLUE_PWM_CMP_ID);
init_led_pins_as_pwm();
}
void board_disable_output_rgb_led(uint8_t color)
{
switch (color) {
case BOARD_RGB_RED:
pwmv2_channel_disable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT_CH);
break;
case BOARD_RGB_GREEN:
pwmv2_channel_disable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT_CH);
break;
case BOARD_RGB_BLUE:
pwmv2_channel_disable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT_CH);
break;
default:
while (1) {
;
}
}
}
void board_enable_output_rgb_led(uint8_t color)
{
switch (color) {
case BOARD_RGB_RED:
pwmv2_channel_enable_output(BOARD_RED_PWM, BOARD_RED_PWM_OUT_CH);
break;
case BOARD_RGB_GREEN:
pwmv2_channel_enable_output(BOARD_GREEN_PWM, BOARD_GREEN_PWM_OUT_CH);
break;
case BOARD_RGB_BLUE:
pwmv2_channel_enable_output(BOARD_BLUE_PWM, BOARD_BLUE_PWM_OUT_CH);
break;
default:
while (1) {
;
}
}
}
void board_init_pmp(void)
{
uint32_t start_addr;
uint32_t end_addr;
uint32_t length;
pmp_entry_t pmp_entry[16];
uint8_t index = 0;
/* Init noncachable memory */
extern uint32_t __noncacheable_start__[];
extern uint32_t __noncacheable_end__[];
start_addr = (uint32_t) __noncacheable_start__;
end_addr = (uint32_t) __noncacheable_end__;
length = end_addr - start_addr;
if (length > 0) {
/* Ensure the address and the length are power of 2 aligned */
assert((length & (length - 1U)) == 0U);
assert((start_addr & (length - 1U)) == 0U);
pmp_entry[index].pmp_addr = PMP_NAPOT_ADDR(start_addr, length);
pmp_entry[index].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK);
pmp_entry[index].pma_addr = PMA_NAPOT_ADDR(start_addr, length);
pmp_entry[index].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN);
index++;
}
pmp_config(&pmp_entry[0], index);
}
void board_init_clock(void)
{
uint32_t cpu0_freq = clock_get_frequency(clock_cpu0);
if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) {
/* Configure the External OSC ramp-up time: ~9ms */
pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32ul * 1000ul * 9u);
/* select clock setting preset1 */
sysctl_clock_set_preset(HPM_SYSCTL, 2);
}
/* Add most Clocks to group 0 */
/* not open uart clock in this API, uart should configure pin function before opening clock */
clock_add_to_group(clock_cpu0, 0);
clock_add_to_group(clock_mchtmr0, 0);
clock_add_to_group(clock_ahb0, 0);
clock_add_to_group(clock_axif, 0);
clock_add_to_group(clock_axis, 0);
clock_add_to_group(clock_axic, 0);
clock_add_to_group(clock_axin, 0);
clock_add_to_group(clock_rom0, 0);
clock_add_to_group(clock_xpi0, 0);
clock_add_to_group(clock_lmm0, 0);
clock_add_to_group(clock_lmm1, 0);
clock_add_to_group(clock_ram0, 0);
clock_add_to_group(clock_ram1, 0);
clock_add_to_group(clock_hdma, 0);
clock_add_to_group(clock_xdma, 0);
clock_add_to_group(clock_femc, 0);
clock_add_to_group(clock_gptmr0, 0);
clock_add_to_group(clock_gptmr1, 0);
clock_add_to_group(clock_gptmr2, 0);
clock_add_to_group(clock_gptmr3, 0);
clock_add_to_group(clock_gptmr4, 0);
clock_add_to_group(clock_gptmr5, 0);
clock_add_to_group(clock_gptmr6, 0);
clock_add_to_group(clock_gptmr7, 0);
clock_add_to_group(clock_ptpc, 0);
clock_add_to_group(clock_puart, 0);
clock_add_to_group(clock_watchdog0, 0);
clock_add_to_group(clock_watchdog1, 0);
clock_add_to_group(clock_watchdog2, 0);
clock_add_to_group(clock_watchdog3, 0);
clock_add_to_group(clock_pwdg, 0);
