2011-07-04 02:38:23 +00:00

567 lines
20 KiB
C

/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file has been prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief High-level library abstracting features such as oscillators/pll/dfll
* configuration, clock configuration, System-sensible parameters
* configuration, buses clocks configuration, sleep mode, reset.
*
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
*****************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include "power_clocks_lib.h"
//! Device-specific data
#if UC3L
static long int pcl_configure_clocks_uc3l(pcl_freq_param_t *param); // FORWARD declaration
#endif
#if UC3C
static long int pcl_configure_clocks_uc3c(pcl_freq_param_t *param); // FORWARD declaration
#endif
long int pcl_configure_clocks(pcl_freq_param_t *param)
{
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
return(pm_configure_clocks(param));
#else
#ifdef AVR32_PM_410_H_INCLUDED
// Implementation for UC3C parts.
return(pcl_configure_clocks_uc3c(param));
#else
// Implementation for UC3L parts.
return(pcl_configure_clocks_uc3l(param));
#endif
#endif
}
//! Device-specific implementation
#if UC3L
// FORWARD declaration
static long int pcl_configure_synchronous_clocks( pm_clk_src_t main_clk_src,
unsigned long main_clock_freq_hz,
pcl_freq_param_t *param);
long int pcl_configure_clocks_rcsys(pcl_freq_param_t *param)
{
// Supported main clock sources: PCL_MC_RCSYS
// Supported synchronous clocks frequencies if RCSYS is the main clock source:
// 115200Hz, 57600Hz, 28800Hz, 14400Hz, 7200Hz, 3600Hz, 1800Hz, 900Hz, 450Hz.
// NOTE: by default, this implementation doesn't perform thorough checks on the
// input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
#ifdef AVR32SFW_INPUT_CHECK
// Verify that fCPU >= fPBx
if((param->cpu_f < param->pba_f) || (param->cpu_f < param->pbb_f))
return(-1);
#endif
#ifdef AVR32SFW_INPUT_CHECK
// Verify that the target frequencies are reachable.
if((param->cpu_f > SCIF_SLOWCLOCK_FREQ_HZ) || (param->pba_f > SCIF_SLOWCLOCK_FREQ_HZ)
|| (param->pbb_f > SCIF_SLOWCLOCK_FREQ_HZ))
return(-1);
#endif
return(pcl_configure_synchronous_clocks(PM_CLK_SRC_SLOW, SCIF_SLOWCLOCK_FREQ_HZ, param));
}
long int pcl_configure_clocks_rc120m(pcl_freq_param_t *param)
{
// Supported main clock sources: PCL_MC_RC120M
// Supported synchronous clocks frequencies if RC120M is the main clock source:
// 30MHz, 15MHz, 7.5MHz, 3.75MHz, 1.875MHz, 937.5kHz, 468.75kHz.
// NOTE: by default, this implementation doesn't perform thorough checks on the
// input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
#ifdef AVR32SFW_INPUT_CHECK
// Verify that fCPU >= fPBx
if((param->cpu_f < param->pba_f) || (param->cpu_f < param->pbb_f))
return(-1);
#endif
#ifdef AVR32SFW_INPUT_CHECK
// Verify that the target frequencies are reachable.
if((param->cpu_f > SCIF_RC120M_FREQ_HZ) || (param->pba_f > SCIF_RC120M_FREQ_HZ)
|| (param->pbb_f > SCIF_RC120M_FREQ_HZ))
return(-1);
#endif
// Start the 120MHz internal RCosc (RC120M) clock
scif_start_rc120M();
return(pcl_configure_synchronous_clocks(PM_CLK_SRC_RC120M, SCIF_RC120M_FREQ_HZ, param));
}
long int pcl_configure_clocks_osc0(pcl_freq_param_t *param)
{
// Supported main clock sources: PCL_MC_OSC0
// Supported synchronous clocks frequencies if OSC0 is the main clock source:
// (these obviously depend on the OSC0 frequency; we'll take 16MHz as an example)
// 16MHz, 8MHz, 4MHz, 2MHz, 1MHz, 500kHz, 250kHz, 125kHz, 62.5kHz.
