guo ecf2d82159
sync branch rt-smart. (#6641)
* Synchronize the code of the rt mart branch to the master branch.
  * TTY device
  * Add lwP code from rt-smart
  * Add vnode in DFS, but DFS will be re-write for rt-smart
  * There are three libcpu for rt-smart:
    * arm/cortex-a, arm/aarch64
    * riscv64

Co-authored-by: Rbb666 <zhangbingru@rt-thread.com>
Co-authored-by: zhkag <zhkag@foxmail.com>
2022-12-03 12:07:44 +08:00

523 lines
12 KiB
C

/* Copyright (c) 2019-2025 Allwinner Technology Co., Ltd. ALL rights reserved.
* Allwinner is a trademark of Allwinner Technology Co.,Ltd., registered in
* the the People's Republic of China and other countries.
* All Allwinner Technology Co.,Ltd. trademarks are used with permission.
* DISCLAIMER
* THIRD PARTY LICENCES MAY BE REQUIRED TO IMPLEMENT THE SOLUTION/PRODUCT.
* IF YOU NEED TO INTEGRATE THIRD PARTY¡¯S TECHNOLOGY (SONY, DTS, DOLBY, AVS OR MPEGLA, ETC.)
* IN ALLWINNERS¡¯SDK OR PRODUCTS, YOU SHALL BE SOLELY RESPONSIBLE TO OBTAIN
* ALL APPROPRIATELY REQUIRED THIRD PARTY LICENCES.
* ALLWINNER SHALL HAVE NO WARRANTY, INDEMNITY OR OTHER OBLIGATIONS WITH RESPECT TO MATTERS
* COVERED UNDER ANY REQUIRED THIRD PARTY LICENSE.
* YOU ARE SOLELY RESPONSIBLE FOR YOUR USAGE OF THIRD PARTY¡¯S TECHNOLOGY.
* THIS SOFTWARE IS PROVIDED BY ALLWINNER"AS IS" AND TO THE MAXIMUM EXTENT
* PERMITTED BY LAW, ALLWINNER EXPRESSLY DISCLAIMS ALL WARRANTIES OF ANY KIND,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION REGARDING
* THE TITLE, NON-INFRINGEMENT, ACCURACY, CONDITION, COMPLETENESS, PERFORMANCE
* OR MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
* IN NO EVENT SHALL ALLWINNER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS, OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <interrupt.h>
#include <hal_clk.h>
#include <hal_gpio.h>
#include <hal_reset.h>
#include <hal_cfg.h>
#include <script.h>
#include "common_cir.h"
#include "platform_cir.h"
#include "sunxi_hal_cir.h"
#ifdef CONFIG_DRIVERS_IR_DEBUG
#define CIR_INFO(fmt, arg...) printf("%s()%d " fmt, __func__, __LINE__, ##arg)
#else
#define CIR_INFO(fmt, arg...) do{}while(0);
#endif
#define CIR_ERR(fmt, arg...) printf("%s()%d " fmt, __func__, __LINE__, ##arg)
static uint32_t base[CIR_MASTER_NUM] = {
SUNXI_IRADC_PBASE,
};
static uint32_t irq[CIR_MASTER_NUM] = {
SUNXI_IRQ_IRADC,
};
static cir_gpio_t pin[CIR_MASTER_NUM] = {
{GPIOB(7), 5, 0},
};
sunxi_cir_t sunxi_cir[CIR_MASTER_NUM];
void sunxi_cir_callback_register(cir_port_t port, cir_callback_t callback)
{
sunxi_cir_t *cir = &sunxi_cir[port];
cir->callback = callback;
}
static irqreturn_t sunxi_cir_handler(int irq, void *dev)
{
sunxi_cir_t *cir = (sunxi_cir_t *)dev;
uint32_t int_flag, count;
uint32_t reg_data, i = 0;
int_flag = readl(cir->base + CIR_RXSTA);
writel(int_flag, cir->base + CIR_RXSTA);
count = (int_flag & RAC) >> RAC_OFFSET;
for(i = 0; i < count; i++)
{
reg_data = readl(cir->base + CIR_RXFIFO);
if (cir->callback)
cir->callback(cir->port, RA, reg_data);
}
if ((int_flag & ROI) && cir->callback) {
cir->callback(cir->port, ROI, 0);
}
if ((int_flag & RPE) && cir->callback)
{
cir->callback(cir->port, RA, 0);
cir->callback(cir->port, RPE, 0);
}
return 0;
}
void sunxi_cir_mode_enable(cir_port_t port, uint8_t enable)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val;
if (!cir->status)
return ;
reg_val = readl(cir->base + CIR_CTRL);
if (enable)
reg_val |= CIR_ENABLE;
else
reg_val &= ~CIR_ENABLE;
writel(reg_val, cir->base + CIR_CTRL);
}
void sunxi_cir_mode_config(cir_port_t port, cir_mode_t mode)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val;
if (!cir->status)
return ;
reg_val = readl(cir->base + CIR_CTRL);
reg_val &= ~CIR_MODE;