clock_add_to_group(clock_qei0, 0);
clock_add_to_group(clock_qei1, 0);
clock_add_to_group(clock_qei2, 0);
clock_add_to_group(clock_qei3, 0);
clock_add_to_group(clock_qeo0, 0);
clock_add_to_group(clock_qeo1, 0);
clock_add_to_group(clock_qeo2, 0);
clock_add_to_group(clock_qeo3, 0);
clock_add_to_group(clock_pwm0, 0);
clock_add_to_group(clock_pwm1, 0);
clock_add_to_group(clock_pwm2, 0);
clock_add_to_group(clock_pwm3, 0);
clock_add_to_group(clock_rdc0, 0);
clock_add_to_group(clock_rdc1, 0);
clock_add_to_group(clock_sdm0, 0);
clock_add_to_group(clock_sdm1, 0);
clock_add_to_group(clock_plb0, 0);
clock_add_to_group(clock_sei0, 0);
clock_add_to_group(clock_mtg0, 0);
clock_add_to_group(clock_mtg1, 0);
clock_add_to_group(clock_vsc0, 0);
clock_add_to_group(clock_vsc1, 0);
clock_add_to_group(clock_clc0, 0);
clock_add_to_group(clock_clc1, 0);
clock_add_to_group(clock_emds, 0);
clock_add_to_group(clock_cmp0, 0);
clock_add_to_group(clock_cmp1, 0);
clock_add_to_group(clock_cmp2, 0);
clock_add_to_group(clock_cmp3, 0);
clock_add_to_group(clock_crc0, 0);
clock_add_to_group(clock_tsns, 0);
clock_add_to_group(clock_mbx0, 0);
clock_add_to_group(clock_mbx1, 0);
clock_add_to_group(clock_gpio, 0);
clock_add_to_group(clock_ppi0, 0);
clock_add_to_group(clock_lobs, 0);
clock_add_to_group(clock_rng, 0);
clock_add_to_group(clock_sdp, 0);
clock_add_to_group(clock_pka, 0);
clock_add_to_group(clock_kman, 0);
clock_add_to_group(clock_ffa0, 0);
clock_add_to_group(clock_usb0, 0);
clock_add_to_group(clock_esc0, 0);
clock_add_to_group(clock_eth0, 0);
clock_add_to_group(clock_ptp0, 0);
clock_add_to_group(clock_ntmr0, 0);
clock_add_to_group(clock_ref0, 0);
clock_add_to_group(clock_ref1, 0);
clock_add_to_group(clock_tsn1, 0);
clock_add_to_group(clock_tsn2, 0);
clock_add_to_group(clock_tsn3, 0);
clock_add_to_group(clock_i2c0, 0);
clock_add_to_group(clock_i2c1, 0);
clock_add_to_group(clock_i2c2, 0);
clock_add_to_group(clock_i2c3, 0);
clock_add_to_group(clock_adc0, 0);
clock_add_to_group(clock_adc1, 0);
clock_add_to_group(clock_adc2, 0);
clock_add_to_group(clock_adc3, 0);
/* Connect Group0 to CPU0 */
clock_connect_group_to_cpu(0, 0);
/* Add the CPU1 clock to Group1 */
clock_add_to_group(clock_cpu1, 0);
clock_add_to_group(clock_mchtmr1, 1);
/* Connect Group1 to CPU1 */
clock_connect_group_to_cpu(1, 1);
/* Bump up DCDC voltage to 1200mv */
pcfg_dcdc_set_voltage(HPM_PCFG, 1200);
/* Configure mchtmr to 24MHz */
clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1);
clock_set_source_divider(clock_mchtmr1, clk_src_osc24m, 1);
clock_update_core_clock();
}
uint32_t board_init_uart_clock(UART_Type *ptr)
{
uint32_t freq = 0U;
if (ptr == HPM_UART0) {
clock_set_source_divider(clock_uart0, clk_src_pll1_clk0, 10);
clock_add_to_group(clock_uart0, 0);
freq = clock_get_frequency(clock_uart0);
} else if (ptr == HPM_UART1) {
clock_set_source_divider(clock_uart1, clk_src_pll1_clk0, 10);
clock_add_to_group(clock_uart1, 0);
freq = clock_get_frequency(clock_uart1);
} else if (ptr == HPM_UART2) {
clock_set_source_divider(clock_uart2, clk_src_pll1_clk0, 10);
clock_add_to_group(clock_uart2, 0);
freq = clock_get_frequency(clock_uart2);
} else if (ptr == HPM_UART6) {
clock_set_source_divider(clock_uart6, clk_src_pll1_clk0, 10);
clock_add_to_group(clock_uart6, 0);
freq = clock_get_frequency(clock_uart6);
} else {