// NOTE: by default, this implementation doesn't perform thorough checks on the
// input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
unsigned long main_clock_freq;
#ifdef AVR32SFW_INPUT_CHECK
// Verify that fCPU >= fPBx
if((param->cpu_f < param->pba_f) || (param->cpu_f < param->pbb_f))
return(-1);
#endif
main_clock_freq = param->osc0_f;
#ifdef AVR32SFW_INPUT_CHECK
// Verify that the target frequencies are reachable.
if((param->cpu_f > main_clock_freq) || (param->pba_f > main_clock_freq)
|| (param->pbb_f > main_clock_freq))
return(-1);
#endif
// Configure OSC0 in crystal mode, external crystal with a fcrystal Hz frequency.
scif_configure_osc_crystalmode(SCIF_OSC0, main_clock_freq);
// Enable the OSC0
scif_enable_osc(SCIF_OSC0, param->osc0_startup, true);
return(pcl_configure_synchronous_clocks(PM_CLK_SRC_OSC0, main_clock_freq, param));
}
long int pcl_configure_clocks_dfll0(pcl_freq_param_t *param)
{
// Supported main clock sources: PCL_MC_DFLL
// Supported synchronous clocks frequencies if DFLL is the main clock source:
// (these obviously depend on the DFLL target frequency; we'll take 100MHz as an example)
// 50MHz, 25MHz, 12.5MHz, 6.25MHz, 3.125MHz, 1562.5kHz, 781.25kHz, 390.625kHz.
// NOTE: by default, this implementation doesn't perform thorough checks on the
// input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
unsigned long main_clock_freq;
scif_gclk_opt_t *pgc_dfllif_ref_opt;
#ifdef AVR32SFW_INPUT_CHECK
// Verify that fCPU >= fPBx
if((param->cpu_f < param->pba_f) || (param->cpu_f < param->pbb_f))
return(-1);
#endif
main_clock_freq = param->dfll_f;
#ifdef AVR32SFW_INPUT_CHECK
// Verify that the target DFLL output frequency is in the correct range.
if((main_clock_freq > SCIF_DFLL_MAXFREQ_HZ) || (main_clock_freq < SCIF_DFLL_MINFREQ_HZ))
return(-1);
// Verify that the target frequencies are reachable.
if((param->cpu_f > main_clock_freq) || (param->pba_f > main_clock_freq)
|| (param->pbb_f > main_clock_freq))
return(-1);
#endif
pgc_dfllif_ref_opt = (scif_gclk_opt_t *)param->pextra_params;
// Implementation note: this implementation configures the DFLL in closed-loop
// mode (because it gives the best accuracy) which enables the generic clock CLK_DFLLIF_REF
// as a reference (RCSYS being used as the generic clock source, undivided).
scif_dfll0_closedloop_configure_and_start(pgc_dfllif_ref_opt, main_clock_freq, TRUE);
return(pcl_configure_synchronous_clocks(PM_CLK_SRC_DFLL0, main_clock_freq, param));
}
static long int pcl_configure_clocks_uc3l(pcl_freq_param_t *param)
{
// Supported main clock sources: PCL_MC_RCSYS, PCL_MC_OSC0, PCL_MC_DFLL0, PCL_MC_RC120M
// Supported synchronous clocks frequencies if RCSYS is the main clock source:
// 115200Hz, 57600Hz, 28800Hz, 14400Hz, 7200Hz, 3600Hz, 1800Hz, 900Hz, 450Hz.
// Supported synchronous clocks frequencies if RC120M is the main clock source:
// 30MHz, 15MHz, 7.5MHz, 3.75MHz, 1.875MHz, 937.5kHz, 468.75kHz.
// Supported synchronous clocks frequencies if OSC0 is the main clock source:
// (these obviously depend on the OSC0 frequency; we'll take 16MHz as an example)
// 16MHz, 8MHz, 4MHz, 2MHz, 1MHz, 500kHz, 250kHz, 125kHz, 62.5kHz.
// Supported synchronous clocks frequencies if DFLL is the main clock source:
// (these obviously depend on the DFLL target frequency; we'll take 100MHz as an example)
// 50MHz, 25MHz, 12.5MHz, 6.25MHz, 3.125MHz, 1562.5kHz, 781.25kHz, 390.625kHz.
// NOTE: by default, this implementation doesn't perform thorough checks on the
// input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
#ifdef AVR32SFW_INPUT_CHECK
// Verify that fCPU >= fPBx
if((param->cpu_f < param->pba_f) || (param->cpu_f < param->pbb_f))
return(-1);
#endif
if(PCL_MC_RCSYS == param->main_clk_src)
{
return(pcl_configure_clocks_rcsys(param));
}
else if(PCL_MC_RC120M == param->main_clk_src)
{
return(pcl_configure_clocks_rc120m(param));
}
else if(PCL_MC_OSC0 == param->main_clk_src)
{
return(pcl_configure_clocks_osc0(param));
}
else // PCL_MC_DFLL0 == param->main_clk_src
{
return(pcl_configure_clocks_dfll0(param));
}
}
static long int pcl_configure_synchronous_clocks(pm_clk_src_t main_clk_src, unsigned long main_clock_freq_hz, pcl_freq_param_t *param)
{
//#
//# Set the Synchronous clock division ratio for each clock domain
//#
pm_set_all_cksel(main_clock_freq_hz, param->cpu_f, param->pba_f, param->pbb_f);
//#
//# Set the Flash wait state and the speed read mode (depending on the target CPU frequency).
