341 lines
10 KiB
C

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-10-7 Wayne First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_ECAP)
#include <rtdevice.h>
#include "drv_sys.h"
#include "drv_common.h"
#include "nu_bitutil.h"
#define ECAP_CHANNEL_NUM 0x3
#define ECAP_CHANNEL_MSK ((1<<ECAP_CHANNEL_NUM)-1)
#define ECAP_CLK_DIV ECAP_CAPTURE_TIMER_CLKDIV_32
/* Private typedef --------------------------------------------------------------*/
enum
{
ECAP_START = -1,
#if defined(BSP_USING_ECAP0)
ECAP0_IDX,
ECAP1_IDX,
ECAP2_IDX,
#endif
#if defined(BSP_USING_ECAP1)
ECAP3_IDX,
ECAP4_IDX,
ECAP5_IDX,
#endif
#if defined(BSP_USING_ECAP2)
ECAP6_IDX,
ECAP7_IDX,
ECAP8_IDX,
#endif
#if defined(BSP_USING_ECAP3)
ECAP9_IDX,
ECAP10_IDX,
ECAP11_IDX,
#endif
ECAP_CNT
};
struct nu_ecap
{
struct rt_inputcapture_device parent;
ECAP_T *base;
char *name;
IRQn_Type irqn;
uint32_t rstidx;
uint32_t modid;
float fUsPerTick;
uint8_t u8Channel;
rt_bool_t bfirstData;
uint32_t u32CurrentCnt;
uint32_t u32LastCnt;
rt_bool_t input_data_level;
} ;
typedef struct nu_ecap *nu_ecap_t;
/* Private functions ------------------------------------------------------------*/
static rt_err_t nu_ecap_init(struct rt_inputcapture_device *inputcapture);
static rt_err_t nu_ecap_open(struct rt_inputcapture_device *inputcapture);
static rt_err_t nu_ecap_close(struct rt_inputcapture_device *inputcapture);
static rt_err_t nu_ecap_get_pulsewidth(struct rt_inputcapture_device *inputcapture, rt_uint32_t *pulsewidth_us);
static void nu_ecap_isr(nu_ecap_t psNuEcap);
/* Private define ---------------------------------------------------------------*/
#define NU_ECAP_GET_LEVEL(status, channel) ((status & (1<<(ECAP_STATUS_CAP0_Pos+channel)))?0:1)
#define ECAP_GET_CLK_DIV_INDEX(ecap) ((ecap)->CTL1 = ((ecap)->CTL1 & ECAP_CTL1_CLKSEL_Msk)>>ECAP_CTL1_CLKSEL_Pos)
/* Public functions -------------------------------------------------------------*/
/* Private variables ------------------------------------------------------------*/
static struct nu_ecap nu_ecap_arr [] =
{
#if defined(BSP_USING_ECAP0)
{ .base = ECAP0, .name = "ecap0i0", .irqn = ECAP0_IRQn, .rstidx = ECAP0_RST, .modid = ECAP0_MODULE },
{ .base = ECAP0, .name = "ecap0i1", .irqn = ECAP0_IRQn, .rstidx = ECAP0_RST, .modid = ECAP0_MODULE },
{ .base = ECAP0, .name = "ecap0i2", .irqn = ECAP0_IRQn, .rstidx = ECAP0_RST, .modid = ECAP0_MODULE },
#endif
#if defined(BSP_USING_ECAP1)
{ .base = ECAP1, .name = "ecap1i0", .irqn = ECAP1_IRQn, .rstidx = ECAP1_RST, .modid = ECAP1_MODULE },
{ .base = ECAP1, .name = "ecap1i1", .irqn = ECAP1_IRQn, .rstidx = ECAP1_RST, .modid = ECAP1_MODULE },
{ .base = ECAP1, .name = "ecap1i2", .irqn = ECAP1_IRQn, .rstidx = ECAP1_RST, .modid = ECAP1_MODULE },
#endif
#if defined(BSP_USING_ECAP2)
{ .base = ECAP2, .name = "ecap2i0", .irqn = ECAP2_IRQn, .rstidx = ECAP1_RST, .modid = ECAP2_MODULE },
{ .base = ECAP2, .name = "ecap2i1", .irqn = ECAP2_IRQn, .rstidx = ECAP1_RST, .modid = ECAP2_MODULE },
{ .base = ECAP2, .name = "ecap2i2", .irqn = ECAP2_IRQn, .rstidx = ECAP1_RST, .modid = ECAP2_MODULE },