/* Not supported */
}
return freq;
}
#ifdef INIT_EXT_RAM_FOR_DATA
/*
* this function will be called during startup to initialize external memory for data use
*/
void _init_ext_ram(void)
{
uint32_t femc_clk_in_hz;
board_init_sdram_pins();
femc_clk_in_hz = board_init_femc_clock();
femc_config_t config = {0};
femc_sdram_config_t sdram_config = {0};
femc_default_config(HPM_FEMC, &config);
femc_init(HPM_FEMC, &config);
femc_get_typical_sdram_config(HPM_FEMC, &sdram_config);
sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4;
sdram_config.prescaler = 0x3;
sdram_config.burst_len_in_byte = 8;
sdram_config.auto_refresh_count_in_one_burst = 1;
sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS;
sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3;
sdram_config.refresh_to_refresh_in_ns = 60; /* Trc */
sdram_config.refresh_recover_in_ns = 60; /* Trc */
sdram_config.act_to_precharge_in_ns = 42; /* Tras */
sdram_config.act_to_rw_in_ns = 18; /* Trcd */
sdram_config.precharge_to_act_in_ns = 18; /* Trp */
sdram_config.act_to_act_in_ns = 12; /* Trrd */
sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */
sdram_config.self_refresh_recover_in_ns = 72; /* Txsr */
sdram_config.cs = BOARD_SDRAM_CS;
sdram_config.base_address = BOARD_SDRAM_ADDRESS;
sdram_config.size_in_byte = BOARD_SDRAM_SIZE;
sdram_config.port_size = BOARD_SDRAM_PORT_SIZE;
sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT;
sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS;
sdram_config.delay_cell_disable = true;
sdram_config.delay_cell_value = 0;
femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config);
HPM_FEMC->SDRCTRL0 |= FEMC_SDRCTRL0_HIGHBAND_MASK; /* use data[31:16] for 16bit SDRAM */
}
#endif
void board_init_usb_pins(void)
{
init_usb_pins();
usb_hcd_set_power_ctrl_polarity(BOARD_USB, true);
/* Wait USB_PWR pin control vbus power stable. Time depend on decoupling capacitor, you can decrease or increase this time */
board_delay_ms(100);
}
void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level)
{
(void) usb_index;
(void) level;
}
uint32_t board_init_dao_clock(void)
{
clock_add_to_group(clock_dao, 0);
board_config_i2s_clock(DAO_I2S, 48000);
return clock_get_frequency(clock_dao);
}
uint32_t board_init_pdm_clock(void)
{
clock_add_to_group(clock_pdm, 0);
board_config_i2s_clock(PDM_I2S, 16000);
return clock_get_frequency(clock_pdm);
}
void board_init_i2s_pins(I2S_Type *ptr)
{
init_i2s_pins(ptr);
}
uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate)
{
uint32_t freq = 0;
if (ptr == HPM_I2S0) {
clock_add_to_group(clock_i2s0, 0);
if ((sample_rate % 22050) == 0) {
clock_set_source_divider(clock_aud0, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
} else {
clock_set_source_divider(clock_aud0, clk_src_pll2_clk0, 21); /* default 24576000Hz */
}
clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0);
freq = clock_get_frequency(clock_i2s0);
} else if (ptr == HPM_I2S1) {
clock_add_to_group(clock_i2s1, 0);
if ((sample_rate % 22050) == 0) {
clock_set_source_divider(clock_aud1, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */
} else {
clock_set_source_divider(clock_aud1, clk_src_pll2_clk0, 21); /* default 24576000Hz */
}
clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1);
freq = clock_get_frequency(clock_i2s1);
} else {
;
}
return freq;
}