reg_val |= (mode << CIR_MODE_OFFSET);
writel(reg_val, cir->base + CIR_CTRL);
}
void sunxi_cir_sample_clock_select(cir_port_t port, cir_sample_clock_t div)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val = 0;
if (!cir->status)
return ;
reg_val = readl(cir->base + CIR_CONFIG);
if (div == CIR_CLK) {
reg_val &= ~SCS;
reg_val |= SCS2;
} else {
reg_val &= ~SCS2;
reg_val |= div;
}
writel(reg_val, cir->base + CIR_CONFIG);
}
void sunxi_cir_sample_noise_threshold(cir_port_t port, int8_t threshold)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val = 0;
if (!cir->status || threshold > 0x3f)
return ;
reg_val = readl(cir->base + CIR_CONFIG);
reg_val &= ~NTHR;
reg_val |= (threshold << NTHR_OFFSET);
writel(reg_val, cir->base + CIR_CONFIG);
}
void sunxi_cir_sample_idle_threshold(cir_port_t port, int8_t threshold)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val = 0;
if (!cir->status || threshold > 0x3f)
return ;
reg_val = readl(cir->base + CIR_CONFIG);
reg_val &= ~ITHR;
reg_val |= (threshold << ITHR_OFFSET);
writel(reg_val, cir->base + CIR_CONFIG);
}
void sunxi_cir_sample_active_threshold(cir_port_t port, int8_t threshold)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val = 0;
if (!cir->status || threshold > 0x3f)
return ;
reg_val = readl(cir->base + CIR_CONFIG);
reg_val &= ~ATHR;
reg_val |= (threshold << ATHR_OFFSET);
writel(reg_val, cir->base + CIR_CONFIG);
}
void sunxi_cir_sample_active_thrctrl(cir_port_t port, int8_t enable)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val = 0;
if (!cir->status)
return ;
reg_val = readl(cir->base + CIR_CONFIG);
if (enable)
reg_val |= ATHC;
else
reg_val &= ~ATHC;
writel(reg_val, cir->base + CIR_CONFIG);
}
void sunxi_cir_fifo_level(cir_port_t port, int8_t size)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val = 0;
if (!cir->status || size > 0x3f + 1)
return ;
reg_val = readl(cir->base + CIR_RXINT);
reg_val &= ~RAL;
reg_val |= ((size -1) << RAL_OFFSET);
writel(reg_val, cir->base + CIR_RXINT);
}
void sunxi_cir_irq_enable(cir_port_t port, int enable)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val = 0;
if (!cir->status)
return ;
reg_val = readl(cir->base + CIR_RXINT);
reg_val &= ~IRQ_MASK;
enable &= IRQ_MASK;
reg_val |= enable;
writel(reg_val, cir->base + CIR_RXINT);
}
void sunxi_cir_irq_disable(cir_port_t port)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val = 0;
if (!cir->status)
return ;
reg_val = readl(cir->base + CIR_RXINT);
reg_val &= ~IRQ_MASK;
writel(reg_val, cir->base + CIR_RXINT);
}
void sunxi_cir_signal_invert(cir_port_t port, uint8_t invert)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val = 0;
if (!cir->status)
return ;
reg_val = readl(cir->base + CIR_RXCTRL);
if (invert)
reg_val |= RPPI;
else
reg_val &= ~RPPI;
writel(reg_val, cir->base + CIR_RXCTRL);
}
void sunxi_cir_module_enable(cir_port_t port, int8_t enable)
{
sunxi_cir_t *cir = &sunxi_cir[port];
int reg_val = 0;
if (!cir->status)
return ;
reg_val = readl(cir->base + CIR_CTRL);
if (enable)
reg_val |= (GEN | RXEN);
else
reg_val &= ~(GEN | RXEN);
writel(reg_val, cir->base + CIR_CTRL);
}
static int sunxi_cir_gpio_init(sunxi_cir_t *cir)
{
user_gpio_set_t irpin = {0};
cir_gpio_t pin_cir;
Hal_Cfg_GetKeyValue("cir", "cir_pin", (int32_t *)&irpin, (sizeof(user_gpio_set_t) + 3) / sizeof(int));
pin_cir.gpio = (irpin.port - 1) * PINS_PER_BANK + irpin.port_num;
pin_cir.enable_mux = irpin.mul_sel;
pin_cir.disable_mux = 0;
return hal_gpio_pinmux_set_function(pin_cir.gpio, pin_cir.enable_mux);
}
static int sunxi_cir_gpio_exit(sunxi_cir_t *cir)
{
cir_gpio_t *cir_pin = cir->pin;
return hal_gpio_pinmux_set_function(cir_pin->gpio, cir_pin->disable_mux);
}
#if defined(CONFIG_ARCH_SUN20IW1)