#endif
#if defined(BSP_USING_ECAP3)
{ .base = ECAP3, .name = "ecap3i0", .irqn = ECAP3_IRQn, .rstidx = ECAP3_RST, .modid = ECAP3_MODULE },
{ .base = ECAP3, .name = "ecap3i1", .irqn = ECAP3_IRQn, .rstidx = ECAP3_RST, .modid = ECAP3_MODULE },
{ .base = ECAP3, .name = "ecap3i2", .irqn = ECAP3_IRQn, .rstidx = ECAP3_RST, .modid = ECAP3_MODULE },
#endif
};
static struct rt_inputcapture_ops nu_ecap_ops =
{
.init = nu_ecap_init,
.open = nu_ecap_open,
.close = nu_ecap_close,
.get_pulsewidth = nu_ecap_get_pulsewidth,
};
/* Functions define ------------------------------------------------------------*/
#if defined(BSP_USING_ECAP0)
void ECAP0_IRQHandler(void)
{
rt_interrupt_enter();
nu_ecap_isr((void *)&nu_ecap_arr[ECAP0_IDX]);
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_ECAP1)
void ECAP1_IRQHandler(void)
{
rt_interrupt_enter();
nu_ecap_isr((void *)&nu_ecap_arr[ECAP3_IDX]);
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_ECAP2)
void ECAP2_IRQHandler(void)
{
rt_interrupt_enter();
nu_ecap_isr((void *)&nu_ecap_arr[ECAP6_IDX]);
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_ECAP3)
void ECAP3_IRQHandler(void)
{
rt_interrupt_enter();
nu_ecap_isr((void *)&nu_ecap_arr[ECAP9_IDX]);
rt_interrupt_leave();
}
#endif
static void nu_ecap_isr(nu_ecap_t psNuEcapBase)
{
int i32ChnId;
ECAP_T *base = psNuEcapBase->base;
/* Get input Capture status */
uint32_t u32Status = ECAP_GET_INT_STATUS(base);
uint32_t u32ChStatus = u32Status & ECAP_CHANNEL_MSK;
/* Check input capture channel flag */
/* Find index of pin is attached in pool. */
while ((i32ChnId = nu_ctz(u32ChStatus)) < ECAP_CHANNEL_NUM) // Count Trailing Zeros ==> Find First One
{
if (u32ChStatus & (ECAP_STATUS_CAPTF0_Msk << i32ChnId))
{
nu_ecap_t psNuEcap = psNuEcapBase + i32ChnId;
/* Clear input capture channel flag */
ECAP_CLR_CAPTURE_FLAG(base, 1 << (ECAP_STATUS_CAPTF0_Pos + i32ChnId));
psNuEcap->input_data_level = NU_ECAP_GET_LEVEL(u32Status, i32ChnId);
psNuEcap->u32CurrentCnt = ECAP_GET_CNT_HOLD_VALUE(base, i32ChnId);
rt_hw_inputcapture_isr(&psNuEcap->parent, psNuEcap->input_data_level);
}
u32ChStatus &= ~(1 << i32ChnId);
}
}
static rt_err_t nu_ecap_get_pulsewidth(struct rt_inputcapture_device *inputcapture, rt_uint32_t *pulsewidth_us)
{
rt_err_t ret = RT_EOK;
float fTempCnt;
nu_ecap_t psNuEcap = (nu_ecap_t) inputcapture;
RT_ASSERT(inputcapture != RT_NULL);
if (psNuEcap->bfirstData)
{
psNuEcap->bfirstData = RT_FALSE;
ret = -RT_ERROR;
return -(ret);
}
if (psNuEcap->u32CurrentCnt > psNuEcap->u32LastCnt)
fTempCnt = psNuEcap->u32CurrentCnt - psNuEcap->u32LastCnt;
else /* Overrun case */
fTempCnt = psNuEcap->u32CurrentCnt + ((0x1000000 - psNuEcap->u32LastCnt) + 1);
*pulsewidth_us = (int)(fTempCnt * psNuEcap->fUsPerTick);
psNuEcap->u32LastCnt = psNuEcap->u32CurrentCnt;
return -(ret);
}
static float get_ecap_tick_time_us(nu_ecap_t psNuEcap)
{
uint8_t u8ClockDivider[8] = { 1, 4, 16, 32, 64, 96, 112, 128};
if (psNuEcap->base == ECAP0 || (psNuEcap->base == ECAP2))
return ((float)1000000 / ((float)CLK_GetPCLK0Freq() / u8ClockDivider[(psNuEcap->base->CTL1 & ECAP_CTL1_CLKSEL_Msk) >> ECAP_CTL1_CLKSEL_Pos]));