void board_init_adc16_pins(void)
{
init_adc16_pins();
}
uint32_t board_init_adc16_clock(void *ptr, bool clk_src_ahb) /* motor system should be use clk_adc_src_ahb0 */
{
uint32_t freq = 0;
if (ptr == (void *)HPM_ADC0) {
if (clk_src_ahb) {
/* Configure the ADC clock from AHB (@200MHz by default)*/
clock_set_adc_source(clock_adc0, clk_adc_src_ahb0);
} else {
/* Configure the ADC clock from ANA (@200MHz by default)*/
clock_set_adc_source(clock_adc0, clk_adc_src_ana0);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
}
freq = clock_get_frequency(clock_adc0);
} else if (ptr == (void *)HPM_ADC1) {
if (clk_src_ahb) {
/* Configure the ADC clock from AHB (@200MHz by default)*/
clock_set_adc_source(clock_adc1, clk_adc_src_ahb0);
} else {
/* Configure the ADC clock from ANA (@200MHz by default)*/
clock_set_adc_source(clock_adc1, clk_adc_src_ana1);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
}
freq = clock_get_frequency(clock_adc1);
} else if (ptr == (void *)HPM_ADC2) {
if (clk_src_ahb) {
/* Configure the ADC clock from AHB (@200MHz by default)*/
clock_set_adc_source(clock_adc2, clk_adc_src_ahb0);
} else {
/* Configure the ADC clock from ANA (@200MHz by default)*/
clock_set_adc_source(clock_adc2, clk_adc_src_ana2);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
}
freq = clock_get_frequency(clock_adc2);
} else if (ptr == (void *)HPM_ADC3) {
if (clk_src_ahb) {
/* Configure the ADC clock from AHB (@200MHz by default)*/
clock_set_adc_source(clock_adc3, clk_adc_src_ahb0);
} else {
/* Configure the ADC clock from ANA (@200MHz by default)*/
clock_set_adc_source(clock_adc3, clk_adc_src_ana3);
clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U);
}
freq = clock_get_frequency(clock_adc3);
}
return freq;
}
void board_init_can(MCAN_Type *ptr)
{
init_can_pins(ptr);
}
uint32_t board_init_can_clock(MCAN_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_MCAN0) {
/* Set the CAN0 peripheral clock to 80MHz */
clock_add_to_group(clock_can0, 0);
clock_set_source_divider(clock_can0, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can0);
} else if (ptr == HPM_MCAN1) {
/* Set the CAN1 peripheral clock to 80MHz */
clock_add_to_group(clock_can1, 0);
clock_set_source_divider(clock_can1, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can1);
} else if (ptr == HPM_MCAN2) {
/* Set the CAN2 peripheral clock to 80MHz */
clock_add_to_group(clock_can2, 0);
clock_set_source_divider(clock_can2, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can2);
} else if (ptr == HPM_MCAN3) {
/* Set the CAN3 peripheral clock to 80MHz */
clock_add_to_group(clock_can3, 0);
clock_set_source_divider(clock_can3, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can3);
} else if (ptr == HPM_MCAN4) {
/* Set the CAN4 peripheral clock to 80MHz */
clock_add_to_group(clock_can4, 0);
clock_set_source_divider(clock_can4, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can4);
} else if (ptr == HPM_MCAN5) {
/* Set the CAN5 peripheral clock to 80MHz */
clock_add_to_group(clock_can5, 0);
clock_set_source_divider(clock_can5, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can5);
} else if (ptr == HPM_MCAN6) {
/* Set the CAN6 peripheral clock to 80MHz */
clock_add_to_group(clock_can6, 0);
clock_set_source_divider(clock_can6, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can6);