static int sunxi_cir_clk_init(sunxi_cir_t *cir)
{
int ret = 0;
cir->cir_clk_type_R = HAL_SUNXI_R_CCU;
cir->cir_clk_type_FIXED = HAL_SUNXI_FIXED_CCU;
cir->m_clk_id = CLK_R_APB0_IRRX;
cir->p_clk_id = CLK_SRC_HOSC24M;
cir->b_clk_id = CLK_R_APB0_BUS_IRRX;
cir->mclk = hal_clock_get(cir->cir_clk_type_R, cir->m_clk_id);
if (hal_clock_enable(cir->mclk)) {
CIR_ERR("cir mclk enabled failed\n");
return -1;
}
cir->pclk = hal_clock_get(cir->cir_clk_type_FIXED, cir->p_clk_id);
if (hal_clock_enable(cir->pclk)) {
CIR_ERR("cir pclk enabled failed\n");
return -1;
}
cir->bclk = hal_clock_get(cir->cir_clk_type_R, cir->b_clk_id);
if (hal_clock_enable(cir->bclk)) {
CIR_ERR("cir bclk enabled failed\n");
return -1;
}
ret = hal_clk_set_parent(cir->mclk, cir->pclk);
if (ret) {
printf("hal_clk_set_parent failed\n");
return -1;
}
hal_reset_type_t cir_reset_type = HAL_SUNXI_R_RESET;
hal_reset_id_t cir_reset_id = RST_R_APB0_BUS_IRRX;
cir->cir_reset = hal_reset_control_get(cir_reset_type, cir_reset_id);
if (hal_reset_control_deassert(cir->cir_reset)) {
CIR_ERR("cir reset deassert failed\n");
return -1;
}
return 0;
}
#else
static int sunxi_cir_clk_init(sunxi_cir_t *cir)
{
int ret = 0;
int TEST_CLK_TYPE = 1;
int TEST_CLK_DATA = 1;
int TEST_RESET_TYPE = 1;
int TEST_RESET_DATA = 1;
cir->test_clk_type = TEST_CLK_TYPE;
cir->test_clk_id = TEST_CLK_DATA;
cir->test_clk = hal_clock_get(cir->test_clk_type, cir->test_clk_id);
if (hal_clock_enable(cir->test_clk)) {
CIR_ERR("cir TEST_CLK enabled failed\n");
return -1;
}
hal_reset_type_t cir_reset_type = TEST_RESET_TYPE;
hal_reset_id_t cir_reset_id = TEST_RESET_DATA;
cir->cir_reset = hal_reset_control_get(cir_reset_type, cir_reset_id);
if (hal_reset_control_deassert(cir->cir_reset)) {
CIR_ERR("cir reset deassert failed\n");
return -1;
}
return 0;
}
#endif
#if defined(CONFIG_ARCH_SUN20IW1)
static int sunxi_cir_clk_exit(sunxi_cir_t *cir)
{
hal_clock_disable(cir->bclk);
hal_clock_put(cir->bclk);
hal_clock_disable(cir->pclk);
hal_clock_put(cir->pclk);
hal_clock_disable(cir->mclk);
hal_clock_put(cir->mclk);
hal_reset_control_assert(cir->cir_reset);
hal_reset_control_put(cir->cir_reset);
return 0;
}
#else
static int sunxi_cir_clk_exit(sunxi_cir_t *cir)
{
hal_clock_disable(cir->test_clk);
hal_clock_put(cir->test_clk);
hal_reset_control_assert(cir->cir_reset);
hal_reset_control_put(cir->cir_reset);
return 0;
}
#endif
static cir_status_t sunxi_cir_hw_init(sunxi_cir_t *cir)
{
if (sunxi_cir_clk_init(cir))
return CIR_CLK_ERR;
if (sunxi_cir_gpio_init(cir))
return CIR_PIN_ERR;
if (request_irq(cir->irq, sunxi_cir_handler, 0, "cir-irq", cir)) {
printf("cir request irq err\n");
return CIR_IRQ_ERR;
}
enable_irq(cir->irq);
return CIR_OK;
}
static void sunxi_cir_hw_exit(sunxi_cir_t *cir)
{
disable_irq(cir->irq);
free_irq(cir->irq, cir);
sunxi_cir_gpio_exit(cir);
sunxi_cir_clk_exit(cir);
}
#ifdef CONFIG_STANDBY
void sunxi_cir_suspend(cir_port_t port)
{
sunxi_cir_t *cir = &sunxi_cir[port];
disable_irq(cir->irq);
hal_clock_disable(cir->bclk);
hal_clock_disable(cir->mclk);
sunxi_cir_gpio_exit(cir);
return;
}
void sunxi_cir_resume(cir_port_t port)
{
sunxi_cir_t *cir = &sunxi_cir[port];
sunxi_cir_gpio_init(cir);
sunxi_cir_clk_init(cir);
enable_irq(cir->irq);
return;
}
#endif
cir_status_t sunxi_cir_init(cir_port_t port)
{
sunxi_cir_t *cir = &sunxi_cir[port];
cir_status_t ret = 0;
cir->port = port;
cir->base = base[port];
cir->irq = irq[port];
cir->pin = &pin[port];
cir->status = 1;
ret = sunxi_cir_hw_init(cir);
if (ret)
{
CIR_ERR("cir[%d] hardware init error, ret:%d\n", port, ret);
return ret;
}
return ret;
}
void sunxi_cir_deinit(cir_port_t port)
{
sunxi_cir_t *cir = &sunxi_cir[port];
cir->status = 0;
sunxi_cir_hw_exit(cir);
}