else
return ((float)1000000 / ((float)CLK_GetPCLK1Freq() / u8ClockDivider[(psNuEcap->base->CTL1 & ECAP_CTL1_CLKSEL_Msk) >> ECAP_CTL1_CLKSEL_Pos]));
}
static rt_err_t nu_ecap_init(struct rt_inputcapture_device *inputcapture)
{
return RT_EOK;
}
static rt_err_t nu_ecap_open(struct rt_inputcapture_device *inputcapture)
{
rt_err_t ret = RT_EOK;
nu_ecap_t psNuEcap = (nu_ecap_t) inputcapture;
RT_ASSERT(inputcapture != RT_NULL);
psNuEcap->fUsPerTick = get_ecap_tick_time_us(psNuEcap);
/* Enable ECAP Input Channel */
ECAP_ENABLE_INPUT_CHANNEL(psNuEcap->base, 0x1 << (ECAP_CTL0_IC0EN_Pos + psNuEcap->u8Channel));
/* Input Channel interrupt enabled */
ECAP_EnableINT(psNuEcap->base, 0x1 << (ECAP_CTL0_CAPIEN0_Pos + psNuEcap->u8Channel));
/* ECAP_CNT starts up-counting */
ECAP_CNT_START(psNuEcap->base);
return ret;
}
static rt_err_t nu_ecap_close(struct rt_inputcapture_device *inputcapture)
{
rt_err_t ret = RT_EOK;
nu_ecap_t psNuEcap = (nu_ecap_t) inputcapture;
RT_ASSERT(inputcapture != RT_NULL);
/* Input Channel interrupt disabled */
ECAP_DisableINT(psNuEcap->base, 0x1 << (ECAP_CTL0_CAPIEN0_Pos + psNuEcap->u8Channel));
/* Disable ECAP Input Channel */
ECAP_DISABLE_INPUT_CHANNEL(psNuEcap->base, 0x1 << (ECAP_CTL0_IC0EN_Pos + psNuEcap->u8Channel));
/* Clear input capture channel flag */
ECAP_CLR_CAPTURE_FLAG(psNuEcap->base, 0x1 << (ECAP_STATUS_CAPTF0_Pos + psNuEcap->u8Channel));
return ret;
}
static void nu_ecap_channel_init(ECAP_T *base)
{
/* Enable ECAP */
ECAP_Open(base, ECAP_DISABLE_COMPARE);
ECAP_SEL_TIMER_CLK_DIV(base, ECAP_CLK_DIV);
/* Select Reload function */
ECAP_SET_CNT_CLEAR_EVENT(base, ECAP_CTL1_OVRLDEN_Msk);
/* Enable ECAP source IC */
ECAP_SEL_INPUT_SRC(base, ECAP_IC0, ECAP_CAP_INPUT_SRC_FROM_IC);
ECAP_SEL_INPUT_SRC(base, ECAP_IC1, ECAP_CAP_INPUT_SRC_FROM_IC);
ECAP_SEL_INPUT_SRC(base, ECAP_IC2, ECAP_CAP_INPUT_SRC_FROM_IC);
/* Select IC detect rising edge */
ECAP_SEL_CAPTURE_EDGE(base, ECAP_IC0, ECAP_RISING_FALLING_EDGE);
ECAP_SEL_CAPTURE_EDGE(base, ECAP_IC1, ECAP_RISING_FALLING_EDGE);
ECAP_SEL_CAPTURE_EDGE(base, ECAP_IC2, ECAP_RISING_FALLING_EDGE);
}
/* Init and register ecap capture */
static int rt_hw_ecap_init(void)
{
int i;
rt_err_t ret = RT_EOK;
for (i = (ECAP_START + 1); i < ECAP_CNT; i++)
{
nu_ecap_t psNuEcap = &nu_ecap_arr[i];
psNuEcap->u8Channel = i % ECAP_CHANNEL_NUM;
psNuEcap->bfirstData = RT_TRUE;
psNuEcap->u32CurrentCnt = 0;
psNuEcap->u32LastCnt = 0;
psNuEcap->parent.ops = &nu_ecap_ops;
if ((psNuEcap->u8Channel % ECAP_CHANNEL_NUM) == 0)
{
uint32_t u32RegLockBackup = SYS_IsRegLocked();
SYS_UnlockReg();
/* register ecap module */
CLK_EnableModuleClock(psNuEcap->modid);
SYS_ResetModule(psNuEcap->rstidx);
if (u32RegLockBackup)
SYS_LockReg();
nu_ecap_channel_init(psNuEcap->base);
}
/* register inputcapture device */
ret = rt_device_inputcapture_register(&psNuEcap->parent, psNuEcap->name, psNuEcap);
RT_ASSERT(ret == RT_EOK);
}
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_ecap_init);
#endif //#if defined(BSP_USING_ECAP)