} else if (ptr == HPM_MCAN7) {
/* Set the CAN7 peripheral clock to 80MHz */
clock_add_to_group(clock_can7, 0);
clock_set_source_divider(clock_can7, clk_src_pll1_clk0, 10);
freq = clock_get_frequency(clock_can3);
} else {
/* Invalid CAN instance */
}
return freq;
}
hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr)
{
/* set clock source */
if (ptr == HPM_ENET0) {
/* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet0 ptp function */
/* clock_set_source_divider(clock_ptp0, clk_src_pll1_clk1, 4); */ /* 100MHz */
} else if (ptr == HPM_ENET1) {
/* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for the enet1 ptp function */
/* clock_set_source_divider(clock_ptp1, clk_src_pll1_clk1, 4); */ /* 100MHz */
} else {
return status_invalid_argument;
}
return status_success;
}
hpm_stat_t board_init_enet_pins(ENET_Type *ptr)
{
init_enet_pins(ptr);
if (ptr == HPM_ENET0) {
gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
} else {
return status_invalid_argument;
}
return status_success;
}
hpm_stat_t board_reset_enet_phy(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0);
board_delay_ms(1);
gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1);
} else {
return status_invalid_argument;
}
return status_success;
}
uint8_t board_get_enet_dma_pbl(ENET_Type *ptr)
{
(void) ptr;
return enet_pbl_32;
}
hpm_stat_t board_enable_enet_irq(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
intc_m_enable_irq(IRQn_ENET0);
} else {
return status_invalid_argument;
}
return status_success;
}
hpm_stat_t board_disable_enet_irq(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
intc_m_disable_irq(IRQn_ENET0);
} else {
return status_invalid_argument;
}
return status_success;
}
void board_init_enet_pps_pins(ENET_Type *ptr)
{
(void) ptr;
init_enet_pps_pins();
}
hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal)
{
/* Configure Enet clock to output reference clock */
if (ptr == HPM_ENET0) {
if (internal) {
/* set pll output frequency at 1GHz */
if (pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, PLLCTLV2_PLL_PLL2, 1000000000UL) == status_success) {
/* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 (1 + 15 / 5) */
pllctlv2_set_postdiv(HPM_PLLCTLV2, PLLCTLV2_PLL_PLL2, 1, 15);
/* set eth clock frequency at 50MHz for enet0 */
/* clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5); */
} else {
return status_fail;
}
}
} else {
return status_invalid_argument;
}
enet_rmii_enable_clock(ptr, internal); /* defined in hpm_enet_soc_drv.h, not sure */
return status_success;
}
hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr)
{
if (ptr == HPM_ENET0) {
return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY); /* defined in hpm_enet_soc_drv.h, not sure */
}
return status_invalid_argument;
}
void board_init_dao_pins(void)
{
init_dao_pins();
}
void board_init_ethercat(ESC_Type *ptr)
{
(void)ptr;
init_esc_pins();
/* keep ECAT PHY reset */
gpio_set_pin_output_with_initial(BOARD_ECAT_PHY0_RESET_GPIO, BOARD_ECAT_PHY0_RESET_GPIO_PORT_INDEX, BOARD_ECAT_PHY0_RESET_PIN_INDEX, BOARD_ECAT_PHY_RESET_LEVEL);
gpio_set_pin_output_with_initial(BOARD_ECAT_PHY1_RESET_GPIO, BOARD_ECAT_PHY1_RESET_GPIO_PORT_INDEX, BOARD_ECAT_PHY1_RESET_PIN_INDEX, BOARD_ECAT_PHY_RESET_LEVEL);
}
/* input and output pin for ethercat io test */
void board_init_switch_led(void)
{