//#
#if UC3L
flashcdw_set_flash_waitstate_and_readmode(param->cpu_f);
#elif UC3C
flashc_set_flash_waitstate_and_readmode(param->cpu_f);
#endif
//#
//# Switch the main clock source to the selected clock.
//#
pm_set_mclk_source(main_clk_src);
return PASS;
}
#endif // UC3L device-specific implementation
//! UC3C Device-specific implementation
#if UC3C
static long int pcl_configure_clocks_uc3c(pcl_freq_param_t *param)
{
#define PM_MAX_MUL ((1 << AVR32_SCIF_PLLMUL_SIZE) - 1)
#define AVR32_PM_PBA_MAX_FREQ 66000000
#define AVR32_PM_PLL_VCO_RANGE0_MAX_FREQ 240000000
#define AVR32_PM_PLL_VCO_RANGE0_MIN_FREQ 160000000
// Implementation for UC3C parts.
// Supported frequencies:
// Fosc0 mul div PLL div2_en cpu_f pba_f Comment
// 12 15 1 192 1 12 12
// 12 9 3 40 1 20 20 PLL out of spec
// 12 15 1 192 1 24 12
// 12 9 1 120 1 30 15
// 12 9 3 40 0 40 20 PLL out of spec
// 12 15 1 192 1 48 12
// 12 15 1 192 1 48 24
// 12 8 1 108 1 54 27
// 12 9 1 120 1 60 15
// 12 9 1 120 1 60 30
// 12 10 1 132 1 66 16.5
//
unsigned long in_cpu_f = param->cpu_f;
unsigned long in_osc0_f = param->osc0_f;
unsigned long mul, div, div2_en = 0, div2_cpu = 0, div2_pba = 0;
unsigned long pll_freq, rest;
Bool b_div2_pba, b_div2_cpu;
// Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
scif_configure_osc_crystalmode(SCIF_OSC0, in_osc0_f);
// Enable the OSC0
scif_enable_osc(SCIF_OSC0, param->osc0_startup, true);
// Set the main clock source as being OSC0.
pm_set_mclk_source(PM_CLK_SRC_OSC0);
// Start with CPU freq config
if (in_cpu_f == in_osc0_f)
{
param->cpu_f = in_osc0_f;
param->pba_f = in_osc0_f;
return PASS;
}
else if (in_cpu_f < in_osc0_f)
{
// TBD
}
rest = in_cpu_f % in_osc0_f;
for (div = 1; div < 32; div++)
{
if ((div * rest) % in_osc0_f == 0)
break;
}
if (div == 32)
return FAIL;
mul = (in_cpu_f * div) / in_osc0_f;
if (mul > PM_MAX_MUL)
return FAIL;
// export 2power from PLL div to div2_cpu
while (!(div % 2))
{
div /= 2;
div2_cpu++;
}
// Here we know the mul and div parameter of the PLL config.
// . Check out if the PLL has a valid in_cpu_f.
// . Try to have for the PLL frequency (VCO output) the highest possible value
// to reduce jitter.
while (in_osc0_f * 2 * mul / div < AVR32_PM_PLL_VCO_RANGE0_MAX_FREQ)
{
if (2 * mul > PM_MAX_MUL)
break;
mul *= 2;
div2_cpu++;
}
if (div2_cpu != 0)
{
div2_cpu--;
div2_en = 1;
}
pll_freq = in_osc0_f * mul / (div * (1 << div2_en));
// Update real CPU Frequency
param->cpu_f = pll_freq / (1 << div2_cpu);
mul--;
scif_pll_opt_t opt;
opt.osc = SCIF_OSC0, // Sel Osc0 or Osc1
opt.lockcount = 16, // lockcount in main clock for the PLL wait lock
opt.div = div, // DIV=1 in the formula
opt.mul = mul, // MUL=7 in the formula
opt.pll_div2 = div2_en, // pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
opt.pll_wbwdisable = 0, //pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
opt.pll_freq = (pll_freq < AVR32_PM_PLL_VCO_RANGE0_MIN_FREQ) ? 1 : 0, // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.
scif_pll_setup(SCIF_PLL0, opt); // lockcount in main clock for the PLL wait lock
/* Enable PLL0 */
scif_pll_enable(SCIF_PLL0);
/* Wait for PLL0 locked */
scif_wait_for_pll_locked(SCIF_PLL0) ;
rest = pll_freq;
while (rest > AVR32_PM_PBA_MAX_FREQ ||
rest != param->pba_f)
{
div2_pba++;
rest = pll_freq / (1 << div2_pba);
if (rest < param->pba_f)
break;
}
// Update real PBA Frequency
param->pba_f = pll_freq / (1 << div2_pba);
if (div2_cpu)
{
b_div2_cpu = TRUE;
div2_cpu--;
}
else
b_div2_cpu = FALSE;
if (div2_pba)
{
b_div2_pba = TRUE;
div2_pba--;
}
else
b_div2_pba = FALSE;
if (b_div2_cpu == TRUE )
{
pm_set_clk_domain_div(PM_CLK_DOMAIN_0, (pm_divratio_t) div2_cpu); // CPU
pm_set_clk_domain_div(PM_CLK_DOMAIN_1, (pm_divratio_t) div2_cpu); // HSB
pm_set_clk_domain_div(PM_CLK_DOMAIN_3, (pm_divratio_t) div2_cpu); // PBB
}
if (b_div2_pba == TRUE )
{
pm_set_clk_domain_div(PM_CLK_DOMAIN_2, (pm_divratio_t) div2_pba); // PBA
pm_set_clk_domain_div(PM_CLK_DOMAIN_4, (pm_divratio_t) div2_pba); // PBC
}
// Set Flashc Wait State
flashc_set_flash_waitstate_and_readmode(param->cpu_f);
// Set the main clock source as being PLL0.
pm_set_mclk_source(PM_CLK_SRC_PLL0);
return PASS;
}
#endif // UC3C device-specific implementation
long int pcl_switch_to_osc(pcl_osc_t osc, unsigned int fcrystal, unsigned int startup)
{
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
if(PCL_OSC0 == osc)
{
// Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency,
// enable the OSC0, set the main clock source as being OSC0.
pm_switch_to_osc0(&AVR32_PM, fcrystal, startup);
}
else
{
return PCL_NOT_SUPPORTED;
}
#else
// Implementation for UC3C, UC3L parts.
#if AVR32_PM_VERSION_RESETVALUE < 0x400
return PCL_NOT_SUPPORTED;
#else
if(PCL_OSC0 == osc)
{
// Configure OSC0 in crystal mode, external crystal with a fcrystal Hz frequency.
scif_configure_osc_crystalmode(SCIF_OSC0, fcrystal);
// Enable the OSC0
scif_enable_osc(SCIF_OSC0, startup, true);
// Set the Flash wait state and the speed read mode (depending on the target CPU frequency).
#if UC3L
flashcdw_set_flash_waitstate_and_readmode(fcrystal);
#elif UC3C
flashc_set_flash_waitstate_and_readmode(fcrystal);
#endif
// Set the main clock source as being OSC0.
pm_set_mclk_source(PM_CLK_SRC_OSC0);
}
else
{
return PCL_NOT_SUPPORTED;
}
#endif
#endif
return PASS;
}
long int pcl_configure_usb_clock(void)
{
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
pm_configure_usb_clock();
return PASS;
#else
#ifdef AVR32_PM_410_H_INCLUDED
const scif_pll_opt_t opt = {
.osc = SCIF_OSC0, // Sel Osc0 or Osc1
.lockcount = 16, // lockcount in main clock for the PLL wait lock
.div = 1, // DIV=1 in the formula
.mul = 5, // MUL=7 in the formula
.pll_div2 = 1, // pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
.pll_wbwdisable = 0, //pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
.pll_freq = 1, // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.
};
/* Setup PLL1 on Osc0, mul=7 ,no divisor, lockcount=16, ie. 16Mhzx6 = 96MHz output */
scif_pll_setup(SCIF_PLL1, opt); // lockcount in main clock for the PLL wait lock
/* Enable PLL1 */
scif_pll_enable(SCIF_PLL1);
/* Wait for PLL1 locked */
scif_wait_for_pll_locked(SCIF_PLL1) ;
// Implementation for UC3C parts.
// Setup the generic clock for USB
scif_gc_setup(AVR32_SCIF_GCLK_USB,
SCIF_GCCTRL_PLL1,
AVR32_SCIF_GC_NO_DIV_CLOCK,
0);
// Now enable the generic clock
scif_gc_enable(AVR32_SCIF_GCLK_USB);
return PASS;
#else
return PCL_NOT_SUPPORTED;
#endif
#endif
}
#if UC3L
#else
void pcl_write_gplp(unsigned long gplp, unsigned long value)
{
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
pm_write_gplp(&AVR32_PM,gplp,value);
#else
scif_write_gplp(gplp,value);
#endif
}
unsigned long pcl_read_gplp(unsigned long gplp)
{
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
return pm_read_gplp(&AVR32_PM,gplp);
#else
return scif_read_gplp(gplp);
#endif
}
#endif