init_esc_in_out_pin();
gpio_set_pin_input(BOARD_ECAT_IN1_GPIO, BOARD_ECAT_IN1_GPIO_PORT_INDEX, BOARD_ECAT_IN1_GPIO_PIN_INDEX);
gpio_set_pin_input(BOARD_ECAT_IN2_GPIO, BOARD_ECAT_IN2_GPIO_PORT_INDEX, BOARD_ECAT_IN2_GPIO_PIN_INDEX);
gpio_set_pin_output_with_initial(BOARD_ECAT_OUT1_GPIO, BOARD_ECAT_OUT1_GPIO_PORT_INDEX, BOARD_ECAT_OUT1_GPIO_PIN_INDEX, 0);
gpio_set_pin_output_with_initial(BOARD_ECAT_OUT2_GPIO, BOARD_ECAT_OUT2_GPIO_PORT_INDEX, BOARD_ECAT_OUT2_GPIO_PIN_INDEX, 0);
}
void board_init_tsw(TSW_Type *ptr)
{
(void)ptr;
init_tsw_pins();
/* PORT1/PORT2: JL1111 RST(PA10) */
gpio_set_pin_output_with_initial(HPM_GPIO0, GPIO_DO_GPIOA, 10, 0);
gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 10, 0);
board_delay_ms(100);
gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 10, 1);
/* PORT3: RTL8211 RST(PA10) */
gpio_set_pin_output_with_initial(HPM_GPIO0, GPIO_DO_GPIOA, 14, 0);
gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 14, 0);
board_delay_ms(100);
gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 14, 1);
/* Enable XI clock for JL1111 */
esc_core_enable_clock(HPM_ESC, true);
esc_phy_enable_clock(HPM_ESC, true);
}
void board_init_sei_pins(SEI_Type *ptr, uint8_t sei_ctrl_idx)
{
init_sei_pins(ptr, sei_ctrl_idx);
}
void board_init_adc_qeiv2_pins(void)
{
init_adc_qeiv2_pins();
}
uint32_t board_init_gptmr_clock(GPTMR_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_GPTMR0) {
clock_add_to_group(clock_gptmr0, 0);
clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk0, 8);
freq = clock_get_frequency(clock_gptmr0);
}
else if (ptr == HPM_GPTMR1) {
clock_add_to_group(clock_gptmr1, 0);
clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk0, 8);
freq = clock_get_frequency(clock_gptmr1);
}
else if (ptr == HPM_GPTMR2) {
clock_add_to_group(clock_gptmr2, 0);
clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk0, 8);
freq = clock_get_frequency(clock_gptmr2);
}
else if (ptr == HPM_GPTMR3) {
clock_add_to_group(clock_gptmr3, 0);
clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk0, 8);
freq = clock_get_frequency(clock_gptmr3);
}
else if (ptr == HPM_GPTMR4) {
clock_add_to_group(clock_gptmr4, 0);
clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk0, 8);
freq = clock_get_frequency(clock_gptmr4);
}
else if (ptr == HPM_GPTMR5) {
clock_add_to_group(clock_gptmr5, 0);
clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk0, 8);
freq = clock_get_frequency(clock_gptmr5);
}
else if (ptr == HPM_GPTMR6) {
clock_add_to_group(clock_gptmr6, 0);
clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk0, 8);
freq = clock_get_frequency(clock_gptmr6);
}
else if (ptr == HPM_GPTMR7) {
clock_add_to_group(clock_gptmr7, 0);
clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk0, 8);
freq = clock_get_frequency(clock_gptmr7);
}
else {
/* Invalid instance */
}
}
uint32_t board_init_pwm_clock(PWMV2_Type *ptr)
{
uint32_t freq = 0;
if (ptr == HPM_PWM0) {
clock_add_to_group(clock_pwm0, 0);
freq = clock_get_frequency(clock_pwm0);
} else if (ptr == HPM_PWM1) {
clock_add_to_group(clock_pwm1, 0);
freq = clock_get_frequency(clock_pwm1);
} else if (ptr == HPM_PWM2) {
clock_add_to_group(clock_pwm2, 0);
freq = clock_get_frequency(clock_pwm2);
} else if (ptr == HPM_PWM3) {
clock_add_to_group(clock_pwm3, 0);
freq = clock_get_frequency(clock_pwm3);
} else {
}
return freq;
}